Крапива для очищения крови. Очищение крови народными средствами. Противопоказания к применению крапивы

Однако, это не все, что можно сделать с золотым сечением. Если единицу разделить на 0,618 то получается 1,618, если возведем в квадрат, то у нас получится 2,618, если возведем в куб, то получим число 4,236. Это коэффициенты расширения Фибоначчи. Тут не хватает только числа 3,236, которое было предложено Джоном Мёрфи.


Что думают о последовательности специалисты

Кто-то скажет, что эти числа уже знакомы, потому что они используются в программах технического анализа, для определения величины коррекции и расширения. Кроме того эти же ряды играют важную роль в волновой теории Элиота. Они являются его числовой основой.

Наш эксперт Николай Проверенный портфельный менеджер инвестиционной компании Восток.

  • — Николай, как вы думаете, случайно ли появление чисел Фибоначчи и его производных на графиках различных инструментов? И можно ли сказать: «Ряд Фибоначчи практическое применение» имеет место?
  • — К мистике отношусь плохо. А на графиках биржи тем более. У всего есть свои причины. в книге «Уровни Фибоначчи» красиво рассказывал, где появляется золотое сечение, что не стал удивляться тому, что оно появилось на графиках котировок биржи. А зря! Во многих примерах, которые он привел, часто появляется число Пи. Но его почему-то нет в ценовых соотношениях.
  • — То есть вы не верите в действенность волнового принципа Элиота?
  • — Да нет же, не в этом дело. Волновой принцип – это одно. Численное соотношение – это другое. А причины их появления на ценовых графиках – третье
  • — Каковы на ваш взгляд причины появления золотого сечения на биржевых графиках?
  • — Правильный ответ на этот вопрос может быть в силах заслужить Нобелевскую премию по экономике. Пока мы можем догадываться об истинных причинах. Они явно не в гармонии природы. Моделей биржевого ценообразования много. Они не объясняют обозначенный феномен. Но не понимание природы явления не должно отрицать явление как таковое.
  • — А если когда – либо этот закон будет открыт, то сможет ли это разрушить биржевой процесс?
  • — Как показывает та же теория волн закон изменения биржевых цен – это чистая психология. Мне кажется, знание данного закона ничего не изменит и не сможет разрушить биржу.

Материал предоставлен блогом веб-мастера Максима.

Совпадения основ принципов математики в самых разных теориях кажется невероятным. Может быть это фантастика или подгонка под конечный результат. Поживем — увидим. Многое из того, что раньше считалось необычным или было не возможно: освоение космоса, например, стало привычным и никого не удивляет. Также и волновая теория, может быть непонятная, со временем станет доступней и понятней. То, что раньше было не нужным, в руках аналитика с опытом станет мощным инструментом прогнозирования дальнейшего поведения .

Числа Фибоначчи в природе.

Смотреть

А теперь, давайте поговорим о том, как можно опровергнуть то, что цифровой ряд Фибоначчи причастен к каким-либо закономерностям в природе.

Возьмем любые другие два числа и выстроим последовательность с той же логикой, что и числа Фибоначчи. То есть, следующий член последовательности равен сумме двух предыдущих. Для примера возьмем два числа: 6 и 51. Теперь выстроим последовательность, которую завершим двумя числами 1860 и 3009. Заметим, что при делении этих чисел, мы получаем число близкое золотому сечению.

При этом числа, которые получались при делении других пар уменьшались от первых к последним, что позволяет утверждать, что если этот ряд продолжать бесконечно, то мы получим число равное золотому сечению.

Таким образом, числа Фибоначчи ни чем сами по себе не выделяются. Существует другие последовательности чисел, которых бесконечное множество, что дают в результате тех же операций золотое число фи.

Фибоначчи не был эзотериком. Он не хотел вложить никой мистики в числа, он просто решал обыкновенную задачу о кроликах. И написал последовательность чисел, которые вытекали из его задачи, в первый, второй и другие месяца, сколько будет кроликов после размножения. В течение года он получил ту самую последовательность. И не делал отношений. Никакой золотой пропорции, Божественном отношении речи не шло. Все это было придумано после него в эпоху Возрождения.

Перед математикой достоинства Фибоначчи огромны. Он от арабов перенял систему чисел и доказал её справедливость. Была тяжелая и долгая борьба. От римской системы счисления: тяжелой и неудобной для счета. Она исчезла после французской революции. Никакого отношения именно к золотому сечению Фибоначчи не имеет.

Спиралей бесконечно много, наиболее популярны: спираль натурального логарифма, спираль Архимеда, гиперболическая спираль.

А теперь давайте взглянем на спираль Фибоначчи. Данный кусочно-составной агрегат складывается из нескольких четвертей окружностей. И не является спиралью, как таковой.

Вывод

Как бы долго мы не искали подтверждение или опровержение применимости ряда Фибоначчи на бирже, такая практика существует.

Огромные массы людей действуют согласно линейке Фибоначчи, которая находится во многих пользовательских терминалах. Поэтому хотим мы или нет: числа Фибоначчи оказывают влияние на , а мы можем воспользоваться этим влиянием.

В обязательном порядке читаем статью — .

Вы слышали когда-нибудь, что математику называют «царицей всех наук»? Согласны ли вы с таким утверждением? Пока математика остается для вас набором скучных задачек в учебнике, вряд ли можно прочувствовать красоту, универсальность и даже юмор этой науки.

Но есть в математике такие темы, которые помогают сделать любопытные наблюдения за обычными для нас вещами и явлениями. И даже попытаться проникнуть за завесу тайны создания нашей Вселенной. В мире есть любопытные закономерности, которые могут быть описаны с помощью математики.

Представляем вам числа Фибоначчи

Числами Фибоначчи называют элементы числовой последовательности. В ней каждое следующее число в ряду получается суммированием двух предыдущих чисел.

Пример последовательности: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987…

Записать это можно так:

F 0 = 0, F 1 = 1, F n = F n-1 + F n-2 , n ≥ 2

Можно начинать ряд чисел Фибоначчи и с отрицательных значений n . При этом последовательность в таком случае является двусторонней (т.е. охватывает отрицательные и положительные числа) и стремится к бесконечности в обоих направлениях.

Пример такой последовательности: -55, -34, -21, -13, -8, 5, 3, 2, -1, 1, 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55.

Формула в этом случае выглядит так:

F n = F n+1 - F n+2 или иначе можно так: F -n = (-1) n+1 Fn .

То, что мы сейчас знаем под названием «числа Фибоначчи», было известно древнеиндийским математикам задолго до того, как ими стали пользоваться в Европе. А с этим названием вообще один сплошной исторический анекдот. Начнем с того, что сам Фибоначчи при жизни никогда не называл себя Фибоначчи – это имя стали применять к Леонардо Пизанскому только спустя несколько столетий после его смерти. Но давайте обо всем по порядку.

Леонардо Пизанский, он же Фибоначчи

Сын торговца, который стал математиком, а впоследствии получил признание потомков в качестве первого крупного математика Европы периода Средних веков. Не в последнюю очередь благодаря числам Фибоначчи (которые тогда, напомним, еще так не назывались). Которые он в начале XIII века описал в своем труде «Liber abaci» («Книга абака», 1202 год).

Путешествую вместе с отцом на Восток, Леонардо изучал математику у арабских учителей (а они в те времена были в этом деле, да и во многих других науках, одними из лучших специалистов). Труды математиков Античности и Древней Индии он прочитал в арабских переводах.

Как следует осмыслив все прочитанное и подключив собственный пытливый ум, Фибоначчи написал несколько научных трактатов по математике, включая уже упомянутую выше «Книгу абака». Кроме нее создал:

  • «Practica geometriae» («Практика геометрии», 1220 год);
  • «Flos» («Цветок», 1225 год – исследование, посвященное кубическим уравнениям);
  • «Liber quadratorum» («Книга квадратов», 1225 год – задачи о неопределенных квадратных уравнениях).

Был большим любителем математических турниров, поэтому в своих трактатах много внимания уделял разбору различных математических задач.

О жизни Леонардо осталось крайне мало биографических сведений. Что же касается имени Фибоначчи, под которым он вошел в историю математики, то оно закрепилось за ним только в XIX веке.

Фибоначчи и его задачи

После Фибоначчи осталось большое число задач, которые были очень популярны среди математиков и в последующие столетия. Мы с вами рассмотрим задачу о кроликах, в решении которой и используются числа Фибоначчи.

Кролики – не только ценный мех

Фибоначчи задал такие условия: существует пара новорожденных кроликов (самец и самка) такой интересной породы, что они регулярно (начиная со второго месяца) производят потомство – всегда одну новую пару кроликов. Тоже, как можно догадаться, самца и самку.

Эти условные кролики помещены в замкнутое пространство и с увлечением размножаются. Оговаривается также, что ни один кролик не умирает от какой-нибудь загадочной кроличьей болезни.

Надо вычислить, сколько кроликов мы получим через год.

  • В начале 1 месяца у нас 1 пара кроликов. В конце месяца они спариваются.
  • Второй месяц – у нас уже 2 пары кроликов (у пара – родители + 1 пара – их потомство).
  • Третий месяц: Первая пара рождает новую пару, вторая пара спаривается. Итого – 3 пары кроликов.
  • Четвертый месяц: Первая пара рождает новую пару, вторая пара времени не теряет и тоже рождает новую пару, третья пара пока только спаривается. Итого – 5 пар кроликов.

Число кроликов в n -ый месяц = число пар кроликов из предыдущего месяца + число новорожденных пар (их столько же, сколько пар кроликов было за 2 месяца до настоящего момента). И все это описывается формулой, которую мы уже привели выше: F n = F n-1 + F n-2 .

Таким образом, получаем рекуррентную (пояснение о рекурсии – ниже) числовую последовательность. В которой каждое следующее число равно сумме двух предыдущих:

  1. 1 + 1 = 2
  2. 2 + 1 = 3
  3. 3 + 2 = 5
  4. 5 + 3 = 8
  5. 8 + 5 = 13
  6. 13 + 8 = 21
  7. 21 + 13 = 34
  8. 34 + 21 = 55
  9. 55 + 34 = 89
  10. 89 + 55 = 144
  11. 144 + 89 = 233
  12. 233+ 144 = 377 <…>

Продолжать последовательность можно долго: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 <…>. Но поскольку мы задали конкретный срок – год, нас интересует результат, полученный на 12-ом «ходу». Т.е. 13-ый член последовательности: 377.

Ответ в задаче: 377 кроликов будет получено при соблюдении всех заявленных условий.

Одно из свойств последовательности чисел Фибоначчи очень любопытно. Если взять две последовательные пары из ряда и разделить большее число на меньшее, результат будет постепенно приближаться к золотому сечению (прочитать о нем подробнее вы сможете дальше в статье).

Говоря языком математики, «предел отношений a n+1 к a n равен золотому сечению» .

Еще задачи по теории чисел

  1. Найдите число, которое можно разделить на 7. Кроме того, если разделить его на 2, 3, 4, 5, 6, в остатке получится единица.
  2. Найдите квадратное число. О нем известно, что если прибавить к нему 5 или отнять 5, снова получится квадратное число.

Ответы на эти задачи мы предлагаем вам поискать самостоятельно. Свои варианты вы можете оставлять нам в комментариях к этой статье. А мы потом подскажем, верными ли были ваши вычисления.

Пояснение о рекурсии

Рекурсия – определение, описание, изображение объекта или процесса, в котором содержится сам этот объект или процесс. Т.е., по сути, объект или процесс является частью самого себя.

Рекурсия находит широкое применение в математике и информатике, и даже в искусстве и массовой культуре.

Числа Фибоначчи определяются с помощью рекуррентного соотношения. Для числа n>2 n- е число равно (n – 1) + (n – 2) .

Пояснение о золотом сечении

Золотое сечение – деление целого (например, отрезка) на такие части, которые соотносятся по следующему принципу: большая часть относится к меньшей так же, как и вся величина (например, сумма двух отрезков) к большей части.

Первое упоминание о золотом сечении можно встретить у Евклида в его трактате «Начала» (примерно 300 лет до н.э.). В контексте построения правильного прямоугольника.

Привычный нам термин в 1835 году ввел в оборот немецкий математик Мартин Ом.

Если описывать золотое сечение приблизительно, оно представляет собой пропорциональное деление на две неравных части: примерно 62% и 38%. В числовом выражении золотое сечение представляет собой число 1,6180339887 .

Золотое сечение находит практическое применение в изобразительном искусстве (картины Леонардо да Винчи и других живописцев Ренессанса), архитектуре, кинематографе («Броненосец «Потемкин» С. Эзенштейна) и других областях. Долгое время считалось, что золотое сечение – наиболее эстетичная пропорция. Такое мнение популярно и сегодня. Хотя по результатам исследований визуально большинство людей не воспринимают такую пропорцию наиболее удачным вариантом и считают слишком вытянутой (непропорциональной).

  • Длина отрезка с = 1, а = 0,618, b = 0,382.
  • Отношение с к а = 1, 618.
  • Отношение с к b = 2,618

А теперь вернемся к числам Фибоначчи. Возьмем два следующих друг за другом члена из его последовательности. Разделим большее число на меньшее и получим приблизительно 1,618. А теперь задействуем то же большее число и следующий за ним член ряда (т.е. еще большее число) – их отношение рано 0,618.

Вот пример: 144, 233, 377.

233/144 = 1,618 и 233/377 = 0,618

Кстати, если вы попробуете проделать тот же эксперимент с числами из начала последовательности (например, 2, 3, 5), ничего не получится. Ну, почти. Правило золотого сечения почти не соблюдается для начала последовательности. Но зато по мере продвижения вдоль ряда и возрастания чисел работает отлично.

И для того, чтобы вычислить весь ряд чисел Фибоначчи, достаточно знать три члена последовательности, идущих друг за другом. Можете убедиться в этом сами!

Золотой прямоугольник и спираль Фибоначчи

Еще одну любопытную параллель между числами Фибоначчи и золотым сечением позволяет провести так называемый «золотой прямоугольник»: его стороны соотносятся в пропорции 1,618 к 1. А ведь мы уже знаем, что за число 1,618, верно?

Например, возьмем два последовательных члена ряда Фибоначчи – 8 и 13 – и построим прямоугольник со следующими параметрами: ширина = 8, длина = 13.

А затем разобьем большой прямоугольник на меньшие. Обязательное условие: длины сторон прямоугольников должны соответствовать числам Фибоначчи. Т.е. длина стороны большего прямоугольника должна быть равной сумме сторон двух меньших прямоугольников.

Так, как это выполнено на этом рисунке (для удобства фигуры подписаны латинскими буквами).

Кстати, строить прямоугольники можно и в обратном порядке. Т.е. начать построение с квадратов со стороной 1. К которым, руководствуясь озвученным выше принципом, достраиваются фигуры со сторонами, равными числам Фибоначчи. Теоретически продолжать так можно бесконечно долго – ведь и ряд Фибоначчи формально бесконечен.

Если соединить плавной линией углы полученных на рисунке прямоугольников, получим логарифмическую спираль. Вернее, ее частный случай – спираль Фибоначчи. Она характеризуется, в частности, тем, что не имеет границ и не изменяет формы.

Подобная спираль часто встречается в природе. Раковины моллюсков – один из самых ярких примеров. Более того, спиральную форму имеют некоторые галактики, которые можно разглядеть с Земли. Если вы обращаете внимание на прогнозы погоды по телевизору, то могли заметить, что подобную спиральную форму имеют циклоны при съемке их со спутников.

Любопытно, что и спираль ДНК подчиняется правилу золотого сечения – соответствующую закономерность можно усмотреть в интервалах ее изгибов.

Такие удивительные «совпадения» не могут не будоражить умы и не порождать разговоры о неком едином алгоритме, которому подчиняются все явления в жизни Вселенной. Теперь вы понимаете, почему эта статья называется именно так? И двери в какие удивительные миры способна открыть для вас математика?

Числа Фибоначчи в живой природе

Связь чисел Фибоначчи и золотого сечения наводит на мысли о любопытных закономерностях. Настолько любопытных, что возникает соблазн попробовать отыскать подобные числам Фибоначчи последовательности в природе и даже в ходе исторических событий. И природа действительно дает повод для подобного рода допущений. Но все ли в нашей жизни можно объяснить и описать с помощью математики?

Примеры живой природы, которые могут быть описаны с помощью последовательности Фибоначчи:

  • порядок расположения листьев (и веток) у растений – расстояния между ними соотносимы с числами Фибоначчи (филлотаксис);

  • расположение семян подсолнуха (семечки располагаются двумя рядами спиралей, закрученных в разном направлении: один ряд по часовой стрелке, другой – против);

  • расположение чешуек сосновых шишек;
  • лепестки цветов;
  • ячейки ананаса;
  • соотношение длин фаланг пальцев на человеческой руке (приблизительно) и т.д.

Задачи по комбинаторике

Числа Фибоначчи находят широкое применение при решении задач по комбинаторике.

Комбинаторика – это раздел математики, который занимается исследованием выборки некого заданного числа элементов из обозначенного множества, перечислением и т.п.

Давайте рассмотрим примеры задач по комбинаторике, рассчитанных на уровень старшей школы (источник - http://www.problems.ru/).

Задача №1:

Леша поднимается по лестнице из 10 ступенек. За один раз он прыгает вверх либо на одну ступеньку, либо на две ступеньки. Сколькими способами Леша может подняться по лестнице?

Число способов, которыми Леша может подняться на лестницу из n ступенек, обозначим а n. Отсюда следует, что a 1 = 1, a 2 = 2 (ведь Леша прыгает либо на одну, либо через две ступеньки).

Оговорено также, что Леша прыгает по лестнице из n > 2 ступенек. Предположим, с первого раза он прыгнул на две ступеньки. Значит, по условию задачи, ему нужно запрыгнуть еще на n – 2 ступеньки. Тогда количество способов закончить подъем описывается как a n–2 . А если считать, что в первый раз Леша прыгнул только на одну ступеньку, тогда количество способов закончить подъем опишем как a n–1 .

Отсюда получаем такое равенство: a n = a n–1 + a n–2 (выглядит знакомо, не правда ли?).

Раз мы знаем a 1 и a 2 и помним, что ступенек по условию задачи 10, вычисли по порядку все а n : a 3 = 3, a 4 = 5, a 5 = 8, a 6 = 13, a 7 = 21, a 8 = 34, a 9 = 55, a 10 = 89.

Ответ: 89 способов.

Задача №2:

Требуется найти количество слов длиной в 10 букв, которые состоят только из букв «а» и «б» и не должны содержать две буквы «б» подряд.

Обозначим за a n количество слов длиной в n букв, которые состоят только из букв «а» и «б» и не содержат двух букв «б» подряд. Значит, a 1 = 2, a 2 = 3.

В последовательности a 1 , a 2 , <…>, a n мы выразим каждый следующий ее член через предыдущие. Следовательно, количество слов длиной в n букв, которые к тому же не содержат удвоенной буквы «б» и начинаются с буквы «а», это a n–1 . А если слово длиной в n букв начинается с буквы «б», логично, что следующая буква в таком слове – «а» (ведь двух «б» быть не может по условию задачи). Следовательно, количество слов длиной в n букв в этом случае обозначим как a n–2 . И в первом, и во втором случае далее может следовать любое слово (длиной в n – 1 и n – 2 букв соответственно) без удвоенных «б».

Мы смогли обосновать, почему a n = a n–1 + a n–2 .

Вычислим теперь a 3 = a 2 + a 1 = 3 + 2 = 5, a 4 = a 3 + a 2 = 5 + 3 = 8, <…>, a 10 = a 9 + a 8 = 144. И получим знакомую нам последовательность Фибоначчи.

Ответ: 144.

Задача №3:

Вообразите, что существует лента, разбитая на клетки. Она уходит вправо и длится бесконечно долго. На первую клетку ленты поместим кузнечика. На какой бы из клеток ленты он ни находился, он может перемещаться только вправо: или на одну клетку, или на две. Сколько существует способов, которыми кузнечик может допрыгать от начала ленты до n -ой клетки?

Обозначим число способов перемещения кузнечика по ленте до n -ой клетки как a n . В таком случае a 1 = a 2 = 1. Также в n + 1 -ую клетку кузнечик может попасть либо из n -ой клетки, либо перепрыгнув ее. Отсюда a n + 1 = a n – 1 + a n . Откуда a n = F n – 1 .

Ответ: F n – 1 .

Вы можете и сами составить подобные задачи и попробовать решить их на уроках математики вместе с одноклассниками.

Числа Фибоначчи в массовой культуре

Разумеется, такое необычное явление, как числа Фибоначчи, не может не привлекать внимание. Есть все же в этой строго выверенной закономерности что-то притягательное и даже таинственное. Неудивительно, что последовательность Фибоначчи так или иначе «засветилась» во многих произведениях современной массовой культуры самых разных жанров.

Мы вам расскажем про некоторые из них. А вы попробуйте поискать сами еще. Если найдете, поделитесь с нами в комментариях – нам ведь тоже любопытно!

  • Числа Фибоначчи упоминаются в бестселлере Дэна Брауна «Код да Винчи»: последовательность Фибоначчи служит кодом, при помощи которого главные герои книги открывают сейф.
  • В американском фильме 2009 года «Господин Никто» в одном из эпизодов адрес дома представляет собой часть последовательности Фибоначчи – 12358. Кроме этого, в другом эпизоде главный герой должен позвонить по телефонному номеру, который по сути – та же, но слегка искаженная (лишняя цифра после цифры 5) последовательность: 123-581-1321.
  • В сериале 2012 года «Связь» главный герой, мальчик, страдающий аутизмом, способен различать закономерности в происходящих в мире событиях. В том числе посредством чисел Фибоначчи. И управлять этими событиями также посредством чисел.
  • Разработчики java-игры для мобильных телефонов Doom RPG поместили на одном из уровней секретную дверь. Открывающий ее код – последовательность Фибоначчи.
  • В 2012 году российская рок-группа «Сплин» выпустила концептуальный альбом «Обман зрения». Восьмой трек носит название «Фибоначчи». В стихах лидера группы Александра Васильева обыграна последовательность чисел Фибоначчи. На каждый из девяти последовательных членов приходится соответствующее число строк (0, 1, 1, 2, 3, 5, 8, 13, 21):

0 Тронулся в путь состав

1 Щёлкнул один сустав

1 Дрогнул один рукав

2 Всё, доставайте стафф

Всё, доставайте стафф

3 Просьбой о кипятке

Поезд идёт к реке

Поезд идёт в тайге <…>.

  • лимерик (короткое стихотворение определенной формы – обычно это пять строк, с определенной схемой рифмовки, шуточное по содержанию, в котором первая и последняя строка повторяются или частично дублируют друг друга) Джеймса Линдона также использует отсылку к последовательности Фибоначчи в качестве юмористического мотива:

Плотная пища жён Фибоначчи

Только на пользу им шла, не иначе.

Весили жёны, согласно молве,

Каждая - как предыдущие две.

Подводим итоги

Мы надеемся, что смогли рассказать вам сегодня много интересного и полезного. Вы, например, теперь можете поискать спираль Фибоначчи в окружающей вас природе. Вдруг именно вам удастся разгадать «секрет жизни, Вселенной и вообще».

Пользуйтесь формулой для чисел Фибоначчи при решении задач по комбинаторике. Вы можете опираться на примеры, описанные в этой статье.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

  • Перевод

Введение

Программистам числа Фибоначчи должны уже поднадоесть. Примеры их вычисления используются везде. Всё от того, что эти числа предоставляют простейший пример рекурсии. А ещё они являются хорошим примером динамического программирования. Но надо ли вычислять их так в реальном проекте? Не надо. Ни рекурсия, ни динамическое программирование не являются идеальными вариантами. И не замкнутая формула, использующая числа с плавающей запятой. Сейчас я расскажу, как правильно. Но сначала пройдёмся по всем известным вариантам решения.

Код предназначен для Python 3, хотя должен идти и на Python 2.

Для начала – напомню определение:

F n = F n-1 + F n-2

И F 1 = F 2 =1.

Замкнутая формула

Пропустим детали, но желающие могут ознакомиться с выводом формулы . Идея в том, чтобы предположить, что есть некий x, для которого F n = x n , а затем найти x.

Что означает

Сокращаем x n-2

Решаем квадратное уравнение:

Откуда и растёт «золотое сечение» ϕ=(1+√5)/2. Подставив исходные значения и проделав ещё вычисления, мы получаем:

Что и используем для вычисления F n .

From __future__ import division import math def fib(n): SQRT5 = math.sqrt(5) PHI = (SQRT5 + 1) / 2 return int(PHI ** n / SQRT5 + 0.5)

Хорошее:
Быстро и просто для малых n
Плохое:
Требуются операции с плавающей запятой. Для больших n потребуется большая точность.
Злое:
Использование комплексных чисел для вычисления F n красиво с математической точки зрения, но уродливо - с компьютерной.

Рекурсия

Самое очевидное решение, которое вы уже много раз видели – скорее всего, в качестве примера того, что такое рекурсия. Повторю его ещё раз, для полноты. В Python её можно записать в одну строку:

Fib = lambda n: fib(n - 1) + fib(n - 2) if n > 2 else 1

Хорошее:
Очень простая реализация, повторяющая математическое определение
Плохое:
Экспоненциальное время выполнения. Для больших n очень медленно
Злое:
Переполнение стека

Запоминание

У решения с рекурсией есть большая проблема: пересекающиеся вычисления. Когда вызывается fib(n), то подсчитываются fib(n-1) и fib(n-2). Но когда считается fib(n-1), она снова независимо подсчитает fib(n-2) – то есть, fib(n-2) подсчитается дважды. Если продолжить рассуждения, будет видно, что fib(n-3) будет подсчитана трижды, и т.д. Слишком много пересечений.

Поэтому надо просто запоминать результаты, чтобы не подсчитывать их снова. Время и память у этого решения расходуются линейным образом. В решении я использую словарь, но можно было бы использовать и простой массив.

M = {0: 0, 1: 1} def fib(n): if n in M: return M[n] M[n] = fib(n - 1) + fib(n - 2) return M[n]

(В Python это можно также сделать при помощи декоратора, functools.lru_cache.)

Хорошее:
Просто превратить рекурсию в решение с запоминанием. Превращает экспоненциальное время выполнение в линейное, для чего тратит больше памяти.
Плохое:
Тратит много памяти
Злое:
Возможно переполнение стека, как и у рекурсии

Динамическое программирование

После решения с запоминанием становится понятно, что нам нужны не все предыдущие результаты, а только два последних. Кроме этого, вместо того, чтобы начинать с fib(n) и идти назад, можно начать с fib(0) и идти вперёд. У следующего кода линейное время выполнение, а использование памяти – фиксированное. На практике скорость решения будет ещё выше, поскольку тут отсутствуют рекурсивные вызовы функций и связанная с этим работа. И код выглядит проще.

Это решение часто приводится в качестве примера динамического программирования.

Def fib(n): a = 0 b = 1 for __ in range(n): a, b = b, a + b return a

Хорошее:
Быстро работает для малых n, простой код
Плохое:
Всё ещё линейное время выполнения
Злое:
Да особо ничего.

Матричная алгебра

И, наконец, наименее освещаемое, но наиболее правильное решение, грамотно использующее как время, так и память. Его также можно расширить на любую гомогенную линейную последовательность. Идея в использовании матриц. Достаточно просто видеть, что

А обобщение этого говорит о том, что

Два значения для x, полученных нами ранее, из которых одно представляло собою золотое сечение, являются собственными значениями матрицы. Поэтому, ещё одним способом вывода замкнутой формулы является использование матричного уравнения и линейной алгебры.

Так чем же полезна такая формулировка? Тем, что возведение в степень можно произвести за логарифмическое время. Это делается через возведения в квадрат . Суть в том, что

Где первое выражение используется для чётных A, второе для нечётных. Осталось только организовать перемножения матриц, и всё готово. Получается следующий код. Я организовал рекурсивную реализацию pow, поскольку её проще понять. Итеративную версию смотрите тут.

Def pow(x, n, I, mult): """ Возвращает x в степени n. Предполагает, что I – это единичная матрица, которая перемножается с mult, а n – положительное целое """ if n == 0: return I elif n == 1: return x else: y = pow(x, n // 2, I, mult) y = mult(y, y) if n % 2: y = mult(x, y) return y def identity_matrix(n): """Возвращает единичную матрицу n на n""" r = list(range(n)) return [ for j in r] def matrix_multiply(A, B): BT = list(zip(*B)) return [ for row_a in A] def fib(n): F = pow([, ], n, identity_matrix(2), matrix_multiply) return F

Хорошее:
Фиксированный объём памяти, логарифмическое время
Плохое:
Код посложнее
Злое:
Приходится работать с матрицами, хотя они не так уж и плохи

Сравнение быстродействия

Сравнивать стоит только вариант динамического программирования и матрицы. Если сравнивать их по количеству знаков в числе n, то получится, что матричное решение линейно, а решение с динамическим программированием – экспоненциально. Практический пример – вычисление fib(10 ** 6), числа, у которого будет больше двухсот тысяч знаков.

N = 10 ** 6
Вычисляем fib_matrix: у fib(n) всего 208988 цифр, расчёт занял 0.24993 секунд.
Вычисляем fib_dynamic: у fib(n) всего 208988 цифр, расчёт занял 11.83377 секунд.

Теоретические замечания

Не напрямую касаясь приведённого выше кода, данное замечание всё-таки имеет определённый интерес. Рассмотрим следующий граф:

Подсчитаем количество путей длины n от A до B. Например, для n = 1 у нас есть один путь, 1. Для n = 2 у нас опять есть один путь, 01. Для n = 3 у нас есть два пути, 001 и 101. Довольно просто можно показать, что количество путей длины n от А до В равно в точности F n . Записав матрицу смежности для графа, мы получим такую же матрицу, которая была описана выше. Это известный результат из теории графов, что при заданной матрице смежности А, вхождения в А n - это количество путей длины n в графе (одна из задач, упоминавшихся в фильме «Умница Уилл Хантинг»).

Почему на рёбрах стоят такие обозначения? Оказывается, что при рассмотрении бесконечной последовательности символов на бесконечной в обе стороны последовательности путей на графе, вы получите нечто под названием "подсдвиги конечного типа ", представляющее собой тип системы символической динамики. Конкретно этот подсдвиг конечного типа известен, как «сдвиг золотого сечения», и задаётся набором «запрещённых слов» {11}. Иными словами, мы получим бесконечные в обе стороны двоичные последовательности и никакие пары из них не будут смежными. Топологическая энтропия этой динамической системы равна золотому сечению ϕ. Интересно, как это число периодически появляется в разных областях математики.

Теги: Добавить метки

(числа Фибоначчи, англ. Fibonacci sequence, Fibonacci numbers) – ряд чисел, выведенный известным математиком Фибоначчи. Имеет следующий вид: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181 и др.

История ряда Фибоначчи

Леонардо из Пизы (Фибоначчи) пришел в математику из-за практической потребности в установлении деловых контактов. В молодости Фибоначчи много путешествовал, сопровождал отца в разных деловых поездках, что позволяло ему общаться с местными учеными.

Ряд чисел, который сегодня носит его имя, был выведен благодаря проблеме с кроликами, которую автор изложил в книге под названием «Liber abacci» (1202 год): один человек посадил в загон, со всех сторон окруженный стеной, пару кроликов. Вопрос: сколько пар кроликов может произвести эта пара за год, если известно, что ежемесячно, начиная со второго месяца, каждая пара производит на свет еще одну пару кроликов.

В итоге Фибоначчи определил, что число пар кроликов в каждый из последующих двенадцати месяцев будет соответственно:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

Где каждое последующее число - это сумма двух предыдущих. Это ряд (числа) Фибоначчи. Данная последовательность имеет множество свойств, интересных с математической точки зрения. Например, если разделить линию на 2 сегмента таким образом, чтобы соотношение между меньшим и большим сегментом было пропорционально соотношению между большим сегментом и всей линией, получится коэффициент пропорциональности, известный как «золотое сечение». Он приблизительно равен 0,618. Ученые эпохи Возрождения считали, что именно эта пропорция, если ее соблюдать в архитектурных сооружениях, способна больше всего радовать глаз.

Применение ряда Фибоначчи

Ряд Фибоначчи нашел широкое применение в самых разных областях науки и жизни. Например, в природе: в строении ураганов, раковин и даже галактик. Не стал исключением и валютный рынок Форекс, где последовательный ряд чисел стал использоваться для прогнозирования трендов. Следует отметить, что между этими числами есть неизменные отношения. Например, как упоминалось выше, отношение предыдущего числа к следующему асимптотически стремится к 0,618 (золотое сечение). Отношения некоторого числа к предыдущему также стремится к величине 0,618.

Помимо прогнозирования трендов, числа Фибоначчи на Форекс используются для прогноза направления движения цены. Например, разворот тренда по золотому сечению происходит на уровне около 61,8% от предыдущего изменения цены (см. рис. 1). Соответственно, самым выгодным вариантом в таком случае будет закрытие позиции чуть ниже данного уровня. Опираясь на ряд Фибоначчи можно рассчитывать наиболее выгодные моменты закрытия и открытия сделок.

Также, одним из способов применения последовательных чисел ряда Фибоначчи на рынке Форекс является построение дуг. Выбор центра для такой дуги происходит в точке важного дна или потолка. Радиус дуг рассчитывается при помощи умножения коэффициентов Фибоначчи на значение предыдущего существенного подъема или спада цен.

Выбираемые коэффициенты имеют значения 0.333, 0.382, 0.4, 0.5, 0.6, 0.618, 0.666. Расположение дуг определяет их роль: поддержки или сопротивления. Чтобы получить представление также о времени возникновения движений цены, дуги, как правило, используют совместно со скоростными или веерными линиями.

Принцип их построения аналогичен: нужно выбрать точки прошлых экстремумов и построить горизонтальную линию из вершины первого из них и вертикальную – из вершины второго. Затем следует поделить получившийся вертикальный отрезок на соответствующие коэффициентам части, нарисовать лучи, идущие из первой точки сквозь только что избранные. При использовании отношений 2/3 и 1/3 получаются скоростные линии, при более строгих 0,618, 0,5 и 0,382 – веерные линии. Все они служат линиями поддержки или сопротивления для ценового тренда (см. рис. 2).

Пересечения веерных дуг и линий служат сигналами для определения поворотных точек тренда – как по времени, так и по цене.

(Рис. 2 – Ряд Фибоначчи, построение дуг)

Более волатильные пары валют характеризуются достижением больших уровней Фибоначчи по сравнению с менее волатильными. Максимальные движения фиксируются по парам Доллар/Франк и Фунт/Доллар, затем идут Доллар/Йена и Евро/Доллар.

Использование ряда Фибоначчи на валютном рынке Форекс имеет одну особенность – их можно применять лишь для хороших импульсных движений.

Похожие публикации