Что такое живая клетка. Анатомия человека. Строение клетки. Строение эукариотической клетки

Раковые клетки развиваются из здоровых частиц организма. Они не проникают в ткани и органы извне, а являются их частью.

Под действием неизученных до конца факторов злокачественные формирования перестают реагировать на сигналы и начинают вести себя по-другому. Изменяется и внешний вид клетки.

Злокачественная опухоль формируется из одной клетки, которая стала раковой. Происходит это из-за видоизменений, происходящих в генах. Большинство злокачественных частиц имеют 60 и более мутаций.

Перед окончательным преобразованием в раковую клетку, она проходит ряд трансформаций. В результате них часть патологических ячеек гибнет, но единицы выживают и становятся онкологическими.

При мутации нормальной клетки она переходит в стадию гиперплазии, затем атипичной гиперплазии, превращается в карциному. Со временем она становится инвазивной, то есть перемещается по организму.

Что такое здоровая частица

Принято считать, что клетки являются первой ступенью в организации всех живых организмов. Они отвечают за обеспечение всех жизненных функций, например роста, обмена веществ, передачи биологической информации. В литературе их принято называть соматическими, то есть теми, которые составляют все тело человека, кроме тех, которые принимают участие в половом размножении.

Частицы, из которых состоит человек, очень разнообразны. Однако они обладают рядом общих признаков. Все здоровые элементы проходят одни и те же стадии своего жизненного пути. Начинается все с рождения, затем происходит процесс созревания и функционирования. Заканчивается гибелью частицы в результате срабатывания генетического механизма.

Процесс самоуничтожения называется апоптозом, он происходит без нарушения жизнеспособности окружающих тканей и воспалительных реакций.

За свой жизненный цикл здоровые частицы делятся определенное количество раз, то есть они начинают воспроизводиться, только если есть необходимость. Происходит это после получения сигнала к делению. Лимит делений отсутствует у половых и стволовых ячеек, лимфоцитов.

Пять интересных фактов

Злокачественные частицы формируются из здоровых тканей. В процессе своего развития, они начинают существенно отличаться от обычных клеток.

Ученым удалось выявить основные особенности частиц онкоформирования:

  • Бесконечно делится – паталогическая клетка все время удваивается и увеличивается в размерах. Со временем это приводит к образованию опухоли, состоящей из огромного числа копий онкологической частицы.
  • Клетки отделяются друг от друга и существуют автономно – они теряют молекулярную связь между собой и перестают держаться вместе. Это приводит к перемещению злокачественных элементов по организму и их оседанию на различных органах.
  • Не может управлять своим жизненным циклом – за восстановление клетки отвечает белок р53. В большинстве раковых ячеек этот белок неисправен, поэтому управление жизненным циклом не налажено. Специалисты называют такой дефект бессмертием.
  • Отсутствие развития – злокачественные элементы утрачивают сигнал с организмом и занимаются бесконечным делением, не успевая созревать. Из-за этого в них образуются множественные генные ошибки, влияющие на их функциональные способности.
  • Каждая клетка имеет разные внешние параметры – патологические элементы формируются из различных здоровых частей организма, которые имеют свои особенности во внешности. Поэтому они отличаются размером и формой.

Встречаются злокачественные элементы, которые не образуют комок, а накапливаются в крови. Примером служат лейкозы. При делении раковые ячейки получают все больше ошибок . Это приводит к тому, что последующие элементы опухоли могут полностью отличаться от первоначальной паталогической частицы.

Многие специалисты считают, что онкологические частицы начинают перемещаться внутри организма сразу же после формирования новообразования. Для этого они используют кровеносные и лимфатические сосуды. Большая их часть гибнет в результате работы иммунной системы, но единицы выживают и оседают на здоровых тканях.

Вся подробная информация о раковых клетках в этой научной лекции:

Строение злокачественной частицы

Нарушения в генах приводят не только к изменениям в функционировании клеток, но и к дезорганизации их строения. Они меняются в размере, внутреннем строении, форме полного набора хромосом. Эти видимые нарушения позволяют специалистам отличить их от здоровых частиц. Изучение клеток под микроскопом позволяет диагностировать рак.

Ядро

В ядре расположены десятки тысяч ген. Они руководят функционированием клетки, диктуя ей ее поведение. Чаще всего ядра располагаются в центральной части, однако в некоторых случаях могут смещаться к одной из сторон мембраны.

У раковых клеток больше всего разнятся ядра, они становятся крупнее, приобретают губчатую структуру. Ядра имеют вдавленные сегменты, изрезанную мембрану, увеличенные и искаженные ядрышки.

Протеины

Задача протеинов в выполнении основных функций, которые необходимы для поддержания жизнеспособности клетки. Они транспортируют к ней питательные вещества, преобразуют их в энергию, передают информацию о переменах во внешнем окружении. Некоторые протеины являются ферментами, задача которых в преобразовании неиспользуемых веществ в необходимые продукты.

В раковой клетке протеины видоизменяются, они утрачивают способность выполнять свою работу правильно. Ошибки затрагивают ферменты и жизненный цикл частицы изменяется.

Митохондрия

Часть клетки, в которой такие продукты как протеины, сахар, липиды преобразуются в энергию, называется митохондрией. При подобном превращении используется кислород. В результате образуются такие ядовитые отходы как свободные радикалы. Считается, что именно они могут запускать процесс превращения клетки в раковую.

Плазматическая мембрана

Все элементы частицы окружены стенкой, созданной из липидов и протеинов. Задача мембраны в удержании всех их на своих местах. К тому же она преграждает путь тем веществам, которые не должны попадать в ячейку из организма.

Специальные протеины мембраны, которые являются ее рецепторами, выполняют важную функцию. Они передают в ячейку закодированные послания, по которым она реагирует на изменения в окружающей среде .

Неправильное прочтение генов приводит к изменениям в производстве рецепторов. Из-за этого частица не узнает об изменениях во внешней среде и начинает вести автономный образ существования. Подобное поведение приводит к раку.

Злокачественные частицы разных органов

Раковые клетки можно распознавать по особенностям их формы. Они не только ведут себя иначе, но и выглядят не так как нормальные.

Ученые из университета Кларксона провели исследования, в результате которых пришли к выводу, что здоровые и патологические частицы отличаются геометрическими очертаниями. Например, злокачественные клетки рака шейки матки имеют более высокую степень фрактальности.

Фрактальными называются геометрические фигуры, которые состоят из похожих частей. Каждая из них по виду является копией всей фигуры.

Изображение раковых клеток ученые смогли получить с помощью атомно-силового микроскопа. Прибор позволил получить трехмерную карту поверхности изучаемой частицы.

Ученые продолжают изучать изменения фрактальности во время процесса преобразования нормальных частиц в онкологические.

Рак легких

Патология легких бывает немелкоклеточной и мелкоклеточной. В первом случае частицы опухоли делятся медленно, на поздних стадиях они отщипываются от материнского очага и перемещаются по организму за счет тока лимфы.

Во втором случае частицы новообразования отличаются мелкими размерами и склонностью к быстрому делению. За месяц число раковых частиц увеличивается вдвое. Элементы опухоли способны распространяться как в органы, так и в костные ткани.

Клетка имеет неправильную форму с округлыми участками. На поверхности видны множественные наросты разной структуры. Цвет ячейки по краям бежевый, а к середине становится красным.

Рак груди

Онкоформирование в груди может состоять из частиц, которые преобразовались из таких компонентов, как соединительная и железистая ткань, протоки. Сами элементы опухоли могут быть крупными и мелкими. При высокодифференцированной патологии груди, частицы отличаются ядрами одной величины.

Ячейка имеет округлую форму, ее поверхность рыхлая, неоднородная. От нее во все стороны выступают длинные прямые отростки. По краям цвет раковой клетки более светлый и яркий, а внутри темнее и насыщеннее.

Рак кожи

Онкология кожи чаще всего связана с преобразованием в злокачественную форму меланоцитов. Клетки расположены в кожном покрове в любой части тела. Специалисты часто связывают эти патологические изменения с продолжительным пребыванием на открытом солнце либо в солярии. Ультрафиолетовое излучение способствует мутации здоровых элементов кожи.

Раковые клетки долгое время развиваются на поверхности кожных покровов. В некоторых случаях патологические частицы ведут себя более агрессивно, быстро прорастая глубоко в кожу.

Онкологическая ячейка имеет округлую форму, по всей поверхности которой видны множественные ворсинки. Их цвет светлее, чем у мембраны.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Клетка является основной элементарной единицей всего живого, поэтому ей присущи все свойства живых организмов: высокоупорядоченное строение, получение энергии извне и ее использование для выполнения работы и поддержания упорядоченности, обмен веществ, активная реакция на раздражения, рост, развитие, размножение, удвоение и передача биологической информации потомкам, регенерация (восстановление поврежденных структур), адаптация к окружающей среде.

Немецкий ученый Т. Шванн в середине XIX века создал клеточную теорию, основные положения которой свидетельствовали о том, что все ткани и органы состоят из клеток; клетки растений и животных принципиально сходны между собой, все они возникают одинаково; деятельность организмов - сумма жизнедеятельности отдельных клеток. Большое влияние на дальнейшее развитие клеточной теории и вообще на учение о клетке оказал великий немецкий ученый Р. Вирхов. Он не только свел воедино все многочисленные разрозненные факты, но и убедительно показал, что клетки являются постоянной структурой и возникают только путем размножения.

Клеточная теория в современной интерпретации включает в себя следующие главные положения: клетка является универсальной элементарной единицей живого; клетки всех организмов принципиально сходны по своему строению, функции и химическому составу; клетки размножаются только путем деления исходной клетки; многоклеточные организмы являются сложными клеточными ансамблями, образующими целостные системы.

Благодаря современным методам исследования были выявлены два основных типа клеток : более сложно организованные, высокодифференцированные эукариотические клетки (растения, животные и некоторые простейшие, водоросли, грибы и лишайники) и менее сложно организованные прокариотические клетки (сине-зеленые водоросли, актиномицеты, бактерии, спирохеты, микоплазмы, риккетсии, хламидии).

В отличие от прокариотической эукариотическая клетка имеет ядро, ограниченное двойной ядерной мембраной, и большое количество мембранных органелл.

ВНИМАНИЕ!

Клетка является основной структурной и функциональной единицей живых организмов, осуществляющей рост, развитие, обмен веществ и энергии, хранящей, перерабатывающей и реализующей генетическую информацию. С точки зрения морфологии клетка представляет собой сложную систему биополимеров, отделенную от внешней среды плазматической мембраной (плазмолеммой) и состоящую из ядра и цитоплазмы, в которой располагаются органеллы и включения (гранулы).

Какие бывают клетки?

Клетки разнообразны по своей форме, строению, химическому составу и характеру обмена веществ.

Все клетки гомологичны, т.е. имеют ряд общих структурных признаков, от которых зависит выполнение основных функций. Клеткам присуще единство строения, метаболизма (обмена веществ) и химического состава.

Вместе с тем различные клетки имеют и специфические структуры. Это связано с выполнением ими специальных функций.

Строение клетки

Ультрамикроскопическое строение клетки:


1 - цитолемма (плазматическая мембрана); 2 - пиноцитозные пузырьки; 3 - центросома клеточный центр (цитоцентр); 4 - гиалоплазма; 5 - эндоплазматическая сеть: а - мембрана зернистой сети; б - рибосомы; 6 - связь перинуклеарного пространства с полостями эндоплазматической сети; 7 - ядро; 8 - ядерные поры; 9 - незернистая (гладкая) эндоплазматическая сеть; 10 - ядрышко; 11 - внутренний сетчатый аппарат (комплекс Гольджи); 12 - секреторные вакуоли; 13 - митохондрия; 14 - липосомы; 15 - три последовательные стадии фагоцитоза; 16 - связь клеточной оболочки (цитолеммы) с мембранами эндоплазматической сети.

Химический состав клетки

В состав клетки входит более 100 химических элементов, на долю четырех из них приходится около 98% массы, это органогены: кислород (65–75%), углерод (15–18%), водород (8–10%) и азот (1,5–3,0%). Остальные элементы подразделяются на три группы: макроэлементы - их содержание в организме превышает 0,01%); микроэлементы (0,00001–0,01%) и ультрамикроэлементы (менее 0,00001).

К макроэлементам относятся сера, фосфор, хлор, калий, натрий, магний, кальций.

К микроэлемен-там - железо, цинк, медь, йод, фтор, алюминий, медь, марганец, кобальт и др.

К ультрамикроэлементам - селен, ванадий, кремний, никель, литий, серебро и до. Несмотря на очень малое содержание, микроэлементы и ультрамикроэлементы играют очень важную роль. Они влияют, главным образом, на обмен веществ. Без них невозможна нормальная жизнедеятельность каждой клетки и организма как целого.

Клетка состоит из неорганических и органических веществ. Среди неорганических наибольшее количество воды. Относительное количество воды в клетке составляет от 70 до 80%. Вода - универсальный растворитель, в ней происходит все биохимические реакции в клетке. При участии воды осуществляется теплорегуляция. Вещества, растворяющиеся в воде (соли, основания, кислоты, белки, углеводы, спирты и др.), называются гидрофильными. Гидрофобные вещества (жиры и жироподобные) не растворяются в воде. Другие неорганические вещества (соли, кислоты, основания, положительные и отрицательные ионы) составляют от 1,0 до 1,5%.

Среди органических веществ преобладают белки (10–20%), жиры, или липиды (1–5%), углеводы (0,2–2,0%), нуклеиновые кислоты (1–2%). Содержание низкомолекулярных веществ не превышает 0,5%.

Молекула белка является полимером, который состоит из большого количества повторяющихся единиц мономеров. Мономеры белка аминокислоты (их 20) соединены между собой пептидными связями, образуя полипептидную цепь (первичную структуру белка). Она закручивается в спираль, образуя, в свою очередь, вторичную структуру белка. Благодаря определенной пространственной ориентации полипептидной цепи возникает третичная структура белка, которая определяет специфичность и биологическую активность молекулы белка. Несколько третичных структур, объединяясь между собой, образуют четвертичную структуру.

Белки выполняют важнейшие функции. Ферменты - биологические катализаторы, увеличивающие скорость химических реакций в клетке в сотни тысяч миллионы раз, являются белками. Белки, входя в состав всех клеточных структур, выполняют пластическую (строительную) функцию. Движения клеток также осуществляют белки. Они обеспечивают транспорт веществ в клетку, из клетки и внутри клетки. Важной является защитная функция белков (антитела). Белки являются одним из источников энергии.Углеводы подразделяются на моносахариды и полисахариды. Последние построены из моносахаридов, являющихся, подобно аминокислотам, мономерами. Среди моносахаридов в клетке наиболее важны глюкоза, фруктоза (содержит шесть атомов углерода) и пентоза (пять атомов углерода). Пентозы входят в состав нуклеиновых кислот. Моносахариды хорошо растворяются в воде. Полисахариды плохо растворяются в воде (в животных клетках гликоген, в растительных - крахмал и целлюлоза. Углеводы являются источником энергии, сложные углеводы, соединенные с белками (гликопротеиды), жирами (гликолипиды), участвуют в образовании клеточных поверхностей и взаимодействиях клеток.

К липидам относятся жиры и жироподобные вещества. Молекулы жиров построены из глицерина и жирных кислот. К жироподобным веществам относятся холестерин, некоторые гормоны, лецитин. Липиды, являющиеся основным компонентом клеточных мембран, выполняют тем самым строительную функцию. Липиды - важнейшие источники энергии. Так, если при полном окислении 1 г белка или углеводов освобождается 17,6 кДж энергии, то при полном окислении 1 г жира - 38,9 кДж. Липиды осуществляют терморегуляцию, защищают органы (жировые капсулы).

ДНК и РНК

Нуклеиновые кислоты являются полимерными молекулами, образованными мономерами нуклеотидами. Нуклеотид состоит из пуринового или пиримидинового основания, сахара (пентозы) и остатка фосфорной кислоты. Во всех клетках существует два типа нуклеиновых кислот: дезоксирибонулеиновая (ДНК) и рибонуклеиновая (РНК), которые отличаются по составу оснований и сахаров.

Пространственная структура нуклеиновых кислот:


(по Б. Албертсу и соавт., с изм.).I - РНК; II - ДНК; ленты - сахарофосфатные остовы; A, C, G, T, U - азотистые основания, решетки между ними - водородные связи.

Молекула ДНК

Молекула ДНК состоит из двух полинуклеотидных цепей, закрученных одна вокруг другой в виде двойной спирали. Азотистые основания обеих цепей соединены между собой комплементарно водородными связями. Аденин соединяется только с тимином, а цитозин - с гуанином (А - Т, Г - Ц). В ДНК записана генетическая информация, которая определяет специфичность синтезируемых клеткой белков, т. е. последовательность аминокислот в полипептидной цепи. ДНК передает по наследству все свойства клетки. ДНК содержится в ядре и митохондриях.

Молекула РНК

Молекула РНК образована одной полинуклеотидной цепью. В клетках существует три типа РНК. Информационная, или мессенджер РНК тРНК (от англ. messenger - «посредник»), которая переносит информацию о нуклеотидной последовательности ДНК в рибосомы (см. ниже). Транспортная РНК (тРНК), которая переносит аминокислоты в рибосомы. Рибосомальная РНК (рРНК), которая участвует в образовании рибосом. РНК содержится в ядре, рибосомах, цитоплазме, митохондриях, хлоропластах.

Состав нуклеиновых кислот:

Самое ценное, что есть у человека - это его собственная жизнь и жизнь его близких. Самое ценное, что есть на Земле - это жизнь в целом. А в основе жизни, в основе всех живых организмов лежат клетки. Можно сказать, что жизнь на Земле имеет клеточное строение. Вот почему так важно узнать, как устроены клетки. Строение клеток изучает цитология - наука о клетках. Но представление о клетках необходимо для всех биологических дисциплин.

Что же такое клетка?

Определение понятия

Клетка - это структурная, функциональная и генетическая единица всего живого, содержащая наследственную информацию, состоящая из мембранной оболочки, цитоплазмы и органоидов, способная к поддержанию , обмену, размножению и развитию. © Сазонов В.Ф., 2015. © kineziolog.bodhy.ru, 2015..

Данное определение клетки является хотя и кратким, но достаточно полным. Оно отражает 3 стороны универсальности клетки: 1) структурную, т.е. как единицу строения, 2) функциональную, т.е. как единицу деятельности, 3) генетическую, т.е. как единицу наследствености и смены поколений. Важной характеристикой клетки является наличие в ней наследственной информации в виде нуклеиновой кислоты - ДНК. Также определение отражает важнейшую черту строения клетки: наличие наружной мембраны (плазмолеммы), разграничивающую клетку и окружающую её среду. И, наконец, 4 важнейших признака жизни: 1) поддержание гомеостаза, т.е. постоянства внутренней среды в условиях её постоянного обновления, 2) обмен с внешней средой веществом, энергией и информацией, 3) способность к размножению, т.е. к самовоспроизведению, репродукции, 4) способность к развитию, т.е. к росту, дифференцировке и формообразованию.

Более краткое, но неполное определение: Клетка - это элементарная (наименьшая и простейшая) единица жизни.

Более полное определение клетки:

Клетка - это ограниченная активной мембраной упорядоченная, структурированная система биополимеров, образующих цитоплазму, ядро и органоиды. Эта биополимерная система участвует в единой совокупности метаболических, энергетических и информационных процессов, осуществляющих поддержание и воспроизведение всей системы в целом.

Ткань - это совокупность клеток, сходных по строению, функциям и происхождению, совместно выполняющих общие функции. У человека в составе четырех основных групп тканей (эпителиальной, соединительной, мышечной и нервной) имеется около 200 различных видов специализированных клеток [Фалер Д.М., Шилдс Д. Молекулярная биология клетки: Руководство для врачей. / Пер. с англ. - М.: БИНОМ–Пресс, 2004. - 272 с.].

Ткани, в свою очередь, образуют органы, а органы - системы органов.

Живой организм начинается от клетки. Вне клетки жизни нет, вне клетки возможно только временное существование молекул жизни, например, в виде вирусов. Но для активного существования и размножения даже вирусам нужны клетки, пусть даже и чужие.

Строение клетки

На рисунке, представленном ниже, даны схемы строения 6 биологических объектов. Проанилизируйте, какие из них можно считать клетками, а какие нельзя, согласно двум вариантам определения понятия "клетка". Оформите свой ответ в виде таблички:

Строение клетки под электронным микроскопом


Мембрана

Важнейшей универсальное структурой клетки является клеточная мембрана (синоним: плазмолемма) , покрывающая клетку в виде тонкой плёнки. Мембрана регулирует отношения между клеткой и окружающей её средой, а именно: 1) она частично отделяет содержимое клетки от внешней среды, 2) связывает содержимое клетки с внешней средой.

Ядро

Второй по значению и универсальности клеточной структурой является ядро. Оно есть не во всех клетках, в отличие от клеточной мембраы, поэтому мы и ставим его на второе место. В ядре находятся хромосомы, содержащие двойные нити ДНК (дезоксирибонуклеиновой кислоты). Участки ДНК являются матрицами для построения информационных РНК, которые в свою очередь служат матрицами для построения в цитоплазме всех белков клетки. Таким образом, в ядре содержатся как бы "чертежи" строения всех белков клетки.

Цитоплазма

Это полужидкая внутренняя среда клетки, разделённая внутриклеточными мембранами на отсеки. Она обычно имеет цитоскелет для поддержания определённой формы и находится в постоянном движении. В цитоплазме находятся органоиды и включения.

На третье место можно поставить все остальные клеточные структуры, которые могут иметь собственную мембрану и называются органоидами.

Органоиды – это постоянные, обязательно присутствующие структуры клетки, выполняющие специфические функции и имеющие определенное строение. По строению органоиды можно разделить на две группы: мембранные, в состав которых обязательно входят мембраны, и немембранные. В свою очередь, мембранные органоиды могут быть одномембранными – если образованы одной мембраной и двумембранными – если оболочка органоидов двойная и состоит из двух мембран.

Включения

Включения - это непостоянные структуры клетки, которые появляются в ней и исчезают в процессе метаболизма. Различают 4 вида включений: трофические (с запасом питательных веществ), секреторные (содержащие секрет), экскреторные (содержащие вещества "на выброс") и пигментные (содержащие пигменты - красящие вещества).

Клеточные структуры, включая органоиды ( )

Включения . Они не относятся к органоидам. Включения - это непостоянные структуры клетки, которые появляются в ней и исчезают в процессе метаболизма. Различают 4 вида включений: трофические (с запасом питательных веществ), секреторные (содержащие секрет), экскреторные (содержащие вещества "на выброс") и пигментные (содержащие пигменты - красящие вещества).

  1. (плазмолемма).
  2. Ядро с ядрышком .
  3. Эндоплазматическая сеть : шероховатая (гранулярная) и гладкая (агранулярная).
  4. Комплекс (аппарат) Гольджи .
  5. Митохондрии .
  6. Рибосомы .
  7. Лизосомы . Лизосомы (от гр. lysis - «разложение, растворение, распад» и soma - «тело») - это пузырьки диаметром 200-400 мкм.
  8. Пероксисомы . Пероксисомы - это микротельца (пузырьки-везикулы) 0,1-1,5 мкм в диаметре, окружённые мембраной.
  9. Протеасомы . Протеасомы – специальные органоиды для разрушения белков.
  10. Фагосомы .
  11. Микрофиламенты . Каждый микрофиламент - это двойная спираль из глобулярных молекул белка актина. Поэтому содержание актина даже в немышечных клетках достигает 10% от всех белков.
  12. Промежуточные филаменты . Являются компонентом цитоскелета. Они толще микрофиламентов и имеют тканеспецифическую природу:
  13. Микротрубочки . Микротрубочки образуют в клетке густую сеть. Стенка микротрубочки состоит из одного слоя глобулярных субъединиц белка тубулина. На поперечном срезе видно 13 таких субъединиц, образующих кольцо.
  14. Клеточный центр .
  15. Пластиды .
  16. Вакуоли . Вакуоли – одномембранные органоиды. Они представляют собой мембранные «ёмкости», пузыри, заполненные водными растворами органических и неорганических веществ.
  17. Реснички и жгутики (специальные органоиды) . Состоят из 2-х частей: базального тельца, расположенного в цитоплазме и аксонемы - выроста над поверхностью клетки, который снаружи покрыт мембраной. Обеспечвают движение клетки или движение среды над клеткой.

Клетка (cellula) представляет живую систему, состоящую из двух частей - цитоплазмы и ядра, являющихся основой строения, развития и жизнедеятельности всех животных и растительных организмов (рис. 5, 6). Клетки, объединенные с внеклеточными структурами, формируют ткани. Контроль и взаимоотношение клеток, находящихся в составе тканей, устанавливают нервная система и гормоны. Адгезия (слипание) клеток обеспечивает структурное и функциональное единство тканей. Развитие клеточной структуры в филогенезе имело большое значение в эволюции органической жизни. Благодаря клеточной структуре возможны размножение, рост и передача наследственных свойств новым организмам, восстановление органов и тканей (регенерация). Клетки каждой ткани имеют различную форму: пластинок, кубиков, цилиндров, шариков, веретен или вообще переходят без четких границ друг в друга (синцитий). Эти формы чаще изображены из клеток, уплотненных (фиксированных) химическими веществами. В действительности живые клетки имеют неровные контуры с многочисленными выпячиваниями и отростками, которые представляют весьма динамичные образования.

5. Схема субмикроскопического строения фиксированной клетки. 1 - оболочка клетки; 2 - гиалоплазма; 3 - внутриклеточные нити; 4 - липоидные гранулы; 5 - эргастоплазма и в ней: 6 - альфа-цитомембраны; 7- рибосомы; 8 - ядра; 9 - поры в ядерной оболочке; 10 - ядерная оболочка; 11 - ядрышко; 12 - внутриклеточный сетчатый аппарат; 13 - митохондрий; 14-центриоли.

6. Схема строения фиксированной клетки при световой микроскопии. 1 - оболочка клетки; 2 - цитоплазма; 3 - внутриклеточный сетчатый аппарат; 4 - клеточный центр; 5 - митохондрии; 6 - белковые гранулы; 7 - ядро с оболочкой; 8 - глыбки хроматина; 9 - ядрышко;10 - вакуоли; 11 - липоидные гранулы.

Клетка состоит из ядра и цитоплазмы. Ядро (nucleus) имеет шарообразную овоидную форму и содержит хромосомы, которые хорошо выражены в фазе деления клеток и не видны в интерфазных ядрах. В состав ядра входят: а) хроматин, имеющий форму глыбок или нитей. Ядерная дезоксирибонуклеиновая кислота (ДНК) локализуется в хроматине и связана только с хромосомами, которые в период митотического деления спирально скручены в хромонемы. В интерфазный период хромосомы расправляются и тончайшие их нити видны только при электронной микроскопии; б) кариолимфа (ядерный сок) - среда, где локализуются разбухшие деспирализованные хромосомы, ядрышки и глобулины; в) ядрышки, синтезирующие рибонуклеиновую кислоту (РНК), которая через поры ядерной оболочки проникает в цитоплазму. Они состоят из гранул рибонуклеопротеида и РНК. Ядрышки исчезают в период деления ядра. В клетках, активно синтезирующих белок, имеются крупные ядрышки с большим содержанием РНК; г) ядерная оболочка, состоящая из двух мембран, пронизанных сквозными отверстиями, через которые кариолимфа сообщается с цитоплазмой.

Большей частью в клетках имеется одно ядро, кроме зрелых эритроцитов, где ядро отсутствует; встречаются клетки с двумя, тремя и сотнями ядер. Функция ядра более активна в период между делениями клетки. Химическая структура ядра состоит из ДНК, РНК, солей Mg, Na, К, Са, предшественников нуклеиновых кислот-нуклеотидов и ядерных белков: а) гистоны, связанные с ДНК; б) глобулины, соединенные с ядерными ферментами нуклеинового обмена и анаэробного гликолиза; в) негистоновые белки, связанные с РНК; г) труднорастворимые белки.

Цитоплазма представляет основу, где располагаются различные органоиды и включения, находящиеся в основном веществе клетки, представляющем бесструктурную глобулярную гиалоплазму.

Органоиды . Микротрубочки представляют трехслойные образования, выполняющие функцию опорных элементов для других органоидов и включений клетки. Рибосомы являются частицами белка, РНК, солей Mg и полиаминов в виде гранул, свободных и прикрепленных к мембране эргастоплазматической сети. Рибосомы синтезируют белки. Эргастоплазматическая (эндоплазматическая) сеть состоит из вакуолизированных элементов разнообразной формы. К наружной мембране этой сети прикреплены гранулы рибосом. Сеть необычайно динамична, легко перестраивается при внешних воздействиях в сферические, мешковидные, пластинчатые образования. Эргастоплазматическая сеть участвует в синтезе протеинов и в проведении возбуждения внутри клетки. Комплекс Гольджи имеет сетевидное строение, располагаясь около ядра и окружая клеточный центр. Представляет собой уплощенные мешочки или цистерны, содержащие продукты секреции эргастоплазматического комплекса. Лизосомы - сферические частицы, содержащие около 12 гидролитических ферментов. Митохондрии имеют форму нитевидных образований, состоящих из двухслойных мембран. В центре митохондрии расположены кристы (гребни), являющиеся производными внутреннего слоя. Митохондрии участвуют в окислении веществ. Клеточный центр располагается около ядра и имеет форму цилиндрических трубочек, названных центриолями. В период митотического деления клеток центриоли ориентируют хромосомы по полюсам клетки. Специализированными структурами цитоплазмы являются микроворсинки, реснички, жгутики, миофибриллы, нейрофибриллы, тонофибриллы.

Включения . В процессе обмена веществ в клетке откладываются различные вещества типа белковых, липидных, углеводных, пигментных гранул.

Клетка - это структурно-функциональная единица живого организма, способная к делению и обмену с окружающей средой. Она осуществляет передачу генетической информации путем самовоспро-изведения.

Клетки очень разнообразны по строению, функции, форме, размерам (рис. 1). Последние колеблются от 5 до 200 мкм. Самыми крупными в организме человека являются яйцеклетка и нервная клетка, а самыми маленькими - лимфоциты крови. По форме клетки бывают шаровидные, веретеновидные, плоские, кубические, призматические и др. Некоторые клетки вместе с отростками достигают длины до 1,5 м и более (например, нейроны).

1 - нервная; 2 - эпителиальная; 3 - соединителытотканная; 4 - гладкая мышечная; 5- эритроцит; 6- сперматозоид; 7-яйцеклетка

Каждая клетка имеет сложное строение и представляет собой систему биополимеров, содержит ядро, цитоплазму и находящиеся в ней органеллы (рис. 2). От внешней среды клетка отграничивается клеточной оболочкой - плазма-леммой (толщина 9-10 мм), которая осуществляет транспорт необходимых веществ в клетку, и наоборот, взаимодействует с соседними клетками и межклеточным веществом. Внутри клетки находится ядро, в котором происходит синтез белка, оно хранит генетическую информацию в виде ДНК (дезоксирибонуклеиновая кислота). Ядро может иметь округлую или овоидную форму, но в плоских клетках оно несколько сплющенное, а в лейкоцитах палочковидное или бобовидное. В эритроцитах и тромбоцитах оно отсутствует. Сверху ядро покрыто ядерной оболочкой, которая представлена внешней и внутренней мембраной. В ядре находится нуклеошазма, которая представляет собой гелеобразное вещество и содержит хроматин и ядрыш-ко.

(по М. Р. Сапину, Г. Л. Билич, 1989):

1 - цитолемма (плазматическая мембрана); 2 - пиноцитозные пузырьки; 3 - центросома (клеточный центр, цитоцентр); 4 - гиалоплазма; 5 - эн-доплазматическая сеть (о - мембраны эндоплазматической сети, б - ри-босомы); 6- ядро; 7- связь перинуклеарного пространства с полостями эндоплазматической сети; 8 - ядерные поры; 9 - ядрышко; 10 - внутриклеточный сетчатый аппарат (комплекс Гольджи); 77-^ секреторные вакуоли; 12- митохондрии; 7J - лизосомы; 74-три последовательные стадии фагоцитоза; 75 - связь клеточной оболочки (цитолеммы) с мембранами эндоплазматической сети

Ядро окружает цитоплазма, в состав которой входят ги-алоплазма, органеллы и включения.

Гиалоплазма - это основное вещество цитоплазмы, она участвует в обменных процессах клетки, содержит белки, полисахариды, нуклеиновую кислоту и др.

Постоянные части клетки, которые имеют определенную структуру и вы-полняют биохимические функции, называются органеллами. К ним относятся клеточный центр, митохондрии, комплекс Гольджи, эндоплазматическая (ци-топлазматическая) сеть.

Клеточный центр обычно находится около ядра или комплекса Гольджи, состоит из двух плотных образований - центриолей, которые входят в состав веретена движущейся клетки и образуют реснички и жгутики.

Митохондрии имеют форму зерен, нитей, палочек, формируются из двух мембран - внутренней и внешней. Длина митохондрии колеблется от 1 до 15 мкм, диаметр - от 0,2 до 1,0 мкм. Внутренняя мембрана образует складки (кри-сты), в которых располагаются ферменты. В митохондриях происходят расщепление глюкозы, аминокислот, окислении жирных кислот, образование АТФ (аденозинтрифосфорнай кислота) - основного энергетического материала.

Комплекс Гольджи (внутриклеточный сетчатый аппарат) имеет вид пузырьков, пластинок, трубочек, расположенных вокруг ядра. Его функция состоит в транспорте веществ, химической их обработке и выведении за пределы клетки продуктов ее жизнедеятельности.

Эндоплазматическая (цитоплазматическая) сеть формируется из агранулярной (гладкой) и гранулярной (зернистой) сети. Агранулярная Эндоплазматическая сеть образуется преимущественно мелкими цистернами и трубочками диаметром 50-100 нм, которые участвуют в обмене липи-дов и полисахаридов. Гранулярная Эндоплазматическая сеть состоит из пластинок, трубочек, цистерн, к стенкам которых прилегают мелкие образования - рибосомы, синтезирующие белки.

Цитоплазма также имеет постоянные скопления отдельных веществ, которые называются включениями цитоплазмы и имеют белковую, жировую и пигментную природу.

Клетка как часть многоклеточного организма выполняет основные функции: усвоение поступающих веществ и расщепление их с образованием энергии, необходимой для поддержания жизнедеятельности организма. Клетки обладают также раздражимостью (двигательные реакции) и способны размножаться делением. Деление клеток бывает непрямое (митоз) и редукционное (мейоз).

Митоз - самая распространенная форма клеточного деления. Он состоит из нескольких этапов - профазы, метафазы, анафазы и телофазы. Простое (или прямое) деление клеток - амитоз - встречается редко, в тех случаях, когда клетка делится на равные или неравные части. Мейоз - форма ядерного деления, при котором количество хромосом в оплодотворенной клетке уменьшается вдвое и наблюдается перестройка генного аппарата клетки. Период от одного деления клетки к другому называется ее жизненным циклом.

Похожие публикации