Интеграл от дробно рациональной функции простейшие примеры. Примеры интегрирования дробно-рациональных функций

Интегрирование рациональных функций Дробно – рациональная функция Простейшие рациональные дроби Разложение рациональной дроби на простейшие дроби Интегрирование простейших дробей Общее правило интегрирования рациональных дробей

многочлен степени n. Дробно – рациональная функция Дробно – рациональной функцией называется функция, равная отношению двух многочленов: Рациональная дробь называется правильной, если степень числителя меньше степени знаменателя, то есть m < n , в противном случае дробь называется неправильной. многочлен степени m Всякую неправильную рациональную дробь можно, путем деления числителя на знаменатель, представить в виде суммы многочлена L(x) и правильной рациональной дроби:)()()(x. Q x. P xf n m)()()(x. Q x. R x. L x. Q x. P

Дробно – рациональная функция Привести неправильную дробь к правильному виду: 2 95 4 x xx 95 4 xx 2 x 3 x 34 2 xx 952 3 xx 2 2 x 23 42 xx 954 2 xx x 4 xx 84 2 93 x 3 63 x 15 2 95 4 x xx 342 23 xxx 2 15 x

Простейшие рациональные дроби Правильные рациональные дроби вида: Называются простейшими рациональными дробями типов. ax A); 2(Nkk ax A k)04(2 2 qp qpxx NMx); 2; 04(2 2 Nkkqp qpxx NMx k V V,

Разложение рациональной дроби на простейшие дроби Теорема: Всякую правильную рациональную дробь, знаменатель которой разложен на множители: можно представить, притом единственным образом в виде суммы простейших дробей: s k qxpxxxxxx. Q)()()(22 2 11 2 21)()(x. Q x. P 1 xx A k k xx B)()(2 2 2 1 11 2 qxpx DCx 2 22 22 2 11)(qxpx Nx. M s ss qxpx Nx. M)(

Разложение рациональной дроби на простейшие дроби Поясним формулировку теоремы на следующих примерах: Для нахождения неопределенных коэффициентов A, B, C, D … применяют два метода: метод сравнивания коэффициентов и метод частных значений переменной. Первый метод рассмотрим на примере. 3 2)3)(2(4 xx x 2 x A 3 3 2 21)3()3(3 x B x B 1 2 x DCx 22 22 2 11)1(1 xx Nx. M)1(3 22 3 xx x 2 21 x A 22 2)1)(4(987 xxx xx 4 x

Разложение рациональной дроби на простейшие дроби Представить дробь в виде суммы простейших дробей: Приведем простейшие дроби к общему знаменателю Приравняем числители получившейся и исходной дробей Приравняем коэффициенты при одинаковых степенях х)52)(1(332 2 2 xxx xx 1 x A 52 2 xx CBx)52)(1()1)(()52(2 2 xxx x. CBxxx. A 33252 222 xx. CBx. Cx. Bx. AAx. Ax 35 32 2 0 1 2 CAx BAx 2 3 1 C B A 52 23 1 1 2 xx x x

Интегрирование простейших дробей Найдем интегралы от простейших рациональных дробей: Интегрирование дроби 3 типа рассмотрим на примере. dx ax A k dx qpxx NMx 2 ax axd A)(Cax. Aln)(axdax. A k C k ax. A k

Интегрирование простейших дробейdx xx x 102 13 2 dx xx x 9)12(13 2 dx x x 9)1(13 2 dtdx tx tx 1 1 dt t t 9 1)1(3 2 dt t t 9 23 2 9 322 t dtt 9 9 2 3 2 2 t td 33 2 t arctg. C t arctgt 33 2 9 ln 2 32 C x arctgxx 3 1 3 2 102 ln

Интегрирование простейших дробей Интеграл данного типа с помощью подстановки: приводится к сумме двух интегралов: Первый интеграл вычисляется методом внесения t под знак дифференциала. Второй интеграл вычисляется с помощью рекуррентной формулы: dx qpxx NMx k 2 V t p x 2 kk at dt N at dtt M 22122 1221222))(1(222 321 kkkk atk t k k aat dt

Интегрирование простейших дробей a = 1; k = 3 323)1(t dt tarctg t dt 1 21)1)(12(2222 322 1 21222 t t t dt)1(22 1 2 t t tarctg 2223)1)(13(2232 332 t t C t t tarctg 222)1(4)1(

Общее правило интегрирования рациональных дробей Если дробь неправильная, то представить ее в виде суммы многочлена и правильной дроби. Разложив знаменатель правильной рациональной дроби на множители, представить ее в виде суммы простейших дробей с неопределенными коэффициентами Найти неопределенные коэффициенты методом сравнения коэффициентов или методом частных значений переменной. Проинтегрировать многочлен и полученную сумму простейших дробей.

Пример Приведем дробь к правильному виду. dx xxx 23 35 2 442 35 xxxxxx 23 2 2 x 345 2 xxx 442 34 xxx x 2 234 242 xxx 4425 23 xxx xxx 23 35 2 442 xxx xx xx 23 2 2 2 48 52 5 xxx 5105 23 48 2 xx

Пример Разложим знаменатель правильной дроби на множители Представим дробь в виде суммы простейших дробей Найдем неопределенные коэффициенты методом частных значений переменной xxx xx 23 2 2 48 2 2)1(48 xx xx 2)1(1 x C x B x A 2 2)1()1(xx Cxx. Bxx. A 48)1()1(22 xx. Cxx. Bxx. A 5241 31 40 CBAx Cx Ax 3 12 4 C B A xxx xx 23 2 2 48 2)1(3 1 124 xxx

Пример dx xx 2 2)1(3 1 124 52 2 2)1(3 1 12452 x dx dxxdxdxx C x xxxx x 1 3 1 ln 12 ln


Ранее речь шла об общих приемах интегрирования. В этом и следующих параграфах мы будем говорить об интегрировании конкретных классов функций с помощью рассмотренных приемов.

Интегрирование простейших рациональных функций

Рассмотрим интеграл вида \textstyle{\int R(x)\,dx} , где y=R(x) - рациональная функция. Всякое рациональное выражение R(x) можно представить в виде \frac{P(x)}{Q(x)} , где P(x) и Q(x) - многочлены. Если эта дробь неправильная, т. е. если степень числителя больше или равна степени знаменателя, то ее можно представить в виде суммы многочлена (целая часть) и правильной дроби. Поэтому достаточно рассмотреть интегрирование правильных дробей.


Покажем, что интегрирование таких дробей сводится к интегрированию простейших дробей , т. е. выражений вида:


\mathsf{1)}~\frac{A}{x-a};\quad \mathsf{2)}~\frac{A}{(x-a)^n};\quad \mathsf{3)}~ \frac{Ax+B}{x^2+px+q};\quad \mathsf{4)}~\frac{Ax+B}{(x^2+px+q)^n}.


где A,\,B,\,a,\,p,\,q - действительные числа, а квадратный трехчлен x^2+px+q не имеет действительных корней. Выражения вида 1) и 2) называют дробями 1-го рода, а выражения вида 3) и 4) - дробями 2-го рода.


Интегралы от дробей 1-го рода вычисляются непосредственно


\begin{aligned}\mathsf{1)}&~\int\frac{A}{x-a}\,dx= A\ln|x-a|+C;\\ \mathsf{2)}&~ \int\frac{A}{(x-a)^n}\,dx= A\int(x-a)^{-n}\,dx= A\,\frac{(x-a)^{-n+1}}{-n+1}+C~(n=2,3,4,\ldots). \end{aligned}


Рассмотрим вычисление интегралов от дробей 2-го рода: \mathsf{3)}~ \int\frac{Ax+B}{x^2+px+q}\,dx\,.


Сначала заметим, что


\int\frac{dt}{t^2+a^2}= \frac{1}{a}\operatorname{arctg}\frac{t}{a}+C,\qquad \int\frac{t\,dt}{t^2+a^2}= \frac{1}{2}\ln(t^2+a^2)+C.


Чтобы свести вычисление интеграла 3) к этим двум интегралам, преобразуем квадратный трехчлен x^2+px+q , выделив из него полный квадрат:


x^2+px+q= {\left(x+\frac{p}{2}\right)\!}^2+ \left(q-\frac{p^2}{4}\right)\!.


Так как по предположению этот трехчлен не имеет действительных корней, то q-\frac{p^2}{4}>0 и мы можем положить q-\frac{p^2}{4}=a^2 . Подстановка x+\frac{p}{2}=t,~ dx=dt преобразует интеграл 3) к линейной комбинации указанных двух интегралов:


\begin{aligned}\int\frac{Ax+B}{x^2+px+q}\,dx&= \int\frac{A\!\left(t-\frac{p}{2}\right)+B}{t^2+a^2}\,dt= A\int\frac{t\,dt}{t^2+a^2}+ \left(B-\frac{Ap}{2}\right)\!\int\frac{dt}{t^2+a^2}=\\ &=\frac{A}{2}\ln(t^2+a^2)+ \frac{1}{a}\!\left(B-\frac{Ap}{2}\right)\!\ \operatorname{arctg}\frac{t}{a}+C. \end{aligned}


В окончательном ответе нужно лишь заменить {t} на x+\frac{p}{2} , а {a} на \sqrt{q-\frac{p^2}{4}} . Так как t^2+a^2=x^2+px+q , то


\int\frac{Ax+B}{x^2+px+q}\,dx= \frac{A}{2}\ln(x^2+px+q)+ \frac{B-\dfrac{Ap}{2}}{\sqrt{q-\dfrac{p^2}{4}}} \operatorname{arctg}\frac{x+\dfrac{p}{2}}{\sqrt{q-\dfrac{p^2}{4}}}+C.


Рассмотрим случай \mathsf{4)}~ \int\frac{Ax+B}{(x^2+px+q)^n}\,dx .


Как и в предыдущем случае, положим x+\frac{p}{2}=t . Получим:


\int\frac{Ax+B}{(x^2+px+q)^n}\,dx= A\int\frac{t\,dt}{(t^2+a^2)^n}+ \left(B-\frac{Ap}{2}\right)\! \int\frac{dt}{(t^2+a^2)^n}\,.


Первое слагаемое вычисляется так:


A\int\frac{t\,dt}{(t^2+a^2)^n}= \frac{A}{2}\int(t^2+a^2)^{-n}\,d(t^2+a^2)= \frac{A}{2}\frac{(t^2+a^2)^{-n+1}}{-n+1}= \frac{A}{2(1-n)(t^2+a^2)^{n-1}}\,.


Второй же интеграл вычисляется с помощью рекуррентной формулы.

Пример 1. Вычислим \int\frac{3x+2}{x^2+2x+3}\,dx .


Решение. Имеем: x^2+2x+3=(x+1)^2+2 . Положим x+1=t . Тогда dx=dt и 3x+2=3(t-1)+2=3t-1 и, следовательно,


\begin{aligned}\int\frac{3x+2}{x^2+2x+3}\,dx&= \int\frac{3t-1}{t^2+2}\,dt= \frac{3}{2}\int\frac{2t\,dt}{t^2+2}- \int\frac{dt}{t^2+(\sqrt{2})^2}=\\ &=\frac{3}{2}\ln(t^2+2)- \frac{1}{\sqrt{2}}\operatorname{arctg}\frac{t}{\sqrt{2}}+C=\\ &=\frac{3}{2}\ln(x^2+2x+3)- \frac{1}{\sqrt{2}}\operatorname{arctg}\frac{x+1}{\sqrt{2}}+C. \end{aligned}

Пример 2. Вычислим \int\frac{x+2}{(x^2+6x+10)^2}\,dx .


Решение. Имеем: x^2+6x+10=(x+3)^2+1 . Введем новую переменную, положив x+3=t . Тогда dt=dx и x+2=t-1 . Заменив переменную под знаком интеграла, получим:


\begin{aligned}\int\frac{x+2}{(x^2+6x+10)^2}\,dx&= \int\frac{t-1}{(t^2+1)^2}\,dt= \frac{1}{2}\int\frac{2t\,dt}{(t^2+1)^2}-\int\frac{dt}{(t^2+1)^2}=\\ &=-\frac{1}{2(t^2+1)}- \int\frac{dt}{(t^2+1)^2}\,. \end{aligned}}


Положим I_2=\int\frac{dt}{(t^2+1)^2} . Имеем:


I_2=\frac{1}{2}I_1+\frac{1}{2}\frac{t}{t^2+1} , но I_1=\int\frac{dt}{t^2+1}= \operatorname{arctg}t Таким образом, I_2= \frac{1}{2}\operatorname{arctg}t+ \frac{t}{2(t^2+1)} .


Окончательно получаем:


\begin{aligned}\int\frac{x+2}{(x^2+6x+10)^2}\,dx&=-\frac{1}{2(t^2+1)}-\frac{1}{2}\operatorname{arctg}t-\frac{t}{2(t^2+1)}=\\ &=-\frac{1}{2(x^2+6x+10)}- \frac{1}{2}\operatorname{arctg}(x+3)- \frac{x+3}{2(x^2+6x+10)}+C=\\ &=\frac{-x-4}{2(x^2+6x+10)}-\frac{1}{2}\operatorname{arctg}(x+3)+C \end{aligned}

Интегрирование правильных дробей

Рассмотрим правильную дробь R(x)=\frac{P(x)}{Q(x)} , где Q(x) - многочлен степени n . Не теряя общности, можно считать, что старший коэффициент в Q(x) равен 1. В курсе алгебры доказывается, что такой многочлен с действительными коэффициентами может быть разложен на множители первой и второй степени с действительными коэффициентами:


Q(x)= (x-x_1)^{\alpha}\ldots (x-x_k)^{\beta} (x^2+p\,x+q)^{\gamma}\ldots (x^2+r\,x+s)^{\delta}.


где x_1,\ldots,x_k -действительные корни многочлена Q(x) , а квадратные трехчлены не имеют действительных корней. Можно доказать, что тогда R(x) представляется в виде суммы простейших дробей вида 1) -4):


\begin{aligned}R(x)=&\frac{P(x)}{Q(x)}= \frac{A_1}{(x-x_1)^{\alpha}}+ \frac{A_2}{(x-x_1)^{\alpha-1}}+\ldots+ \frac{A_{\alpha}}{x-x_1}\,+\\ &+\,\ldots+ \frac{B_1}{(x- x_k)^{\beta}}+ \frac{B_2}{(x-x_k)^{\beta-1}}+\ldots+ \frac{B_{\beta}}{x-x_k}+ \frac{M_1x+ N_1}{(x^2+p\,x+q)^{\gamma}}\,+\\ &+\,\ldots+ \frac{M_{\gamma}+ N_{\gamma}}{x^2+ p\,x+s}+ \frac{E_1x+F_1}{(x^2+rx+s)^{\delta}}+\ldots+ \frac{E_{\delta}x+F_{\delta}}{x^2+rx+s}\, \end{aligned}


где показатели у знаменателей последовательно уменьшаются от \alpha до 1, …, от \beta до 1, от \gamma до 1, …, от \delta до 1, а A_1,\ldots,F_{\delta} - неопределенные коэффициенты. Для того чтобы найти эти коэффициенты, необходимо освободиться от знаменателей и, получив равенство двух многочленов, воспользоваться методом неопределенных коэффициентов.


Другой способ определения коэффициентов A_1,\ldots, A_{\alpha}, \ldots, F_{\delta} основан на подстановке значений переменной x . Подставляя в равенство, полученное из равенства (1) после освобождения от знаменателей, вместо x любое число, придем к линейному уравнению относительно искомых коэффициентов. Путем подстановки необходимого количества таких частных значений переменной получим систему уравнений для отыскания коэффициентов. В качестве частных значений переменной удобнее всего выбирать корни знаменателя (как действительные, так и комплексные). При этом почти все члены в правой части равенства (имеется в виду равенство двух многочленов) обращаются в нуль, что позволяет легко находить оставшиеся коэффициенты. При подстановке комплексных значений следует иметь в виду, что два комплексных числа равны тогда и только тогда, когда равны соответственно их действительные и мнимые части. Поэтому из каждого равенства, содержащего комплексные числа, получаются два уравнения.


После нахождения неопределенных коэффициентов остается вычислить интегралы от полученных простейших дробей. Так как при интегрировании простейших дробей получаются, как мы видели, лишь рациональные функции, арктангенсы и логарифмы, то интеграл от любой рациональной функции выражается через рациональную функцию, арктангенсы и логарифмы .

Пример 3. Вычислим интеграл от правильной рациональной дроби \int\frac{6x+1}{x^2+2x-3}\,dx .


Решение. Разложим знаменатель подынтегральной функции на множители:


x^2+2x-3=(x-1)(x+3).


Выпишем подынтегральную функцию и представим ее в виде суммы простейших дробей:


\frac{6x+1}{x^2+2x-3}= \frac{A}{x-1}+\frac{B}{B+3}\,.


Освободившись в этом равенстве от знаменателей, получим:

6x+1=A\cdot (x+3)+B\cdot (x-1)\,.


Для отыскания коэффициентов воспользуемся методом подстановки частных значений. Для нахождения коэффициента A положим x=1 . Тогда из равенства (2) получим 7=4A , откуда A=7/4 . Для отыскания коэффициента B положим x=-3 . Тогда из равенства (2) получим -17=-4B , откуда B=17/4 .


Итак, \frac{6x+1}{x^2+2x-3}= \frac{7}{4}\cdot\frac{1}{x-1}+ \frac{17}{4}\cdot\frac{1}{x+3} . Значит,


\int\frac{6x+1}{x^2+2x-3}\,dx= \frac{7}{4}\int\frac{dx}{x-1}+ \frac{17}{4}\int\frac{dx}{x+3}= \frac{7}{4}\ln|x-1|+ \frac{17}{4}\ln|x+3|+C.

Пример 4. Вычислим \int\frac{x^4+2x^2+8x+5}{(x^2+2)(x-1)^2(x+2)}\,dx .


Решение. Выпишем подынтегральную функцию и представим ее в виде суммы простейших дробей. В знаменателе содержится множитель x^2+2 , не имеющий действительных корней, ему соответствует дробь 2-го рода: \frac{Ax+B}{x^2+2} множителю (x-1)^2 соответствует сумма двух дробей 1-го рода: \frac{C}{(x-1)^2}+ \frac{D}{x-1} ; наконец, множителю x+2 соответствует одна дробь 1-го рода \frac{E}{x+2} . Таким образом, подынтегральную функцию мы представим в виде суммы четырех дробей:


\frac{x^4+2x^2+8x+5}{(x^2+2)(x-1)^2(x+2)}= \frac{Ax+B}{x^2+2}+ \frac{C}{(x-1)^2}+ \frac{D}{x-1}+ \frac{E}{x+2}\,.


Освободимся в этом равенстве от знаменателей. Получим:

\begin{aligned} x^4+2x^2+8x+5&= (Ax+B)(x-1)^2(x+2)+ C(x^2+2)(x+2)\,+\\ &\phantom{=}+ D(x^2+2)(x-1)(x+2)+ E(x^2+2)(x-1)^2.\end{aligned}


Знаменатель подынтегральной функции имеет два действительных корня: x=1 и x=-2 . При подстановке в равенство (4) значения x=1 получаем 16=9C , откуда находим C=16/9 . При подстановке x=-2 получаем 13=54E и соответственно определяем E=13/54 . Подстановка значения x=i\,\sqrt{2} (корня многочлена x^2+2 ) позволяет перейти к равенству


4-4+8\,i\,\sqrt{2}+5= (A\,i\,\sqrt{2}+B)\cdot (i\,\sqrt{2}-1)^2\cdot (i\,\sqrt{2}+2).


Оно преобразуется к виду:


(10A+2B)+(2A-5B)\sqrt{2}\,i= 5+8\sqrt{2}\,i , откуда 10A+2B=5 , а (2A-5B)\sqrt{2}=8\sqrt{2} .


Решив систему двух уравнений с двумя переменными \begin{cases}10A+2B=5,\\ 2A-5B=8,\end{cases} находим: A=\frac{41}{54},~ B=-\frac{35}{27} .


Осталось определить значение коэффициента D . Для этого в равенстве (4) раскроем скобки, приведем подобные члены, а затем сравним коэффициенты при x^4 . Получим:


A+D+E=1 , то есть D=0 .


Подставим найденные значения коэффициентов в равенство (3):


\frac{x^4+2x^2+8x+5}{(x^2+2)(x-1)^2(x+2)}= \frac{\drac{41}{54}\,x- \dfrac{35}{27}}{x^2+2}+ \frac{16}{9}\frac{1}{(x-1)^2}+ \frac{13}{54}\frac{1}{x+2}\,


а затем перейдем к интегрированию:

\begin{aligned}\int\frac{x^4+2x^2+8x+5}{(x^2+2)(x-1)^2(x+2)}\,dx&= \frac{41}{54}\int\frac{x\,dx}{x^2+2}- \frac{35}{27}\int\frac{dx}{x^2+2}+ \frac{16}{9} \int\frac{dx}{(x-1)^2}+ \frac{13}{54}\int\frac{dx}{x+2}=\\ &=\frac{41}{108}\ln(x^2+2)- \frac{35}{27\sqrt{2}}\operatorname{arctg}\frac{x}{\sqrt{2}}- \frac{16}{9(x-1)}+ \frac{13}{54} \ln|x+2|+C.\end{aligned}

Интегрирование неправильных дробей

Пусть нужно проинтегрировать функцию y=\frac{f(x)}{g(x)} , где f(x) и g(x) - многочлены, причем степень многочлена f(x) больше или равна степени многочлена g(x) . В этом случае прежде всего необходимо выделить целую часть неправильной дроби \frac{f(x)}{g(x)} , т. е. представить ее в виде


\frac{f(x)}{g(x)}=s(x)+ \frac{r(x)}{g(x)}\,


где s(x) - многочлен степени, равной разности степеней многочленов f(x) и g(x) , а \frac{r(x)}{g(x)} - правильная дробь.


Тогда имеем \int\frac{f(x)}{g(x)}\,dx= \int s(x)\,dx+ \int\frac{r(x)}{g(x)}\,dx\,. .

Пример 5. Вычислим интеграл от неправильной дроби \int\frac{x^4-4x^3+x^2+16x-11}{(x-1)(x+2)(x-3)}\,dx .


Решение. Имеем:


\begin{aligned}g(x)&=(x-1)(x+2)(x-3)= x^3-2x^2-5x+6,\\ f(x)&=x^4-4x^3+x^2+16x-11. \end{aligned}


Для выделения целой части разделим f(x) на g(x) : \frac{f(x)}{g(x)}= x-2+\frac{2x^2+1}{x^3-2x^2-5x+6}\,.


Значит, \int\frac{x^4-4x^3+x^2+16x-11}{(x-1)(x+2)(x-3)}\,dx= \int(x-2)dx+ \int\frac{2x^2+1}{(x-1)(x+2)(x-3)}\,dx


Имеем: \int(x-2)dx=\frac{x^2}{2}-2x+C .


Для вычисления интеграла \int\frac{2x^2+1}{(x-1)(x+2)(x-3)}\,dx применяется, как и выше, метод неопределенных коэффициентов. После вычислений, которые мы оставляем читателю, получаем.

Интегрирование дробно-рациональной функции.
Метод неопределенных коэффициентов

Продолжаем заниматься интегрированием дробей. Интегралы от некоторых видов дробей мы уже рассмотрели на уроке , и этот урок в некотором смысле можно считать продолжением. Для успешного понимания материала необходимы базовые навыки интегрирования, поэтому если Вы только приступили к изучению интегралов, то есть, являетесь чайником, то необходимо начать со статьи Неопределенный интеграл. Примеры решений .

Как ни странно, сейчас мы будем заниматься не столько нахождением интегралов, сколько… решением систем линейных уравнений. В этой связи настоятельно рекомендую посетить урок А именно – нужно хорошо ориентироваться в методах подстановки («школьном» методе и методе почленного сложения (вычитания) уравнений системы).

Что такое дробно-рациональная функция? Простыми словами, дробно-рациональная функция – это дробь, в числителе и знаменателе которой находятся многочлены либо произведения многочленов. При этом дроби являются более навороченными, нежели те, о которых шла речь в статье Интегрирование некоторых дробей .

Интегрирование правильной дробно-рациональной функции

Сразу пример и типовой алгоритм решения интеграла от дробно-рациональной функции.

Пример 1


Шаг 1. Первое, что мы ВСЕГДА делаем при решении интеграла от дробно-рациональной функции – это выясняем следующий вопрос: является ли дробь правильной? Данный шаг выполняется устно, и сейчас я объясню как:

Сначала смотрим на числитель и выясняем старшую степень многочлена:

Старшая степень числителя равна двум.

Теперь смотрим на знаменатель и выясняем старшую степень знаменателя. Напрашивающийся путь – это раскрыть скобки и привести подобные слагаемые, но можно поступить проще, в каждой скобке находим старшую степень

и мысленно умножаем: – таким образом, старшая степень знаменателя равна трём. Совершенно очевидно, что если реально раскрыть скобки, то мы не получим степени, больше трёх.

Вывод : Старшая степень числителя СТРОГО меньше старшей степени знаменателя, значит, дробь является правильной.

Если бы в данном примере в числителе находился многочлен 3, 4, 5 и т.д. степени, то дробь была бы неправильной .

Сейчас мы будем рассматривать только правильные дробно-рациональные функции . Случай, когда степень числителя больше либо равна степени знаменателя, разберём в конце урока.

Шаг 2. Разложим знаменатель на множители. Смотрим на наш знаменатель:

Вообще говоря, здесь уже произведение множителей, но, тем не менее, задаемся вопросом: нельзя ли что-нибудь разложить еще? Объектом пыток, несомненно, выступит квадратный трехчлен. Решаем квадратное уравнение:

Дискриминант больше нуля, значит, трехчлен действительно раскладывается на множители:

Общее правило: ВСЁ, что в знаменателе МОЖНО разложить на множители – раскладываем на множители

Начинаем оформлять решение:

Шаг 3. Методом неопределенных коэффициентов раскладываем подынтегральную функцию в сумму простых (элементарных) дробей. Сейчас будет понятнее.

Смотрим на нашу подынтегральную функцию:

И, знаете, как-то проскакивает интуитивная мысль, что неплохо бы нашу большую дробь превратить в несколько маленьких. Например, вот так:

Возникает вопрос, а можно ли вообще так сделать? Вздохнем с облегчением, соответствующая теорема математического анализа утверждает – МОЖНО. Такое разложение существует и единственно .

Только есть одна загвоздочка, коэффициенты мы пока не знаем, отсюда и название – метод неопределенных коэффициентов.

Как вы догадались, последующие телодвижения так, не гоготать! будут направлены на то, чтобы как раз их УЗНАТЬ – выяснить, чему же равны .

Будьте внимательны, подробно объясняю один раз!

Итак, начинаем плясать от:

В левой части приводим выражение к общему знаменателю:

Теперь благополучно избавляемся от знаменателей (т.к. они одинаковы):

В левой части раскрываем скобки, неизвестные коэффициенты при этом пока не трогаем:

Заодно повторяем школьное правило умножение многочленов. В свою бытность учителем, я научился выговаривать это правило с каменным лицом: Для того чтобы умножить многочлен на многочлен нужно каждый член одного многочлена умножить на каждый член другого многочлена .

С точки зрения понятного объяснения коэффициенты лучше внести в скобки (хотя лично я никогда этого не делаю в целях экономии времени):

Составляем систему линейных уравнений.
Сначала разыскиваем старшие степени:

И записываем соответствующие коэффициенты в первое уравнение системы:

Хорошо запомните следующий нюанс . Что было бы, если б в правой части вообще не было ? Скажем, красовалось бы просто без всякого квадрата? В этом случае в уравнении системы нужно было бы поставить справа ноль: . Почему ноль? А потому что в правой части всегда можно приписать этот самый квадрат с нулём: Если в правой части отсутствуют какие-нибудь переменные или (и) свободный член, то в правых частях соответствующих уравнений системы ставим нули .

Записываем соответствующие коэффициенты во второе уравнение системы:

И, наконец, минералка, подбираем свободные члены.

Эх,…что-то я расшутился. Шутки прочь – математика наука серьезная. У нас в институтской группе никто не смеялся, когда доцент сказала, что разбросает члены по числовой прямой и выберет из них самые большие. Настраиваемся на серьезный лад. Хотя… кто доживет до конца этого урока, все равно будет тихо улыбаться.

Система готова:

Решаем систему:

(1) Из первого уравнения выражаем и подставляем его во 2-е и 3-е уравнения системы. На самом деле можно было выразить (или другую букву) из другого уравнения, но в данном случае выгодно выразить именно из 1-го уравнения, поскольку там самые маленькие коэффициенты .

(2) Приводим подобные слагаемые во 2-м и 3-м уравнениях.

(3) Почленно складываем 2-е и 3-е уравнение, при этом, получая равенство , из которого следует, что

(4) Подставляем во второе (или третье) уравнение, откуда находим, что

(5) Подставляем и в первое уравнение, получая .

Если возникли трудности с методами решения системы отработайте их на уроке Как решить систему линейных уравнений?

После решения системы всегда полезно сделать проверку – подставить найденные значения в каждое уравнение системы, в результате всё должно «сойтись».

Почти приехали. Коэффициенты найдены, при этом:

Чистовое оформление задание должно выглядеть примерно так:




Как видите, основная трудность задания состояла в том, чтобы составить (правильно!) и решить (правильно!) систему линейных уравнений. А на завершающем этапе всё не так сложно: используем свойства линейности неопределенного интеграла и интегрируем. Обращаю внимание, что под каждым из трёх интегралов у нас «халявная» сложная функция, об особенностях ее интегрирования я рассказал на уроке Метод замены переменной в неопределенном интеграле .

Проверка: Дифференцируем ответ:

Получена исходная подынтегральная функция, значит, интеграл найден правильно.
В ходе проверки пришлось приводить выражение к общему знаменателю, и это не случайно. Метод неопределенных коэффициентов и приведение выражения к общему знаменателю – это взаимно обратные действия .

Пример 2

Найти неопределенный интеграл.

Вернемся к дроби из первого примера: . Нетрудно заметить, что в знаменателе все множители РАЗНЫЕ. Возникает вопрос, а что делать, если дана, например, такая дробь: ? Здесь в знаменателе у нас степени, или, по-математически кратные множители . Кроме того, есть неразложимый на множители квадратный трехчлен (легко убедиться, что дискриминант уравнения отрицателен, поэтому на множители трехчлен никак не разложить). Что делать? Разложение в сумму элементарных дробей будет выглядеть наподобие с неизвестными коэффициентами вверху или как-то по-другому?

Пример 3

Представить функцию

Шаг 1. Проверяем, правильная ли у нас дробь
Старшая степень числителя: 2
Старшая степень знаменателя: 8
, значит, дробь является правильной.

Шаг 2. Можно ли что-нибудь разложить в знаменателе на множители? Очевидно, что нет, всё уже разложено. Квадратный трехчлен не раскладывается в произведение по указанным выше причинам. Гуд. Работы меньше.

Шаг 3. Представим дробно-рациональную функцию в виде суммы элементарных дробей.
В данном случае, разложение имеет следующий вид:

Смотрим на наш знаменатель:
При разложении дробно-рациональной функции в сумму элементарных дробей можно выделить три принципиальных момента:

1) Если в знаменателе находится «одинокий» множитель в первой степени (в нашем случае ), то вверху ставим неопределенный коэффициент (в нашем случае ). Примеры №1,2 состояли только из таких «одиноких» множителей.

2) Если в знаменателе есть кратный множитель , то раскладывать нужно так:
– то есть последовательно перебрать все степени «икса» от первой до энной степени. В нашем примере два кратных множителя: и , еще раз взгляните на приведенное мной разложение и убедитесь, что они разложены именно по этому правилу.

3) Если в знаменателе находится неразложимый многочлен второй степени (в нашем случае ), то при разложении в числителе нужно записать линейную функцию с неопределенными коэффициентами (в нашем случае с неопределенными коэффициентами и ).

На самом деле, есть еще 4-й случай, но о нём я умолчу, поскольку на практике он встречается крайне редко.

Пример 4

Представить функцию в виде суммы элементарных дробей с неизвестными коэффициентами.

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.
Строго следуйте алгоритму!

Если Вы разобрались, по каким принципам нужно раскладывать дробно-рациональную функцию в сумму, то сможете разгрызть практически любой интеграл рассматриваемого типа.

Пример 5

Найти неопределенный интеграл.

Шаг 1. Очевидно, что дробь является правильной:

Шаг 2. Можно ли что-нибудь разложить в знаменателе на множители? Можно. Здесь сумма кубов . Раскладываем знаменатель на множители, используя формулу сокращенного умножения

Шаг 3. Методом неопределенных коэффициентов разложим подынтегральную функцию в сумму элементарных дробей:

Обратите внимание, что многочлен неразложим на множители (проверьте, что дискриминант отрицательный), поэтому вверху мы ставим линейную функцию с неизвестными коэффициентами, а не просто одну буковку.

Приводим дробь к общему знаменателю:

Составим и решим систему:

(1) Из первого уравнения выражаем и подставляем во второе уравнение системы (это наиболее рациональный способ).

(2) Приводим подобные слагаемые во втором уравнении.

(3) Почленно складываем второе и третье уравнения системы.

Все дальнейшие расчеты, в принципе, устные, так как система несложная.

(1) Записываем сумму дробей в соответствии с найденными коэффициентами .

(2) Используем свойства линейности неопределенного интеграла. Что произошло во втором интеграле? С этим методом Вы можете ознакомиться в последнем параграфе урока Интегрирование некоторых дробей .

(3) Еще раз используем свойства линейности. В третьем интеграле начинаем выделять полный квадрат (предпоследний параграф урока Интегрирование некоторых дробей ).

(4) Берём второй интеграл, в третьем – выделяем полный квадрат.

(5) Берём третий интеграл. Готово.

ТЕМА: Интегрирование рациональных дробей.

Внимание! При изучении одного из основных приемов интегрирования: интегрирования рациональных дробей – требуется для проведения строгих доказательств рассматривать многочлены в комплексной области. Поэтому необходимо изучить предварительно некоторые свойства комплексных чисел и операций над ними.

Интегрирование простейших рациональных дробей.

Если P (z ) и Q (z ) – многочлены в комплексной области, то - рациональная дробь. Она называется правильной , если степень P (z ) меньше степени Q (z ) , и неправильной , если степень Р не меньше степени Q .

Любую неправильную дробь можно представить в виде: ,

P(z) = Q(z) S(z) + R(z),

a R (z ) – многочлен, степень которого меньше степени Q (z ).

Таким образом, интегрирование рациональных дробей сводится к интегрированию многочленов, то есть степенных функций, и правильных дробей, так как является правильной дробью.

Определение 5. Простейшими (или элементарными) дробями называются дроби следующих видов:

1) , 2) , 3) , 4) .

Выясним, каким образом они интегрируются.

3) (изучен ранее).

Теорема 5. Всякую правильную дробь можно представить в виде суммы простейших дробей (без доказательства).

Следствие 1. Если - правильная рациональная дробь, и если среди корней многочлена будут только простые действительные корни, то в разложении дроби на сумму простейших дробей будет присутствовать лишь простейшие дроби 1-го типа:

Пример 1.

Следствие 2. Если - правильная рациональная дробь, и если среди корней многочлена будут только кратные действительные корни, то в разложении дроби на сумму простейших дробей будет присутствовать лишь простейшие дроби 1-го и 2-го типов:

Пример 2.

Следствие 3. Если - правильная рациональная дробь, и если среди корней многочлена будут только простые комплексно - сопряженные корни, то в разложении дроби на сумму простейших дробей будет присутствовать лишь простейшие дроби 3-го типа:

Пример 3.

Следствие 4. Если - правильная рациональная дробь, и если среди корней многочлена будут только кратные комплексно - сопряженные корни, то в разложении дроби на сумму простейших дробей будет присутствовать лишь простейшие дроби 3-го и 4-го типов:

Для определения неизвестных коэффициентов в приведенных разложениях поступают следующим образом. Левую и правую часть разложения , содержащего неизвестные коэффициенты, умножают на Получается равенство двух многочленов. Из него получают уравнения на искомые коэффициенты, используя, что:

1. равенство справедливо при любых значениях Х (метод частных значений). В этом случае получается сколько угодно уравнений, любые m из которых позволяют найти неизвестные коэффициенты.

2. совпадают коэффициенты при одинаковых степенях Х (метод неопределенных коэффициентов). В этом случае получается система m – уравнений с m – неизвестными, из которых находят неизвестные коэффициенты.

3. комбинированный метод.

Пример 5. Разложить дробь на простейшие.

Решение:

Найдем коэффициенты А и В.

1 способ - метод частных значений:

2 способ – метод неопределенных коэффициентов:

Ответ:

Интегрирование рациональных дробей.

Теорема 6. Неопределенный интеграл от любой рациональной дроби на всяком промежутке, на котором ее знаменатель не равен нулю, существует и выражается через элементарные функции, а именно рациональные дроби, логарифмы и арктангенсы.

Доказательство.

Представим рациональную дробь в виде: . При этом последнее слагаемое является правильной дробью, и по теореме 5 ее можно представить в виде линейной комбинации простейших дробей. Таким образом, интегрирование рациональной дроби сводится к интегрированию многочлена S (x ) и простейших дробей, первообразные которых, как было показано, имеют вид, указанный в теореме.

Замечание. Основную трудность при этом составляет разложение знаменателя на множители, то есть поиск всех его корней.

Пример 1. Найти интеграл

Здесь мы приводим подробные решения трех примеров интегрирования следующих рациональных дробей:
, , .

Пример 1

Вычислить интеграл:
.

Решение

Здесь под знаком интеграла стоит рациональная функция, поскольку подынтегральное выражение является дробью из многочленов. Степень многочлена знаменателя (3 ) меньше степени многочлена числителя (4 ). Поэтому, вначале необходимо выделить целую часть дроби.

1. Выделим целую часть дроби. Делим x 4 на x 3 - 6 x 2 + 11 x - 6 :

Отсюда
.

2. Разложим знаменатель дроби на множители. Для этого нужно решить кубическое уравнение:
.
6
1, 2, 3, 6, -1, -2, -3, -6 .
Подставим x = 1 :
.

1 . Делим на x - 1 :

Отсюда
.
Решаем квадратное уравнение .
.
Корни уравнения: , .
Тогда
.

3. Разложим дробь на простейшие.

.

Итак, мы нашли:
.
Интегрируем.

Ответ

Пример 2

Вычислить интеграл:
.

Решение

Здесь в числителе дроби - многочлен нулевой степени (1 = x 0 ). В знаменателе - многочлен третьей степени. Поскольку 0 < 3 , то дробь правильная. Разложим ее на простейшие дроби.

1. Разложим знаменатель дроби на множители. Для этого нужно решить уравнение третьей степени:
.
Предположим, что оно имеет хотя бы один целый корень. Тогда он является делителем числа 3 (члена без x ). То есть целый корень может быть одним из чисел:
1, 3, -1, -3 .
Подставим x = 1 :
.

Итак, мы нашли один корень x = 1 . Делим x 3 + 2 x - 3 на x - 1 :

Итак,
.

Решаем квадратное уравнение:
x 2 + x + 3 = 0 .
Находим дискриминант: D = 1 2 - 4·3 = -11 . Поскольку D < 0 , то уравнение не имеет действительных корней. Таким образом, мы получили разложение знаменателя на множители:
.

2.
.
(x - 1)(x 2 + x + 3) :
(2.1) .
Подставим x = 1 . Тогда x - 1 = 0 ,
.

Подставим в (2.1) x = 0 :
1 = 3 A - C ;
.

Приравняем в (2.1) коэффициенты при x 2 :
;
0 = A + B ;
.


.

3. Интегрируем.
(2.2) .
Для вычисления второго интеграла, выделим в числителе производную знаменателя и приведем знаменатель к сумме квадратов.

;
;
.

Вычисляем I 2 .


.
Поскольку уравнение x 2 + x + 3 = 0 не имеет действительных корней, то x 2 + x + 3 > 0 . Поэтому знак модуля можно опустить.

Поставляем в (2.2) :
.

Ответ

Пример 3

Вычислить интеграл:
.

Решение

Здесь под знаком интеграла стоит дробь из многочленов. Поэтому подынтегральное выражение является рациональной функцией. Степень многочлена в числителе равна 3 . Степень многочлена знаменателя дроби равна 4 . Поскольку 3 < 4 , то дробь правильная. Поэтому ее можно раскладывать на простейшие дроби. Но для этого нужно разложить знаменатель на множители.

1. Разложим знаменатель дроби на множители. Для этого нужно решить уравнение четвертой степени:
.
Предположим, что оно имеет хотя бы один целый корень. Тогда он является делителем числа 2 (члена без x ). То есть целый корень может быть одним из чисел:
1, 2, -1, -2 .
Подставим x = -1 :
.

Итак, мы нашли один корень x = -1 . Делим на x - (-1) = x + 1 :


Итак,
.

Теперь нужно решить уравнение третьей степени:
.
Если предположить, что это уравнение имеет целый корень, то он является делителем числа 2 (члена без x ). То есть целый корень может быть одним из чисел:
1, 2, -1, -2 .
Подставим x = -1 :
.

Итак, мы нашли еще один корень x = -1 . Можно было бы, как и в предыдущем случае, разделить многочлен на , но мы сгруппируем члены:
.

Поскольку уравнение x 2 + 2 = 0 не имеет действительных корней, то мы получили разложение знаменателя на множители:
.

2. Разложим дробь на простейшие. Ищем разложение в виде:
.
Освобождаемся от знаменателя дроби, умножаем на (x + 1) 2 (x 2 + 2) :
(3.1) .
Подставим x = -1 . Тогда x + 1 = 0 ,
.

Продифференцируем (3.1) :

;

.
Подставим x = -1 и учтем, что x + 1 = 0 :
;
; .

Подставим в (3.1) x = 0 :
0 = 2 A + 2 B + D ;
.

Приравняем в (3.1) коэффициенты при x 3 :
;
1 = B + C ;
.

Итак, мы нашли разложение на простейшие дроби:
.

3. Интегрируем.


.

Похожие публикации