Механизмы компенсации гемодинамики при сердечной недостаточности. Основные экстракардиальные механизмы компенсации нарушений сократительной активности сердца

Компенсация при нарушениях кровообращения. При возникновении каких-либо нарушений кровообращения обычно быстро наступает его функциональная компенсация. Компенсация осуществляется прежде всего теми же механизмами регулирования, что и в норме. На ранних стадиях нарушений К. их компенсация происходит без каких-либо существенных сдвигов в структуре сердечно-сосудистой системы. Структурные изменения тех или иных частей системы кровообращения (например, гипертрофия миокарда, развитие артериальных или венозных коллатеральных путей) возникают обычно позже и направлены на улучшение работы механизмов компенсации.

Компенсация возможна за счет усиления сокращений миокарда, расширения полостей сердца, а также гипертрофии сердечной мышцы. Так, при затруднении изгнания крови из желудочка, например при стеноз е устья аорты или легочного ствола, реализуется резервная мощность сократительного аппарата миокарда, что способствует усилению силы сокращения. При недостаточности клапанов сердца в каждую следующую фазу сердечного цикла часть крови возвращается в обратном направлении. При этом развивается дилатация полостей сердца, носящая компенсаторный характер. Однако чрезмерная дилатация создает неблагоприятные условия для работы сердца.

Повышение общего АД, вызванное увеличением общего периферического сопротивления, компенсируется, в частности, за счет усиления работы сердца и создания такой разности давлений между левым желудочком и аортой, которая способна обеспечить выброс в аорту всего систолического объема крови.

В ряде органов, особенно в головном мозге, при повышении уровня общего АД начинают функционировать компенсаторные механизмы, благодаря которым кровяное давление в сосудах мозга поддерживается на нормальном уровне.

При увеличении сопротивления в отдельных артериях (вследствие ангиоспазма, тромбоза, эмболии и т.д.) нарушение кровоснабжения соответствующих органов или их частей может быть компенсировано за счет коллатерального притока крови. В головном мозге коллатеральные пути представлены в виде артериальных анастомозов в области виллизиева круга и в системе пиальных артерий на поверхности больших полушарий. Артериальные коллатерали хорошо развиты и в сердечной мышце. Помимо артериальных анастомозов важную роль для коллатерального притока крови играет их функциональная дилатация, значительно уменьшающая сопротивление кровотоку и способствующая притоку крови в ишемизированную область. Если в расширившихся коллатеральных артериях кровоток оказывается усиленным в течение длительного времени, то наступает постепенная их перестройка, калибр артерий возрастает, так что в дальнейшем они могут полностью обеспечивать кровоснабжение органа в той же степени, что и основные артериальные стволы.

Основным звеном патогенеза ХСН является постепенно нарастающее сниже­ние сократительной функции миокарда и паде­ние сердечного выброса. Происходящее при этом уменьшение притока крови к органам и тканям вызывает гипоксию последних, которая перво­начально может компенсироваться усиленной тканевой утилизацией кислорода, стимуляцией эритропоэза и т.д. Однако этого оказывается не­достаточно для нормального кислородного обес­печения органов и тканей, и нарастающая ги­поксия становится пусковым механизмом ком­пенсаторных изменений гемодинамики.

Как и при острой сердечной недостаточности, все эндогенные механизмы компенсации гемо­динамических нарушений при ХСН можно под­разделить: на интракардиальные (механизм Франка - Старлинга, компенсаторная гиперфун­кция и гипертрофия миокарда) и экстракардиальные (разгрузочные рефлексы Бейнбриджа и Китаева).

Экстракардиальные механизмы компенса­ции функции сердца. В отличие от острой сер­дечной недостаточности роль рефлекторных ме­ханизмов экстренной регуляции насосной фун­кции сердца при ХСН сравнительно невелика, поскольку нарушения гемодинамики развивают­ся постепенно на протяжении нескольких лет. Более или менее определенно можно говорить о рефлексе Бейнбриджа, который «включается» уже на стадии достаточно выраженной гиперволемии.

Особое место среди «разгрузочных» экстракар­диальных рефлексов занимает рефлекс Китае­ва, который «запускается» при митральном сте­нозе. Дело в том, что в большинстве случаев проявления правожелудочковой недостаточнос­ти связаны с застойными явлениями в большом круге кровообращения, а левожелудочковой - в малом. Исключение составляет стеноз митраль­ного клапана, при котором застойные явления в легочных сосудах вызваны не декомпенсацией левого желудочка, а препятствием току крови через левое атриовентрикулярное отверстие - так называемым «первым (анатомическим) барье­ром». При этом застой крови в легких способ­ствует развитию правожелудочковой недостаточ­ности, в генезе которой рефлекс Китаева играет важную роль.

Рефлекс Китаева - это рефлекторный спазм легочных артериол в ответ на повышение дав­ления в левом предсердии. В результате возни­кает «второй (функциональный) барьер», кото­рый первоначально играет защитную роль, пре­дохраняя легочные капилляры от чрезмерного переполнения кровью. Затем этот реф­лекс приводит к выраженному повышению дав­ления в легочной артерии - развивается острая легочная гипертензия. Афферентное звено этого рефлекса представлено n.vagus, а эфферентное - симпатическим звеном вегетативной нервной системы. Негативной стороной данной приспо­собительной реакции является подъем давления в легочной артерии, приводящий к увеличению нагрузки на правое сердце.

Однако ведущую роль в генезе долговременной компенсации и декомпенсации нарушенной сердечной функции играют не рефлекторные, а нейрогуморальные механизмы, важнейшим из которых является активация симпатоадреналовой (САС) и ренин-ангиотензин-альдостероновой систем.

Интракардиальные механизмы компенса­ции функции сердца. К ним относятся компен­саторная гиперфункция и гипертрофия сердца. Эти механизмы являются неотъемлемыми ком­понентами большинства приспособительных ре­акций сердечно-сосудистой системы здорового организма, но в условиях патологии могут пре­вратиться в звено патогенеза ХСН.

Компенсаторная гиперфункция сердца (КГС) выступает как важный фактор ком­пенсации при пороках сердца, артериальной гипертензии, анемии, гипертонии малого круга и других заболеваниях. В отличие от физиологи­ческой гиперфункции она является длительной и непрерывной.

Увеличение внешней работы сердца, связан­ное с подъемом давления в аорте приводит к более выражен­ному возрастанию потребности миокарда в кис­лороде, чем перегрузка миокарда, вызванная повышением объема циркулирующей крови. Иными словами, для осуществления работы в условиях нагрузки давлением мышца сердца использует гораздо больше энергии, чем для выполнения той же работы, связанной с нагрузкой объемом, а сле­довательно, при стойкой артериальной гипертензии гипертрофия сердца развивается быстрее, чем при увеличении ОЦК. Например, при физичес­кой работе, высотной гипоксии, всех видах кла­панной недостаточности, артерио-венозных фи­стулах, анемии гиперфункция миокарда обеспе­чивается за счет увеличения минутного объема сердца. При этом систолическое напряжение миокарда и давление в желудочках возрастают незначительно и гипертрофия развивается мед­ленно. В то же время при гипертонической бо­лезни, гипертензии малого круга, стенозах кла­панных отверстий развитие гиперфункции свя­зано с повышением напряжения миокарда при незначительно измененной амплитуде сокраще­ний. В этом случае гипертрофия прогрессирует достаточно быстро.

Гипертрофия миокарда - это увеличение массы сердца за счет увеличения размеров кардиомиоцитов. Существуют три стадии ком­пенсаторной гипертрофии сердца.

Первая, ава­рийная, стадия характеризуется, прежде всего, увеличением интенсивности функционирования структур миокарда и, по сути, представляет со­бой компенсаторную гиперфункцию еще не ги­пертрофированного сердца. Интенсивность функ­ционирования структур (ИФС) - это механичес­кая работа, приходящаяся на единицу массы миокарда. Увеличение ИФС закономерно влечет за собой одновременную активацию энергообра­зования, синтеза нуклеиновых кислот и белка. Указанная активация синтеза белка происходит таким образом, что вначале увеличивается мас­са энергообразующих структур (митохондрий), а затем - масса функционирующих структур (миофибрилл). В целом увеличение массы миокарда приводит к тому, что ИФС постепенно возвра­щается к нормальному уровню.

Вторая стадия завершившейся гипертрофии характеризуется нормальной ИФС миокарда и, соответственно, нормальным уровнем энергооб­разования и синтеза нуклеиновых кислот и бел­ков в ткани сердечной мышцы. При этом по­требление кислорода на единицу массы миокар­да остается в границах нормы, а потребление кислорода сердечной мышцей в целом увеличе­но пропорционально возрастанию массы сердца. Увеличение массы миокарда в условиях ХСН происходит за счет активации синтеза нуклеи­новых кислот и белков.

Третья стадия прогрессирующего кардиосклерозаи декомпенсации характеризуется на­рушением синтеза белков и нуклеиновых кис­лот в миокарде. В результате нарушения синте­за РНК, ДНК и белка в кардиомиоцитах наблю­дается относительное уменьшение массы мито­хондрий, что ведет к торможению синтеза АТФ на единицу массы ткани, снижению насосной функции сердца и прогрессированию ХСН. Си­туация усугубляется развитием дистрофических и склеротических процессов, что способствует появлению признаков декомпенсации и тоталь­ной сердечной недостаточности, завершающей­ся гибелью пациента.

Компенсаторная гипер­функция, гипертрофия и последующая деком­пенсация сердца - это звенья единого процесса. Механизм декомпенсации гипертрофирован­ного миокарда включает следующие звенья:

1. Процесс гипертрофии не распространяется на коронарные сосуды, поэтому число капилляров на единицу объема миокарда в гипертрофи­рованном сердце уменьшается. Следовательно, кровоснабжение гипертрофированной сердечной мышцы оказывается недостаточным для выполнения механической работы.

2. Вследствие увеличения объема гипертро­фированных мышечных волокон уменьшается удельная поверхность клеток, в связи с этим ухудшаются условия для поступления в клетки питательных веществ и выделения из кардиомиоцитов продуктов метаболизма.

3. В гипертрофированном сердце нарушается соотношение между объемами внутриклеточных структур. Так, увеличение массы митохондрий и СПР отстает от увеличения размеров миофибрилл, что способствует ухудшению энергоснаб­жения кардиомиоцитов и сопровождается нару­шением аккумуляции Са 2 в СПР. Возникает Са 2+ -перегрузка кардиомиоцитов, что обеспечи­вает формирование контрактуры сердца и спо­собствует уменьшению ударного объема. Кроме того, Са 2+ -перегрузка клеток миокарда повыша­ет вероятность возникновения аритмий.

4. Проводящая система сердца и вегетативные нервные волокна, иннервирующие миокард, не подвергаются гипертрофии, что также способствует возникновению дисфункции гипертрофированного сердца.

5. Активируется апоптоз отдельных кардиомиоцитов, что способствует постепенному заме­щению мышечных волокон соединительной тка­нью (кардиосклероз).

В конечном итоге гипертрофия утрачивает приспособительное значение и перестает быть полезной для организма. Ослабление сократи­тельной способности гипертрофированного серд­ца происходит тем скорее, чем сильнее выраже­ны гипертрофия и морфологические изменения в миокарде.

Патогенез сердечной недостаточности пред­ставляется следующим образом.

Многочислен­ный ряд примеров патологии сердечной деятель­ности (кардиомиопатии, нарушения коронарной перфузии и др.) индуцирует кислородное голо­дание миокарда. Известно, что в условиях нор­мального кровоснабжения важным энергетичес­ким субстратом для сердечной мышцы являют­ся свободные жирные кислоты (СЖК), глюкоза и молочная кислота. Гипоксия приводит к на­рушению процессов аэробного окисления субстра­тов в цикле Кребса, к угнетению окисления НАДН в дыхательной цепи митохондрий. Все это способствует накоплению недоокисленных продуктов метаболизма СЖК и глюкозы (ацил-КоА, лактат). Усиленное образование ацил-КоА в кардиомиоцитах негативно сказывается на энергетическом метаболизме клетки. Дело в том, что ацил-КоА является ингибитором аденилат-транслоказы - фермента, который осуществляет транспорт АТФ из митохондрий в саркоплазму. Аккумуляция ацил-КоА приводит к нарушению этого транспорта, усугубляя энергетический де­фицит в клетке.

Единственным источником энергии для кардиомиоцитов становится анаэробный гликолиз, интенсивность которого в условиях гипоксии резко возрастает. Однако «коэффициент полез­ного действия» анаэробного гликолиза, по срав­нению с эффективностью энергопродукции в цикле Кребса, намного ниже. В силу этого анаэ­робный гликолиз не в состоянии полностью воз­местить энергетические потребности клетки. Так, при анаэробном расщеплении одной молекулы глюкозы образуются всего две молекулы АТФ, в то время как при окислении глюкозы до угле­кислого газа и воды - 32 молекулы АТФ. Не­хватка высокоэнергетических фосфатов (АТФ и креатинфосфата) приводит к нарушению энергозависимого процесса удаления ионов кальция из саркоплазмы кардиомиоцитов и возникнове­нию кальциевой перегрузки миокарда.

В норме увеличение вызывает образо­вание мостиков между цепочками актина и ми­озина, что является основой сокращения карди­омиоцитов. Вслед за этим происходит удаление избытка ионов кальция из саркоплазмы и раз­витие диастолы. Кальциевая перегрузка клеток миокарда при его ишемии ведет к остановке процесса сокращения - расслабления в стадии систолы, формируется контрактура миокарда - состояние, при котором кардиомиоциты переста­ют расслабляться. Возникшая зона асистолии характеризуется повышенным тканевым напря­жением, что ведет к сдавлению коронарных со­судов и связанному с этим усугублению дефици­та коронарного кровотока.

Ионы Са 2 + активируют фосфолипазу А 2 , кото­рая катализирует расщепление фосфолипидов. В результате этого образуются одна молекула СЖК и одна молекула лизофосфатида. Свобод­ные жирные кислоты обладают детергентоподобным действием и в случае избыточного их на­копления в миокарде могут повреждать мембра­ны кардиомиоцитов. Еще более выраженный кардиотоксический эффект оказывают лизофосфатиды. Особенно токсичен лизофосфатидилхолин, который может провоцировать аритмии. В настоящее время роль СЖК и лизофосфатидов в патогенезе ишемического повреждения сердца никем не оспаривается, однако молекулярная природа необратимого повреждения кардиомио­цитов не сводится только к накоплению этих веществ в клетках сердечной мышцы. Кардиотоксическими свойствами могут обладать и дру­гие продукты метаболизма, например активные формы кислорода.

Активными формами кислорода (АФК) на­зывают супероксидный радикал (0 2 ") и гидроксильный радикал НО, которые обладают высо­кой окислительной активностью. Источником АФК в кардиомиоцитах является дыхательная цепь митохондрий и прежде всего цитохромы, которые в условиях гипоксии переходят в вос­становленное состояние и могут быть донорами электронов, «передавая» их молекулам кисло­рода с образованием не молекулы воды, как это происходит в норме, а супероксидного радикала (O 2). Кроме того, образование свободных ради­калов катализируется ионами металлов с переменной валентностью (прежде всего, ионами железа), которые всегда присутствуют в клетке. Активные формы кислорода взаимодействуют с молекулами белков и полиненасыщенных жир­ных кислот, превращая их в свободные радика­лы. Вновь образованные радикалы могут, в свою очередь, взаимодействовать с другими молеку­лами белков и жирных кислот, индуцируя даль­нейшее образование свободных радикалов. Та­ким образом, реакция может принимать цепной и разветвленный характер. Образование гидроперекисей полиненасыщен­ных жирных кислот, входящих в молекулярную структуру мембранных фосфолипидов, способ­ствует изменению биологических свойств мемб­ран. В отличие от жирных кислот гидропереки­си являются водорастворимыми веществами, и появление их в структуре гидрофобного фосфолипидного матрикса клеточных мембран приво­дит к формированию пор, пропускающих ионы и молекулы воды. Кроме того, изменяется ак­тивность мембраносвязанных ферментов.

Процесс возникновения гидроперекисей жир­ных кислот является одним из звеньев перекисного окисления липидов, которое включает в себя еще свободнорадикальное образование альдеги­дов и кетонов. Все эти вещества получили на­звание продуктов ПОЛ. Согласно концепции Ф.З. Меерсона, продукты ПОЛ обладают кардиотоксическими свойствами, и накопление их в клет­ке приводит к повреждению сарколеммы, а так­же лизосомальных и митохондриальных мемб­ран. На заключительном этапе повреждения, предшествующем гибели клеток, особая роль отводится активации протеолитических фермен­тов. Обычно эти энзимы находятся в цитоплаз­ме кардиомиоцитов в неактивном состоянии или локализованы внутри лизосом, мембраны кото­рых изолируют их от структурных элементов клетки. В связи с этим в норме протеазы не ока­зывают цитотоксического действия. В условиях ишемии перегрузка кардиомиоцитов ионами кальция и закисление цитоплазмы за счет на­копления лактата приводят к активации внут­риклеточных протеаз. Кроме того, повышение проницаемости лизосомальных мембран под действием фосфолипаз и продуктов ПОЛ способству­ет выходу активных протеолитических фермен­тов в саркоплазму. Конечным звеном этой пато­генетической цепочки является некроз кардио­миоцитов в зоне ишемии и их «самопереварива­ние», которое получило название аутолиза.

Важно отметить, что первыми погибают толь­ко кардиомиоциты, отличающиеся высокой ин­тенсивностью энергетического метаболизма и, соответственно, повышенной потребностью в кислороде. В то же время фибробласты и клетки проводящей системы менее зависимы от достав­ки кислорода и сохраняют свою жизнеспособ­ность. Функциональная активность фибробластов обеспечивает процессы рубцевания.

Клетки проводящей системы, сохраняя жиз­неспособность в условиях кислородного голода­ния, существенно изменяют свои электрофизио­логические характеристики, что может способ­ствовать возникновению аритмий. В результате повреждения мембран и снижения образования АТФ изменяется активность К + -, Na + -АТФазы, что сопровождается усиленным поступлением натрия в кардиомиоциты и выходом из них ка­лия. Это увеличивает электрическую нестабиль­ность миокарда и способствует развитию арит­мий.

Гипоксическая сократительная дисфункция сердца усугубляется нарушением процессов нейрогуморальной регуляции функционального со­стояния миокарда. Сердечные боли, приступы аритмии и другие нарушения являются для орга­низма стрессором, т.е. воздействием чрезмерной силы, на которое организм, как и на любое стрессорное воздействие, реагирует активацией симпатоадреналовой системы.

В настоящее время установлено, что при хро­нической активации симпатоадреналовой систе­мы происходит постепенная Са2+-перегрузка кар­диомиоцитов и их контрактура, нарушается це­лостность сарколеммы. При гиперактивации адренергической системы формируется электричес­кая нестабильность миокарда. Последняя спо­собствует возникновению фибрилляции желудочков сердца, поэтому каждый третий пациент при ХСН погибает внезапно, иногда сердечная смерть наступает на фоне внешнего благополучия и по­ложительной клинической динамики течения ХСН.

Адренергическая тахикардия сопровождает­ся повышением потребности миокарда в кисло­роде, что наряду с Са-перегрузкой еще больше усугубляет энергетический дефицит в клетках миокарда. Включается защитно-приспособитель­ный механизм, получивший название «спячки» или гибернации кардиомиоцитов. Часть клеток перестает сокращаться и отвечать на внешние стимулы, потребляя при этом минимум энергии и экономя кислород для активно сокращающихся кардиомиоцитов. Таким образом, количество обеспечивающих насосную функцию сердца кле­ток миокарда может существенно уменьшиться, способствуя усугублению сердечной недостаточности.

Кроме того, гиперактивация симпатоадрена­ловой системы усиливает секрецию ренина поч­ками, выступая в роли стимулятора РААС. Об­разующийся ангиотензин-II способствует увеличению адренореактивности сердца и сосудов, усиливая тем самым кардиотоксическое действие катехоламинов. Одновременно этот пептид увеличивает перифе­рическое сопротивление кровеносных сосудов, что, безусловно, способствует увеличению пост­нагрузки на сердце и весьма негативно сказы­вается на гемодинамике. Кроме того, ангиотензин-II может самостоятельно или через актива­цию образования цитокинов стимулировать программируемую гибель кардиомиоцитов («апоптоз»). Наряду с отмеченным повышением уровня ангиотензина-II негативно сказывается на состоя­нии водно-солевого гомеостаза, поскольку этот пептид активирует секрецию альдостерона.

В результате в организме задерживается избыточ­ное количество воды и натрия. Задержка натрия повышает осмолярность крови, в ответ на кото­рую происходит активация секреции антидиу­ретического гормона, что приводит к уменьше­нию диуреза и еще большей гидратации орга­низма. В итоге повышается ОЦК и увеличивает­ся преднагрузка на сердце. Гиперволемия ведет к раздражению механорецепторов, локализован­ных в устье полых и легочных вен, «включает­ся» рефлекс Бейнбриджа, возникает рефлекторная тахикардия, что еще больше увеличивает нагрузку на миокард и потребность сердечной мышцы в кислороде.

Создается «порочный круг», разорвать кото­рый можно только с помощью определенных фармакологических воздействий. Ко всему это­му присоединяется повышение гидростатическо­го давления в микрососудистом русле, что спо­собствует выходу жидкой части крови в ткани и формированию отеков. Последние сдавливают ткани, что усугубляет нарушение микроцирку­ляции и еще больше усиливает тканевую гипок­сию. При дальнейшем прогрессировании недо­статочности кровообращения нарушаются и дру­гие виды обмена, в том числе и белковый, что приводит к дистрофическим изменениям в орга­нах и тканях, нарушению их функции. В ко­нечной стадии ХСН развиваются кахексия, мас­кируемая отеками, гипопротеинемия, появляют­ся признаки почечной и печеночной декомпен­сации.

ИШЕМИЯ МИОКАРДА.

Термин «ишемическая болезнь сердца» (ИБС) был предложен комитетом экс­пертов ВОЗ в 1962 г. ИБС - термин собирательный, включающий многообразные клинические формы и проявления, как острые, так и хрони­ческие, как обратимые (преходящие), так и нео­братимые, заканчивающиеся некрозом сердеч­ной мышцы. Ишемия миокарда (от греч. ischo -задерживать, останавливать и haemia - кровь) представляет собой такое состояние, при кото­ром нарушается кровообращение мышцы серд­ца, появляется местное «малокровие», вследствие чего развивается коронарная недостаточность, т. е. возникает несоответствие между потребностя­ми миокарда в кислороде, с одной стороны, и уровнем оксигенации кардиомиоцитов - с дру­гой. Заболевания, патогенетическую основу кото­рых составляет ишемическое повреждение сердечной мышцы (коронарная болезнь сердца, ин­фаркт миокарда, атеросклеротический кардио­склероз), являются основной причиной смерт­ности населения в современном обществе - по данным ВОЗ, 400-500 человек на 100 000 насе­ления в возрасте 50-54 лет.

Патогенез необратимых изменений миокардиоцитов при ишемии можно представить в следующем виде:

1. Снижение энергетики в миокардиоцитах приводит к дальнейшему угнетению гликолиза.

2. Повреждение плазматической мембраны вызывает повышение проницаемости с нарушением функции специфических мембранных насосов (К/Na-АТФазы, Са/Н-обменник и др.)

3. Нарастание внутриклеточного ацидоза влечет за собой денатурацию белка.

4. Функция митохондрий прогрессивно снижается.

5. Активируется лизосомальный аутофагоцитоз, вплоть до разрыва лизосом. Активируется универсальный механизм клеточной деструкции – накопление ионов Са и продуктов перекисного окисления липидов. Это обусловлено увеличением вхождения Са в миокардиоциты и нарушением работы саркоплазмотического ретикулума (СПР), что инициирует запуск «кальциевой триады»:

1) контрактуру миофибрилл;

2) нарушение функций митохондрий;

3) усиление активности миофибриллярных протеаз и митохондриальных фосфолипаз.

Наряду с «липидной триадой»: -

1) активация ПОЛ;

2) увеличение активности фосфолипаз;

3) детергентное действие жирных кислот

Это приводит к необратимым повреждениям клеток миокарда.

Выделяют 3 периода тотальной ишемии миокарда:

1. Латентный период, в течение которого функции сердца не изменяются; он совпадает по времени с периодом аэробного метаболизма. В норме этих запасов хватает на 1-20 секунд.

2. Период выживания – тот предел, когда реперфузия или реоксигенация приводит к быстрому восстановлению функции сердца до исходного уровня. Биохимически, это переход на анаэробный метаболизм. Время этой фазы при гипотермии – 5 минут.

3. Период возможности оживления – время от начала ишемии до предела обратимых изменений. Длительность от 20 до 40 минут

Поскольку ишемия миокарда может вызываться достаточно большим количеством причин и иметь различные клинические формы, было введено понятие «ишемическая болезнь сердца», которая включает в себя все виды атеросклеротического поражения сердца:

1. Стенокардия.

2. Инфаркт миокарда.

3. Промежуточные формы коронарной недостаточности.

4. Кардиосклероз.

5. Аневризма сердца.

6. Внезапная сердечная смерть.

По аналогии с сердечной недостаточностью выделяют коронарную недостаточность – состояние, обусловленное неспособностью коронарного кровотока обеспечить метаболические потребности миокарда в кислороде вследствие спазма, тромбоза, эмболии коронарных сосудов. Коронарная недостаточность может быть:

1. Абсолютной – обусловлена истинным снижением объёмного кровотока сердца.

2. Относительной – при неизменном кровотоке, но снижении функциональных возможностей миокарда из-за падения парциального давления кислорода.

Дата добавления: 2015-09-03 | Просмотры: 744 | Нарушение авторских прав


| | | | | 6 | | | | | | | | | | | | | | | | |

Регуляция мозгового кровообращения осуществляется сложной системой, включающей интра- и экстрацеребральные механизмы. Эта система способна к саморегуляции (т.е. может поддерживать кровоснабжение головного мозга в соответствии с его функциональной и метаболической потребностью и тем самым сохранять постоянство внутренней среды), что осуществляется путем изменения просвета мозговых артерий. Эти гомеостатические механизмы, развившиеся в процессе эволюции, весьма совершенны и надежны. Среди них выделяют следующие основные механизмы саморегуляции.

Нервный механизм передает информацию о состоянии объекта регулирования посредством специализированных рецепторов, расположенных в стенках сосудов и в тканях. К ним, в частности, относятся механорецепторы, локализующиеся в кровеносной системе, сообщающие об изменениях внутрисосудистого давления (баро- и прессорецепторы), в том числе прессорецепторы каротидного синуса, при их раздражении расширяются мозговые сосуды; механорецепторы вен и мозговых оболочек, которые сигнализируют о степени их растяжения при увеличении кровенаполнения или объема мозга; хеморецепторы каротидного синуса (при их раздражении суживаются мозговые сосуды) и самой ткани мозга, откуда идет информация о содержании кислорода, углекислоты, о колебаниях рН и о других химических сдвигах в среде при накоплении продуктов метаболизма или биологически активных веществ, а также рецепторы вестибулярного аппарата, аортальной рефлексогенной зоны, рефлексогенные зоны сердца и коронарных сосудов, ряд проприорецепторов. Особенно велика роль синокаротидной зоны. Она оказывает влияние на мозговое кровообращение не только опосредовано (через общее АД), как это представлялось ранее, но и непосредственно. Денервация и новокаинизация этой зоны в эксперименте, устраняя сосудосуживающие влияния, ведет к расширению мозговых сосудов, к усилению кровоснабжения головного мозга, к повышению в нем напряжения кислорода.

Гуморальный механизм заключается в прямом воздействии на стенки сосудов-эффекторов гуморальных факторов (кислорода, углекислоты, кислых продуктов метаболизма, ионов К и др.) путем диффузии физиологически активных веществ в стенку сосудов. Так, мозговое кровообращение усиливается при уменьшении содержания кислорода и (или) увеличении содержания углекислого газа в крови и, наоборот, ослабляется, когда содержание газов в крови меняется в противоположном направлении. При этом происходит рефлекторная дилятация или констрикция сосудов в результате раздражения хеморецепторов соответствующих артерий мозга при изменении содержания в крови кислорода и углекислоты. Возможен и механизм аксонрефлекса.


Миогенный механизм реализуется на уровне сосудов-эффекторов. При их растяжении тонус гладких мышц возрастает, а при сокращении наоборот снижается. Миогенные реакции могут способствовать изменениям сосудистого тонуса в определенном направлении.

Разные механизмы регуляции действуют не изолировано, а в различных сочетаниях друг с другом. Система регулирования поддерживает постоянный кровоток в мозге на достаточном уровне и быстро изменяет его при воздействии различных «возмущающих» факторов.

Таким образом, понятие «сосудистые механизмы» включает структурные и функциональные особенности соответствующих артерий или их сегментов (локализацию в микроциркуляторной системе, калибр, строение стенок, реакции на различные воздействия), а также их функциональное поведение – специфическое участие в тех либо иных видах регуляции периферического кровообращения и микроциркуляции.

Выяснение структурно-функциональной организации сосудистой системы головного мозга позволило сформулировать концепцию о внутренних (автономных) механизмах регуляции мозгового кровообращения при различных возмущающих воздействиях. Согласно этой концепции, в частности, были выделены: «замыкательный механизм» магистральных артерий, механизм пиальных артерий, механизм регуляции оттока крови из венозных синусов мозга, механизм внутримозговых артерий. Суть их функционирования заключается в следующем.

«Замыкательный» механизм магистральных артерий поддерживает в мозге постоянство кровотока при изменениях уровня общего артериального давления. Это осуществляется путем активных изменений просвета мозговых сосудов – их сужения, увеличивающего сопротивление кровотоку при повышении общего АД и, наоборот, расширения, снижающего цереброваскулярное сопротивление при падении общего АД. Как констрикторные, так и дилятаторные реакции возникают рефлекторно с экстракраниальных прессорецепторов, либо с рецепторов самого мозга. Основными эффекторами в таких случаях являются внутренние сонные и позвоночные артерии. Благодаря активным изменениям тонуса магистральных артерий гасятся дыхательные колебания общего артериального давления, а также волны Траубе – Геринга, и тогда кровоток в сосудах мозга остается равномерным. Если же изменения общего АД очень значительны или механизм магистральных артерий несовершенен, вследствие чего нарушается адекватное кровоснабжение головного мозга, то наступает второй этап саморегуляции – включается механизм пиальных артерий, реагирующий аналогично механизму магистральных артерий. Весь этот процесс многозвеньевой. Основную роль в нем играет нейрогенный механизм, однако определенное значение имеют и особенности функционирования гладкомышечной оболочки артерии (миогенный механизм), а также чувствительность последней к различным биологически активным веществам (гуморальный механизм).

При венозном застое, обусловленном окклюзией крупных шейных вен, избыточное кровенаполнение сосудов головного мозга устраняется путем ослабления притока крови в его сосудистую систему вследствие констрикции всей системы магистральных артерий. В таких случаях регуляция происходит также рефлекторно. Рефлексы посылаются с механорецепторов венозной системы, мелких артерий и оболочек мозга (вено-вазальный рефлекс).

Система внутримозговых артерий представляет собой рефлексогенную зону, которая в условиях патологии дублирует роль синокаротидной рефлексогенной зоны.

Таким образом, согласно разработанной концепции, существуют механизмы, ограничивающие влияние общего АД на мозговой кровоток, корреляция между которыми во многом зависит от вмешательства саморегулирующихся механизмов, поддерживающих постоянство сопротивления мозговых сосудов (табл. 1). Однако саморегуляция возможна лишь в определенных пределах, ограниченных критическими величинами факторов, являющихся ее пусковыми механизмами (уровень системного АД, напряжения кислорода, углекислоты, а также рH вещества мозга и др.). В клинических условиях важно определить роль исходного уровня АД, его диапазона, в рамках которого мозговой кровоток сохраняет стабильность. Отношение диапазона этих изменений к исходному уровню давления (показатель саморегуляции мозгового кровотока) в известной мере определяет потенциальные возможности саморегуляции (высокий или низкий уровень саморгеуляции).

Нарушения саморегуляции мозгового кровообращения возникают в следующих случаях.

1. При резком снижении общего АД, когда градиент давления в кровеносной системе мозга уменьшается настолько, что не может обеспечить достаточный кровоток в мозге (при уровне систолического давления ниже 80 мм рт. ст.). Минимальный критический уровень системного АД равен 60 мм рт. ст. (при исходном – 120 мм рт. ст.). При его падении мозговой кровоток пассивно следует за изменением общего АД.

2. При остром значительном подъеме системного давления (выше 180 мм рт. ст.), когда нарушается миогенная регуляция, так как мышечный аппарат артерий мозга утрачивает способность противостоять повышению внутрисосудистого давления, в результате чего расширяются артерии, усиливается мозговой кровоток, что чревато «мобилизацией» тромбов и эмболией. Впоследствии изменяются стенки сосудов, а это ведет к отеку мозга и резкому ослаблению мозгового кровотока, несмотря на то, что системное давление продолжает оставаться на высоком уровне.

3. При недостаточном метаболическом контроле мозгового кровотока. Так, иногда после восстановления кровотока в ишемизированном участке мозга концентрация углекислоты снижается, но рН сохраняется на низком уровне вследствие метаболического ацидоза. В результате сосуды остаются расширенными, а мозговой кровоток – высоким; кислород утилизируется не в полной мере и оттекающая венозная кровь имеет красный цвет (синдром избыточной перфузии).

4. При значительном снижении интенсивности насыщения крови кислородом или увеличении напряжения углекислоты в мозге. При этом активность мозгового кровотока также меняется вслед за изменением системного АД.

При срывах механизмов саморегуляции артерии мозга утрачивают способность к сужению в ответ на повышение внутрисосудистого давления, пассивно расширяются, вследствие чего избыточное количество крови под высоким давлением направляется в мелкие артерии, капилляры, вены. В результате повышается проницаемость стенок сосудов, начинается выход белков, развивается гипоксия, возникает отек мозга.

Таким образом, нарушения мозгового кровообращения компенсируются до определенных пределов за счет местных регуляторных механизмов. Впоследствии в процесс вовлекается и общая гемодинамика. Однако даже при терминальных состояниях в течение нескольких минут за счет автономности мозгового кровообращения в мозге поддерживается кровоток, а напряжение кислорода падает медленнее, чем в других органах, так как нервные клетки способны поглощать кислород при таком низком парциальном давлении его в крови, при котором другие органы и ткани поглощать его не могут. По мере развития и углубления процесса все более нарушаются взаимоотношения между мозговым кровотоком и системной циркуляцией, иссякает резерв ауторегулирующих механизмов, и кровоток в мозге все больше начинает зависеть от уровня общего АД.

Таким образом, компенсация нарушений мозгового кровообращения осуществляется при помощи тех же, функционирующих в нормальных условиях, регуляторных механизмов, но более напряженных.

Для механизмов компенсации характерна двойственность: компенсация одних нарушений вызывает другие циркуляторные расстройства, например, при восстановлении кровотока в ткани, испытавшей дефицит кровоснабжения, в ней может развиться постишемическая гиперемия в виде избыточной перфузии, способствующей развитию постишемического отека мозга.

Конечной функциональной задачей системы мозгового кровообращения являются адекватное метаболическое обеспечение деятельности клеточных элементов мозга и своевременное удаление продуктов их обмена, т.е. процессы, протекающие в пространстве микрососуд – клетка. Все реакции мозговых сосудов подчинены этим главным задачам. Микроциркуляция в головном мозге имеет важную особенность: в соответствии со спецификой его функционирования активность отдельных областей ткани меняется почти независимо от других областей ее, поэтому микроциркуляция также меняется мозаично – в зависимости от характера функционирования мозга в тот или иной момент. Благодаря ауторегуляции перфузионное давление микроциркуляторных систем любых частей мозга менее зависит от центрального кровообращения в других органах. В мозге микроциркуляция усиливается при повышении уровня метаболизма и, наоборот. Те же механизмы функционируют и в условиях патологии, когда имеет место неадекватность кровоснабжения ткани. При физиологических и патологических условиях интенсивность кровотока в микроциркуляторной системе зависит от величины просвета сосудов и от реологических свойств крови. Однако регулирование микроциркуляции осуществляется в основном путем активных изменений ширины сосудов, в то же время при патологии важную роль играют также изменения текучести крови в микрососудах.

Происходит активация нескольких нейроэндокринных систем, важнейшими из которых являются:

симпатико-адреналовая система (САС) и ее эффекторы (адреналин и норадреналин);

ренин-ангиотензин-альдостероновая система (РААС) (почки - надпочечники);

тканевые ренин-ангиотензиновые системы (РАС);

предсердный натрийуретический пептид;

эндотелиальная дисфункция и др.

увеличение ЧСС (стимуляция b1-адренергических рецепторов) и, соответственно, МО (поскольку МО = УО х ЧСС);

повышение сократимости миокарда (стимуляция b1- и a1-рецепторов);

системная вазоконстрикция и повышение ОПСС и АД (стимуляция a1-рецепторов);

повышение тонуса вен (стимуляция a1-рецепторов), что сопровождается увеличением венозного возврата крови к сердцу и увеличением преднагрузки;

стимуляция развития компенсаторной гипертрофии миокарда;

активирование РААС (почечно-надпочечниковой) в результате стимуляции b1-адренергических рецепторов юкстагломерулярных клеток и тканевых РАС за счет дисфункции эндотелия.

На начальных этапах повышение активности САС способствует увеличению сократимости миокарда, притока крови к сердцу, величины преднагрузки и давления наполнения желудочков, что в конечном итоге приводит к сохранению в течение определенного времени достаточного сердечного выброса. Однако длительная гиперактивация САС у больных хронической СН может иметь многочисленные негативные последствия, способствуя:

1. Значительному увеличению преднагрузки и постнагрузки (за счет чрезмерной вазоконстрикции, активации РААС и задержки натрия и воды в организме).

2. Повышению потребности миокарда в кислороде (в результате положительного инотропного эффекта активации САС).

3. Уменьшению плотности b-адренергических рецепторов на кардиомиоцитах, что со временем приводит к ослаблению инотропного эффекта катехоламинов (высокая концентрация катехоламинов в крови уже не сопровождается адекватным увеличением сократимости миокарда).

4. Прямому кардиотоксическому эффекту катехоламинов (некоронарогенные некрозы, дистрофические изменения миокарда).

5. Развитию фатальных желудочковых нарушений ритма (желудочковой тахикардии и фибрилляции желудочков) и т.д.

Гиперактивация симпатико-адреналовой системы

Один из наиболее ранних компенсаторных факторов при дисфункции сердца. Особенно важной оказывается в случаях развития острой СН. Эффекты реализуются прежде всего через a- и b-адренергические рецепторы клеточных мембран различных органов и тканей.

Гиперактивация ренин-ангиотензин-альдостероновой системы

Имеет значение не только почечно-надпочечниковая РААС, но и локальные тканевые.

Активация почечной ренин-ангиотензиновой системы сопровождается выделением клетками ЮГА почек ренина, расщепляющего ангиотензиноген с образованием пептида - ангиотензина I (АI). Последний под действием АПФ трансформируется в ангиотензин II, который является основным и наиболее мощным эффектором РААС. Воздействие АII на АТ2-рецепторы клубочковой зоны коркового вещества надпочечников приводит к образованию альдостерона, основным эффектом которого является задержка в организме натрия и воды, что способствует увеличению ОЦК.

В целом активация РААС сопровождается следующими эффектами:

выраженной вазоконстрикцией, повышением АД;

задержкой в организме натрия и воды и увеличением ОЦК;

повышением сократимости миокарда (положительное инотропное действие);

инициированием развития гипертрофии и ремоделирования сердца;

активацией образования соединительной ткани (коллагена) в миокарде;

повышением чувствительности миокарда к токсическому влиянию катехоламинов.

Активация РААС при острой СН и на начальных этапах развития хронической СН имеет компенсаторное значение и направлена на поддержание нормального уровня АД, ОЦК, перфузионного давления в почках, увеличение пред- и постнагрузки, увеличение сократимости миокарда. Однако в результате длительной гиперактивации РААС развивается ряд отрицательных эффектов:

1. увеличение ОПСС и снижение перфузии органов и тканей;

2. чрезмерное увеличение постнагрузки на сердце;

3. значительная задержка жидкости в организме, что способствует формированию отечного синдрома и повышению преднагрузки;

4. инициация процессов ремоделирования сердца и сосудов, в том числе гипертрофии миокарда и гиперплазии гладкомышечных клеток;

5. стимуляция синтеза коллагена и развитие фиброза сердечной мышцы;

6. развитие некроза кардиомиоцитов и прогрессирующее повреждение миокарда с формированием миогенной дилатации желудочков;

7. повышение чувствительности сердечной мышцы к катехоламинам, что сопровождается возрастанием риска возникновения фатальных желудочковых аритмий у больных СН.

Антидиуретический гормон (АДГ), секретируемый задней долей гипофиза, участвует в регуляции проницаемости для воды дистальных отделов канальцев почек и собирательных трубок. Например, при недостатке в организме воды и дегидратации тканей происходит уменьшение объема циркулирующей крови (ОЦК) и увеличение осмотического давления крови (ОДК). В результате раздражения осмо- и волюморецепторов усиливается секреция АДГ задней долей гипофиза. Под влиянием АДГ повышается проницаемость для воды дистальных отделов канальцев и собирательных трубок, и, соответственно, усиливается факультативная реабсорбция воды в этих отделах. В итоге выделяется мало мочи с высоким содержанием осмотически активных веществ и высокой удельной плотностью мочи.

Наоборот, при избытке воды в организме и гипергидратации тканей в результате увеличения ОЦК и уменьшения ОДК происходит раздражение осмо- и волюморецепторов, и секреция АДГ резко снижается или даже прекращается. В результате реабсорбция воды в дистальных отделах канальцев и собирательных трубках снижается, тогда как Na+ продолжает реабсорбироваться в этих отделах. Поэтому выделяется много мочи с низкой концентрацией осмотически активных веществ и низкой удельной плотностью.

Нарушение функционирования этого механизма при сердечной недостаточности может способствовать задержке воды в организме и формированию отечного синдрома. Чем меньше сердечный выброс, тем больше раздражение осмо- и волюморецепторов, что приводит к увеличению секреции АДГ и, соответственно, задержке жидкости.

Предсердный натрийуретический пептид

Предсердный натрийуретический пептид (ПНУП) является своеобразным антагонистом вазоконстрикторных систем организма (САС, РААС, АДГ и других). Он продуцируется миоцитами предсердий и выделяется в кровоток при их растяжении. ПНУП вызывает вазодилатирующий, натрийуретический и диуретический эффекты, угнетает секрецию ренина и альдостерона.

Секреция ПНУП - это один из наиболее ранних компенсаторных механизмов, препятствующих чрезмерной вазоконстрикции, задержке Nа+ и воды в организме, а также увеличению пред- и постнагрузки.

Активность ПНУП быстро усиливается по мере прогрессирования СН. Однако, несмотря на высокий уровень циркулирующего ПНУП, степень его положительных эффектов при хронической СН заметно снижается, что связано, вероятно, с уменьшением чувствительности рецепторов и увеличением расщепления пептида. Поэтому максимальный уровень циркулирующего ПНУП ассоциируется с неблагоприятным течением хронической СН.

Нарушения эндотелиальной функции

Дисфункция эндотелия, возникающая под действием различных повреждающих факторов (гипоксии, чрезмерной концентрации катехоламинов, ангиотензина II, серотонина, высокого уровня АД, ускорения кровотока и т.д.), характеризуется преобладанием вазоконстрикторных эндотелийзависимых влияний и закономерно сопровождается повышением тонуса сосудистой стенки, ускорением агрегации тромбоцитов и процессов пристеночного тромбообразования.

К числу важнейших эндотелийзависимых вазоконстрикторных субстанций, повышающих сосудистый тонус, агрегацию тромбоцитов и свертываемость крови, относятся эндотелин-1 (ЭТ1), тромбоксан А2, простагландин PGH2, ангиотензин II (АII) и др. Они оказывают существенное влияние на сосудистый тонус и сократимость миокарда, величину преднагрузки и постнагрузки, агрегацию тромбоцитов и т.д.. Кроме того, эндотелин-1 способствует образованию коллагена в сердечной мышце и развитию кардиофиброза. Существенную роль вазоконстрикторные субстанции играют в процессе пристеночного тромбообразования

Одним из ведущих патогенетических механизмов формирования и прогрессирования сердечной недостаточности является гиперактивация нейрогормональных систем организма - САС, РААС, АДГ, ПНУП и др., а также дисфункция эндотелия.

2. На начальных этапах развития заболевания активация этих систем носит адаптационный характер и направлена на сохранение достаточного сердечного выброса, системного АД и перфузии органов и тканей. Этот эффект реализуется благодаря:

увеличению ЧСС;

повышению сердечного выброса за счет гиперфункции с последующей гипертрофией;

увеличению постнагрузки (вазоконстрикция);

увеличению преднагрузки и ОЦК (физиологическая задержка натрия и воды) и др.

3. Длительная чрезмерная активация нейрогормональных систем приводит к:

избыточной задержке натрия и воды в организме (отечный синдром);

резкому увеличению ОПСС (нарушение перфузии органов и тканей);

чрезмерному возрастанию пред- и постнагрузки, что ведет к снижению функции сердца;

стимулированию синтеза коллагена и развитию кардиофиброза;

развитию некрозов кардиомиоцитов, прогрессирующему повреждению сердечной мышцы и формированию миогенной дилатации сердца.

Здоровый организм обладает многообразными механизмами, обеспечивающими своевременную разгрузку сосудистого русла от избытка жидкости. При сердечной недостаточности «включаются» компенсаторные механизмы, направленные на сохранение нормальной гемодинамики. Эти механизмы в условиях острой и хронической недостаточности кровообращения имеют много общего, вместе с тем между ними отмечаются существенные различия.

Как и при острой, так и при хронической сердечной недостаточности все эндогенные механизмы компенсации гемодинамических нарушений можно подразделить на интракардиальные: компенсаторная гиперфункция сердца (механизм Франка-Старлинга, гомеометрическая гиперфункция), гипертрофия миокарда и экстракардиальные: разгрузочные рефлексы Бейнбриджа, Парина, Китаева, активация выделительной функции почек, депонирование крови в печени и селезенке, потоотделение, испарение воды со стенок легочных альвеол, активация эритропоэза и др. Такое деление в некоторой степени условно, поскольку реализация как интра-, так и экстракардиальных механизмов находится под контролем нейрогуморальных регуляторных систем.

Механизмы компенсации гемодинамических нарушений при острой сердечной недостаточности. На начальной стадии систолической дисфункции желудочков сердца включаются интракардиальные факторы компенсации сердечной недостаточности, важнейшим из которых является механизм Франка-Старлинга (гетерометрический механизм компенсации, гетерометрическая гиперфункция сердца). Реализацию его можно представить следующим образом. Нарушение сократительной функции сердца влечет за собой уменьшение ударного объема крови и гипоперфузию почек. Это способствует активации РААС, вызывающей задержку воды в организме и увеличение объема циркулирующей крови. В условиях возникшей гиперволемии происходит усиленный приток венозной крови к сердцу, увеличение диастолического кровенаполнения желудочков, растяжение миофибрилл миокарда и компенсаторное повышение силы сокращения сердечной мышцы, которое обеспечивает прирост ударного объема. Однако если конечное диастолическое давление повышается более чем на 18-22 мм рт.ст. возникает чрезмерное перерастяжение миофибрилл. В этом случае компенсаторный механизм Франка-Старлинга перестает действовать, а дальнейшее увеличение конечного диастолического объема или давления вызывает уже не подъем, а снижение ударного объема.

Наряду с внутрисердечными механизмами компенсации при острой левожелудочковой недостаточности запускаются разгрузочные экстракардиальные рефлексы, способствующие возникновению тахикардии и увеличению минутного объема крови (МОК). Одним из наиболее важных сердечно-сосудистых рефлексов, обеспечивающих увеличение МОК, является рефлекс Бейнбриджа увеличение частоты сердечных сокращений в ответ на увеличение объема циркулирующей крови. Этот рефлекс реализуется при раздражении механорецепторов, локализованных в устье полых и легочных вен. Их раздражение передается на центральные симпатические ядра продолговатого мозга, в результате чего происходит повышение тонической активности симпатического звена вегетативной нервной системы, и развивается рефлекторная тахикардия. Рефлекс Бейнбриджа направлен на увеличение минутного объема крови.

Рефлекс Бецольда-Яриша — это рефлекторное расширение артериол большого круга кровообращения в ответ на разражение механо- и хеморецепторов, локализованных в желудочках и предсердиях.

В результате возникает гипотония, которая сопровождается бра-

дикардией и временной остановкой дыхания. В реализации этого рефлекса принимают участие афферентные и эфферентные волокна n. vagus. Этот рефлекс направлен на разгрузку левого желудочка.

К числу компенсаторных механизмов при острой сердечной недостаточности относится и повышение активности симпатоадреналовой системы, одним из звеньев которого является высвобождение норадреналина из окончаний симпатических нервов, иннервирующих сердце и почки. Наблюдаемое при этом возбуждение β -адренорецепторов миокарда ведет к развитию тахикардии, а стимуляция подобных рецепторов в клетках ЮГА вызывает усиленную секрецию ренина. Другим стимулом секреции ренина является снижение почечного кровотока в результате вызванной катехоламинами констрикции артериол почечных клубочков. Компенсаторное по своей природе усиление адренергического влияния на миокард в условиях острой сердечной недостаточности направлено на увеличение ударного и минутного объемов крови. Положительный инотропный эффект оказывает также ангиотензин-II. Однако эти компенсаторные механизмы могут усугубить сердечную недостаточность, если повышенная активность адренергической системы и РААС сохраняется достаточно продолжительное время (более 24 ч).

Все сказанное о механизмах компенсации сердечной деятельности в одинаковой степени относится как к лево-, так и к правожелудочковой недостаточности. Исключением является рефлекс Парина, действие которого реализуется только при перегрузке правого желудочка, наблюдаемой при эмболии легочной артерии.

Рефлекс Ларина — это падение артериального давления, вызванное расширением артерий большого круга кровообращения, снижением минутного объема крови в результате возникающей брадикардии и уменьшением объема циркулирующей крови из-за депонирования крови в печени и селезенке. Кроме того, для рефлекса Парина характерно появление одышки, связанной с наступающей гипоксией мозга. Полагают, что рефлекс Парина реализуется за счет усиления тонического влияния n.vagus на сердечно-сосудистую систему при эмболии легочных артерий.

Механизмы компенсации гемодинамических нарушений при хронической сердечной недостаточности. Основным звеном патогенеза хронической сердечной недостаточности является, как известно, постепенно нарастающее снижение сократительной функции ми-

окарда и падение сердечного выброса. Происходящее при этом уменьшение притока крови к органам и тканям вызывает гипоксию последних, которая первоначально может компенсироваться усиленной тканевой утилизацией кислорода, стимуляцией эритропоэза и т.д. Однако этого оказывается недостаточно для нормального кислородного обеспечения органов и тканей, и нарастающая гипоксия становится пусковым механизмом компенсаторных изменений гемодинамики.

Интракардиальные механизмы компенсации функции сердца. К ним относятся компенсаторная гиперфункция и гипертрофия сердца. Эти механизмы являются неотъемлемыми компонентами большинства приспособительных реакций сердечно-сосудистой системы здорового организма, но в условиях патологии могут превратиться в звено патогенеза хронической сердечной недостаточности.

Компенсаторная гиперфункция сердца выступает как важный фактор компенсации при пороках сердца, артериальной гипертензии, анемии, гипертонии малого круга и других заболеваниях. В отличие от физиологической гиперфункции она является длительной и, что существенно, непрерывной. Несмотря на непрерывность, компенсаторная гиперфункция сердца может сохраняться в течение многих лет без явных признаков декомпенсации насосной функции сердца.

Увеличение внешней работы сердца, связанное с подъемом давления в аорте (гомеометрическая гиперфункция), приводит к более выраженному возрастанию потребности миокарда в кислороде, чем перегрузка миокарда, вызванная повышением объема циркулирующей крови (гетерометрическая гиперфункция). Иными словами, для осуществления работы в условиях нагрузки давлением мышца сердца использует гораздо больше энергии, чем для выполнения той же работы, связанной с нагрузкой объемом, а следовательно, при стойкой артериальной гипертензии гипертрофия сердца развивается быстрее, чем при увеличении объема циркулирующей крови. Например, при физической работе, высотной гипоксии, всех видах клапанной недостаточности, артериовенозных фистулах, анемии гиперфункция миокарда обеспечивается за счет увеличения минутного объема сердца. При этом систолическое напряжение миокарда и давление в желудочках возрастают незначительно, и гипертрофия развивается медленно. В то же время при гипертонической болезни, гипертензии малого круга, стено-

зах клапанных отверстий развитие гиперфункции связано с повышением напряжения миокарда при незначительно измененной амплитуде сокращений. В этом случае гипертрофия прогрессирует достаточно быстро.

Гипертрофия миокарда это увеличение массы сердца за счет увеличения размеров кардиомиоцитов. Существуют три стадии компенсаторной гипертрофии сердца.

Первая, аварийная, стадия характеризуется, прежде всего, увеличением интенсивности функционирования структур миокарда и, по сути, представляет собой компенсаторную гиперфункцию еще не гипертрофированного сердца. Интенсивность функционирования структур — это механическая работа, приходящаяся на единицу массы миокарда. Увеличение интенсивности функционирования структур закономерно влечет за собой одновременную активацию энергообразования, синтеза нуклеиновых кислот и белка. Указанная активация синтеза белка происходит таким образом, что вначале увеличивается масса энергообразующих структур (митохондрий), а затем — масса функционирующих структур (миофибрилл). В целом увеличение массы миокарда приводит к тому, что интенсивность функционирования структур постепенно возвращается к нормальному уровню.

Вторая стадия — стадия завершившейся гипертрофии — характеризуется нормальной интенсивностью функционирования структур миокарда и соответственно нормальным уровнем энергообразования и синтеза нуклеиновых кислот и белков в ткани сердечной мышцы. При этом потребление кислорода на единицу массы миокарда остается в границах нормы, а потребление кислорода сердечной мышцей в целом увеличено пропорционально возрастанию массы сердца. Увеличение массы миокарда в условиях хронической сердечной недостаточности происходит за счет активации синтеза нуклеиновых кислот и белков. Пусковой механизм этой активации изучен недостаточно. Считается, что определяющую роль здесь играет усиление трофического влияния симпатоадреналовой системы. Эта стадия процесса совпадает с длительным периодом клинической компенсации. Содержание АТФ и гликогена в кардиомиоцитах также находится при этом в пределах нормы. Подобные обстоятельства придают относительную устойчивость гиперфункции, но вместе с тем не предотвращают исподволь развивающихся в данной стадии нарушений обмена и структуры миокарда. Наиболее ранними признаками таких нарушений являются

значительное увеличение концентрации лактата в миокарде, а также умеренно выраженный кардиосклероз.

Третья стадия прогрессирующего кардиосклероза и декомпенсации характеризуется нарушением синтеза белков и нуклеиновых кислот в миокарде. В результате нарушения синтеза РНК, ДНК и белка в кардиомиоцитах наблюдается относительное уменьшение массы митохондрий, что ведет к торможению синтеза АТФ на единицу массы ткани, снижению насосной функции сердца и прогрессированию хронической сердечной недостаточности. Ситуация усугубляется развитием дистрофических и склеротических процессов, что способствует появлению признаков декомпенсации и тотальной сердечной недостаточности, завершающейся гибелью пациента. Компенсаторная гиперфункция, гипертрофия и последующая декомпенсация сердца — это звенья единого процесса.

Механизм декомпенсации гипертрофированного миокарда включает следующие звенья:

1. Процесс гипертрофии не распространяется на коронарные сосуды, поэтому число капилляров на единицу объема миокарда в гипертрофированном сердце уменьшается (рис. 15-11). Следовательно, кровоснабжение гипертрофированной сердечной мышцы оказывается недостаточным для выполнения механической работы.

2. Вследствие увеличения объема гипертрофированных мышечных волокон уменьшается удельная поверхность клеток, в связи с

Рис. 5-11. Гипертрофия миокарда: 1 — миокард здорового взрослого; 2 — гипертрофированный миокард взрослого (масса 540 г); 3 — гипертрофированный миокард взрослого (масса 960 г)

этим ухудшаются условия для поступления в клетки питательных веществ и выделения из кардиомиоцитов продуктов метаболизма.

3. В гипертрофированном сердце нарушается соотношение между объемами внутриклеточных структур. Так, увеличение массы митохондрий и саркоплазматического ретикулума (СПР) отстает от увеличения размеров миофибрилл, что способствует ухудшению энергоснабжения кардиомиоцитов и сопровождается нарушением аккумуляции Са 2 + в СПР. Возникает Са 2 +-перегрузка кардиомиоцитов, что обеспечивает формирование контрактуры сердца и способствует уменьшению ударного объема. Кроме того, Са 2 +-перегрузка клеток миокарда повышает вероятность возникновения аритмий.

4. Проводящая система сердца и вегетативные нервные волокна, иннервирующие миокард, не подвергаются гипертрофии, что также способствует возникновению дисфункции гипертрофированного сердца.

5. Активируется апоптоз отдельных кардиомиоцитов, что способствует постепенному замещению мышечных волокон соединительной тканью (кардиосклероз).

В конечном итоге гипертрофия утрачивает приспособительное значение и перестает быть полезной для организма. Ослабление сократительной способности гипертрофированного сердца происходит тем скорее, чем сильнее выражены гипертрофия и морфологические изменения в миокарде.

Экстракардиальные механизмы компенсации функции сердца. В отличие от острой сердечной недостаточности роль рефлекторных механизмов экстренной регуляции насосной функции сердца при хронической сердечной недостаточности сравнительно невелика, поскольку нарушения гемодинамики развиваются постепенно на протяжении нескольких лет. Более или менее определенно можно говорить о рефлексе Бейнбриджа, который «включается» уже на стадии достаточно выраженной гиперволемии.

Особое место среди «разгрузочных» экстракардиальных рефлексов занимает рефлекс Китаева, который «запускается» при митральном стенозе. Дело в том, что в большинстве случаев проявления правожелудочковой недостаточности связаны с застойными явлениями в большом круге кровообращения, а левожелудочковой — в малом. Исключение составляет стеноз митрального клапана, при котором застойные явления в легочных сосудах вызваны не декомпенсацией левого желудочка, а препятствием току крови через

левое атриовентрикулярное отверстие — так называемым «первым (анатомическим) барьером». При этом застой крови в легких способствует развитию правожелудочковой недостаточности, в генезе которой рефлекс Китаева играет важную роль.

Рефлекс Китаева — это рефлекторный спазм легочных артериол в ответ на повышение давления в левом предсердии. В результате возникает «второй (функциональный) барьер», который первоначально играет защитную роль, предохраняя легочные капилляры от чрезмерного переполнения кровью. Однако затем этот рефлекс приводит к выраженному повышению давления в легочной артерии — развивается острая легочная гипертензия. Афферентное звено этого рефлекса представлено n. vagus, a эфферентное — симпатическим звеном вегетативной нервной системы. Негативной стороной данной приспособительной реакции является подъем давления в легочной артерии, приводящий к увеличению нагрузки на правое сердце.

Однако ведущую роль в генезе долговременной компенсации и декомпенсации нарушенной сердечной функции играют не рефлекторные, а нейрогуморальные механизмы, важнейшим из которых является активация симпатоадреналовой системы и РААС. Говоря об активации симпатоадреналовой системы у пациентов с хронической сердечной недостаточностью, нельзя не указать, что у большинства из них уровень катехоламинов в крови и моче находится в пределах нормы. Этим хроническая сердечная недостаточность отличается от острой сердечной недостаточности.

Компенсаторные механизмы

Информация, релевантная «Компенсаторные механизмы»

При любой эндокринной патологии, как и при всех заболеваниях, наряду с нарушением функций развиваются компенсаторно-приспособительные механизмы. Например, при гемикастрации – компенсаторная гипертрофия яичника или семенника; гипертрофия и гиперплазия секреторных клеток коркового вещества надпочечника при удалении части паренхимы железы; при гиперсекреции глюкокортикоидов – уменьшение их

Размер почки уменьшен за счет гибели нефронов. Компенсаторные механизмы велики: при 50% гибели нефронов ХПН еще не развивается. Запустевают клубочки, гибнут канальцы, идут фибропластические процессы: гиалиноз, склероз оставшихся клубочков. Относительно сохранившихся клубочков существуют 2 точки зрения: 1) Они берут на себя функцию тех нефронов, которые погибли (1:4) — клетки увеличиваются в

Физиологическая реакция организма в ответ на изменения во времени подразделяется на три фазы: 1) немедленная химическая реакция буферных систем; 2) дыхательная компенсация (при метаболических нарушениях кислотно-основного состояния); 3) более медленная, но более эффективная компенсаторная реакция почек, способная ТАБЛИЦА 30-1. Диагностика нарушений кислотно-основного состояния Нарушение

Следует выделить три основные группы механизмов выздоровления: 1) срочные (неустойчивые, «аварийные») защитно-компенсаторные реакции, возникающие в первые секунды и минуты после воздействия и представляющие собой главным образом защитные рефлексы, с помощью которых организм освобождается от вредных веществ и удаляет их (рвота; кашель, чиханье и т.д.). К этому типу реакций следует отнести

При описании нарушений кислотно-основного состояния и компенсаторных механизмов необходимо использовать точную терминологию (табл. 30-1). Суффикс «оз» отражает патологический процесс, приводящий к изменению рН артериальной крови. Нарушения, которые приводят к снижению рН, называют ацидозом, тогда как состояния, которые вызывают увеличение рН,- алкалозом. Если первопричиной нарушений является

Терминальные состояния — это своеобразный патологический симптомокомплекс, проявляющийся тяжелейшими нарушениями функций органов и систем, с которыми организм без помощи извне справиться не может. Другими словами это состояния пограничные между жизнью и смертью. К ним относятся все стадии умирания и ранние этапы постреанимационного периода. Умирание может быть следствием развития любого тяжелого

Недостаточность внешнего дыхания (НВД) – это патологическое состояние, развивающееся вследствие нарушения внешнего дыхания, при котором не обеспечивается нормальный газовый состав артериальной крови или он достигается в результате включения компенсаторных механизмов, приводящих к ограничению резервных возможностей организма. Формы недостаточности внешнего дыхания

Повышение рН артериальной крови угнетает дыхательный центр. Снижение альвеолярной вентиляции приводит к увеличению PaCO2 и сдвигу рН артериальной крови в сторону нормы. Компенсаторная реакция дыхания при метаболическом алкалозе менее предсказуема, чем при метаболическом ацидозе. Гипоксемия, развивающаяся в результате прогрессирующей гиповентиляции, в конечном счете активирует чувствительные к

Первый ЭКГ признак Поскольку экстрасистола - это внеочередное возбуждение, то на ЭКГ ленте месторасположение ее будет раньше предполагаемого очередного синусового импульса. Поэтому пред экстрасистолический интервал, т.е. интервал R(синусовый) - R(экстрасистолический) будет меньше интервала R(синусовый) - R(синусовый). Рис. 68. Предсердная экстрасистола. В отведении III

Активный экстрасистолический очаг находится в желудочках. Первый ЭКГ признак Этот признак характеризует экстрасистолу как таковую, вне зависимости от места расположения эктопического очага. Краткая запись - интервал R(с)-R(э)

Компенсаторные механизмы сердечной недостаточности. Сердечные гликозиды — дигоксин

Компенсаторные механизмы . активируемые во время ЗСН, проявляются в виде положительной инотропии. Повышение силы сокращения мышц ([+dP/dt]max) носит название положительной инотропии. Она возникает как следствие усиленной симпатической стимуляции сердца и активации (З1-адренорецепторов желудочков и ведет к повышению эффективности систолического выброса. Но благоприятный эффект этого компенсаторного механизма не может поддерживаться долго. Развивается недостаточность в результате перегрузки желудочков, возникающей вследствие повышения давления в желудочках при их наполнении, систолического стресса стенки и повышенной потребности миокарда в энергии.

Лечение застойной сердечной недостаточности . Существует две фазы ЗСН: острая и хроническая. Лекарственная терапия должна не только облегчить симптомы заболевания, но и снизить смертность. Эффект лекарственной терапии наиболее благоприятен в тех случаях, когда ЗСН возникла вследствие кардиомиопатии или артериальной гипертензии. Цель лечения состоит в том, чтобы:

Уменьшить застой (отеки);

Улучшить систолическую и диастолическую функции сердца. Для достижения этой цели используют различные лекарственные средства.

Сердечные гликозиды используют для лечения сердечной недостаточности более 200 лет. Дигоксин - прототипичный сердечный гликозид, экстрагируемый из листьев пурпурной и белой наперстянки (Digitalis purpurea и D. lanata соответственно). Дигоксин - наиболее распространенный препарат из группы сердечных гликозидов, применяемых в США.

Все сердечные гликозиды обладают сходной химической структурой. Дигоксин, дигиталис и оубаин содержат агликоновое стероидное ядро, имеющее значение для фармакологической активности, а также ненасыщенное, связанное с С17 лактоновое кольцо, обладающее кардиотоническим действием, и связанный с С3 углеводный компонент (сахар), влияющий на активность и фармакокинетические свойства гликозидов.

Сердечные гликозиды ингибируют мембраносвязанную Nа+/К+-АТФазу, улучшая симптоматику ЗСН. Эффекты сердечных гликозидов на молекулярном уровне обусловлены ингибированием мембраносвя-занной Nа+/К+-АТФазы. Этот фермент участвует в создании мембранного потенциала покоя большинства возбудимых клеток посредством выведения трех ионов Na+ из клетки в обмен на поступление двух ионов К+ в клетку против градиента концентрации, тем самым создавая высокую концентрацию К+ (140 мМ) и низкую концентрацию Na+ (25 мМ). Энергию для этого насосного эффекта дает гидролиз АТФ. Ингибирование насоса приводит к повышению внутриклеточной цитоплазматической концентрации Na+.

Повышение концентрации Na+ ведет к ингибированию мембраносвязанного Ка+/Са2+-обменника и как следствие - к повышению концентрации цито-плазматического Са2+. Обменник представляет собой АТФ-независимый антипортер, вызывающий в обычных условиях вытеснение Са2+ из клеток. Повышение концентрации Na+ в цитоплазме пассивно снижает обменную функцию, и из клетки вытесняется меньше Са2+. Затем Са2+ в повышенной концентрации активно нагнетается в саркоплазматический ретикулум (СР) и становится доступным для высвобождения в течение последующей клеточной деполяризации, тем самым усиливая связь возбуждение-сокращение. Результатом является более высокая сократимость, известная как положительная инотропия.

При сердечной недостаточности положительное инотропное действие сердечных гликозидов изменяет кривую Франка-Старлинга желудочковой функции.

Несмотря на широкое применение дигиталиса, отсутствуют убедительные доказательства того, что он благоприятно влияет на отдаленный прогноз при ЗСН. У многих пациентов дигиталис улучшает симптоматику, однако не снижает смертность от ЗСН.

Похожие публикации