Фиш-анализ при раке молочной железы. FISH – исследование для дифференциальной диагностики Что такое FISH

Для лечения онкологических патологий ученные пока не разработали совершенных методов терапии, способствующих выздоровлению. Фиш-анализ при раке молочной железы дает надежду на ранее диагностирование заболевания. Метод позволит женщинам начать лечение на самых ранних этапах, что и повысит шансы на исцеление.

Что это такое?

Фиш-исследование при раке молочной железы является одним из прогрессивных и актуальных средств раннего диагностирования. В переводе с английского обозначает тест на внутриклеточную флуоресцентную гибридизацию. При помощи этого ген-теста онкологи анализируют происхождение опухолей. Также анализ указывает на положительное или отрицательное влияние гена, принимающего участие в патогенезе и прогрессировании рака агрессивного типа - HER2.

Постоянное развитие научных изысканий влияет на удешевление FISH-теста и делает его доступным все большему количеству женщин.

Увеличение лимфатических узлов в подмышках может сигнализировать про развитие заболевания.
  • увеличение лимфатических узлов в подмышках;
  • уплотнения в зоне груди;
  • боль при нажатии на сосок;
  • ассиметричность молочных желез;
  • дискомфорт и боль в одной из грудей;
  • выделения из сосков;
  • морщинистая кожа на молочной железе;
  • втянутый сосок.

Подготовка и сдача анализа

Никакой особой подготовки для прохождения на фиш-тест не требуется. Нельзя только употреблять спиртные напитки, как и перед сдачей любых анализов и употреблять жирную, мясную и тяжелую пищу. Еда должна быть легкой, лучше, если это будут овощные блюда и соки. Fish-тест при раке молочной железы - безвредная и безопасная процедура, которая проходит в два этапа:

  • Гистологический. Под местным воздействием наркоза проводится биопсия биоматериала из груди. Полученный материал обрабатывается специальным красящим веществом с флуоресцентными маркерами. По своим химическим качествам эти маркеры связываются исключительно с обозначенными хромосомами и их наборами в клетках. В результате исследований видны наиболее окрашенные маркером хромосомные наборы, что и указывает на степень изменений в геноме по онкологической принадлежности.
  • Фиш-анализ. В вену проводят инфузию компонента ДНК - дезоксирибонуклеиновую кислоту, окрашенную специфическими маркерами. Метки-маркеры встраиваются в геномы на клеточном уровне. Исследование проводится в присутствии пациентки, а итоги анализа предоставляются сразу.

Что показывают результаты?


Гистология молочной железы дает возможность установить разновидность опухоли и причины ее появления.

Fish-анализ при раке молочной железы показывает такие итоги:

  • Гистологическое исследование. Результаты выставляются по насыщенности маркеров на участках хромосомных наборов. Число 1 и менее означает, что опасности нет. Цифра обозначает пограничное состояние, требующее дополнительных анализов. Числом 3 обозначают развитие онкологического процесса.
  • Фиш-реакция при раке молочной железы. Отрицательный результат реакции означает, что молекулы дезоксирибонуклеиновой кислоты не принимают участия в патогенезе атипичных клеток. При развитии злокачественного образования ген HER2 не влияет на раковую клетку. При положительной реакции в два раза повышается скорость деления генов, участвующих в патогенезе онкологических молекул.

Техника FISH — Fluorescent in situ hybridization, разработана в середине 1980-х годов и используется для детекции присутствия или отсутствия специфических ДНК-последовательностей на хромосомах, а также альфа-сателлита ДНК, локализованного на центромере хромосомы 6, CEP6(6р11.1-q11.1).

Это дало существенный сдвиг в диагностике онкологических заболеваний меланоцитарного генеза произошел в связи с обнаружением опухолевых антигенов. На фоне злокачественной определяется мутация в трех антигенах: CDK2NA (9p21), CDK4 (12q14) и CMM1(1p). В связи с этим возможность объективной дифференциальной диагностики, основанной на определении генетических характеристик меланоцитарных опухолей кожи, имеет большое значение в ранней диагностике меланомы и ее предшественников.В ядре с нормальным набором исследуемых генов и хромосомы 6 наблюдается два гена RREB1, окрашенных красным, два гена MYB, окрашенных желтым, два гена CCND1, выделенных зеленым цветом, и две центромеры хромосомы 6, обозначенные голубым цветом. С диагностической целью используются флуоресцентные пробы.

Оценка результатов реакции: проводится подсчет количества красного, желтого, зеленого и голубого сигналов в 30 ядрах каждого образца, выявляются четыре параметра различных вариантов генетических нарушений, при которых образец генетически соответствует меланоме. Например, образец соответствует меланоме, если среднее количество гена CCND1 на ядро ≥2,5. По этому же принципу производится оценка копийности других генов. Препарат считается FISH-положительным, если выполняется хотя бы одно из четырех условий. Образцы, в которых все четыре параметра ниже пограничных значений, расцениваются как FISH-отрицательные.

Определение специфических ДНК-последовательностей на хромосомах проводят на срезах биоптатов или операционного материала. В практическом исполнении FISH-реакция выглядит следующим образом: исследуемый материал, содержащий ДНК в ядрах меланоцитов, подвергается обработке для частичного разрушения ее молекулы с целью разрыва двухцепочной структуры и тем самым облегчения доступа к искомому участку гена. Пробы классифицируются по месту присоединения к молекуле ДНК. Материалом для FISH-реакции в клинической практике служат парафиновые срезы тканей, мазки и отпечатки.

FISH-реакция позволяет находить изменения, произошедшие в молекуле ДНК в результате увеличения числа копий гена, потери гена, изменения числа хромосом и качественных изменений — перемещения локусов генов как в одной и той же хромосоме, так и между двумя хромосомами.

Для обработки полученных данных при применении FISH-реакции и изучения зависимости между копийностью генов трех исследумых групп используется коэффициент корреляции Спирмена.

Для меланомы характерно увеличение копийности по сравнению с невусом и диспластическим невусом.

Простой невус по сравнению с диспластическим невусом имеет меньше нарушений в копийности (т.е. больше нормальных копийностей).

Для построения решающих правил, позволяющих предсказать, относится ли образец к тому или иному классу (дифференциальная диагностика простых и диспластических невусов), используется математический аппарат «деревьев решений» (decision trees). Данный подход хорошо зарекомендовал себя на практике, а результаты применения указанного метода (в отличие от многих других методов, например нейронных сетей) могут быть наглядно интерпретированы для построения решающих правил для дифференциации простого, диспластического невусов и меланомы. Исходными данными во всех случаях являлись копийности четырех генов.

Задачу по построению решающего правила для дифференциальной диагностики разбивают на несколько этапов. На первом этапе дифференцируют меланому и невус, не учитывая тип невуса. На следующем этапе строят решающее правило для разделения простого и диспластического невусов. Наконец на последнем этапе возможно построение «дерева решений» для определения степени дисплазии диспластического невуса.

Подобное разделение задачи классификации невусов на подзадачи позволяет достичь высокой точности предсказаний на каждом из этапов. Входными данными для построения «дерева решений» служат данные о копийности четырех генов для пациентов с диагнозом «меланома» и пациентов с диагнозом «не меланома» (пациенты с различными типами невуса — простым и диспластическим). Для каждого пациента имеются данные о копийности генов для 30 клеток.

Таким образом, разделение задачи предсказания диагноза на несколько этапов позволяет строить высокоточные решающие правила не только для дифференцирования между меланомой и невусами, но и для определения типа невусов и предсказания степени дисплазии для диспластического невуса. Построенные «деревья решений» являются наглядным способом предсказания диагноза по сведениям о копийностях генов и легко могут быть использованы в клинической практике при дифференциации доброкачественных, предзлокачественных и злокачественных меланоцитарных новообразований кожи. Предлагаемый дополнительный метод дифференциальной диагностики особенно важен при иссечении гигантских врожденных пигментных невусов и диспластических невусов у пациентов детского возраста, поскольку при обращении таких пациентов в медицинские учреждения отмечается высокий процент диагностических ошибок. Результаты использования описанного метода высокоэффективны, целесообразно его использовать при диагностике пигментных опухолей кожи, особенно у пациентов с FAMM-cиндромом.

Краткий ответ : Метод флюоресцентной гибридизации in situ (FISH - fluorescence in situ hybridization) включа­ет применение уникальных нуклеотидных после­довательностей ДНК в качестве зонда для поиска нужных последовательностей ДНК в материале, полученном от пациента. Метод основан на комплементарном связывании ДНК-зонда с ДНК метафазных хромосом или интерфазных клеток. ДНК-зонд и исследуемую ДНК денатурируют, образуется одноцепочная ДНК. ДНК-зонд до­бавляют к препарату хромосом, инкубируют определенное время. Присутствие или отсутствие меченного флюо­рохромом зонда в составе ДНК после гибридизации определяется при исследовании хромосом с помо­щью флюоресцентной микроскопии.

Развёрнутый ответ : Метод флуоресцентной гибридизации in situ позволяет выявлять индивидуальные хромосомы или их отдельные участки на препаратах метафазных хромосом или интерфазных ядрах на основе комплементарного взаимодействия ДНК-зонда, конъюгированного с флуоресцентной меткой и искомого участка на хромосоме. Для визуализации на хромосоме пептидно-нуклеиновых соединений применяют PNA-зонды на основе белкового продукта.
Метод основан на комплементарном связывании ДНК-зонда с ДНК метафазных хромосом или интерфазных клеток и включает следующие этапы:
1. Денатурация двухцепочечной ДНК зонда и ДНК мишени до одноцепочечных под воздействием высокой температуры или химических агентов.
2. Гибридизация ДНК-зонда с ДНК-мишенью по принципу комплементарности с образованием двухцепочечной гибридной молекулы
3. Постгибридизационная отмывка для удаления негибридизовавшегося ДНК-зонда
4. Анализ гибридизационных сигналов с люминисцентном микроскопе

Преимущества метода молекулярно-генетической диагностики FISH включают быстрый ана­лиз большого числа клеток, высокую чувствитель­ность и специфичность, возможность исследовать некультивируемые и неделящиеся клетки.
Недостатки метода заключаются в невозможности получить информацию о физическом состоянии исследу­емой ДНК или участка хромосомы.
FISH применяют в пренатальной молекулярно-генетической диагностике и для характеристики опухолей; в педиатрической практике его используют, как правило, для иденти­фикации субмикроскопических делеций, ассоции­рованных со специфическими пороками развития. Синдромы, в основе которых лежат микроделеции, раньше считались заболеваниями неизвестной этиологии, так как хромосомные делеции и пере­стройки, вызывающие развитие этих заболеваний, обычно не визуализируются при традиционных методах хромосомного анализа. Такие мелкие де­леции в специфических участках хромосом мож­но с большой точностью выявить методом FISH. К заболеваниям, обусловленным субмикроскопическими делециями, относятся синдромы Прадера-Вилли, Ангельмана, Вильямса, Миллера-Дикера, Смит-Мадженис и велокардиофациальный синдром . FISH облегчает диагностику этих синдромов в нетипичных случаях, особенно в младенческом возрасте, когда еще отсутствуют многие диагностически значимые признаки забо­левания. Применение этого метода молекулярно-генетической диагностики целесообразно также в подростковом и во взрослом возрасте, ког­да типичные клинические признаки заболевания, характерные для детского возраста, претерпевают изменения.

121. ДНК-зонды. Их применение в определении наследственных заболеваний.

Краткий обзор

ДНК – зонд - это короткий фрагмент ДНК, конъюгированный с флуоресцеином, ферментно, или радиоактивным изотопом, который используется для гибридизации с комплементарным участком молекулы ДНК – мишени.

Основная часть

Системы ДНК-диагностики

Информация о всем многообразии свойств организма заключена в его генетическом материале. Так, патогенность бактерий определяется наличием у них специфического гена или набора генов, а наследственное генетическое заболевание возникает в результате повреждения определенного гена. Сегмент ДНК, детерминирующий данный биологический признак, имеет строго определенную нуклеотидную последовательность и может служить диагностическим маркером.

В основе многих быстрых и надежных диагностических методов лежит гибридизация нуклеиновых кислот - спаривание двух комплементарных сегментов разных молекул ДНК. Процедура в общих чертах состоит в следующем.

1. Фиксация одноцепочечной ДНК-мишени на мембранном фильтре.

2. Нанесение меченой одноцепочечной ДНК-зонда, которая при определенных условиях (температуре и ионной силе) спаривается с ДНК-мишенью.

3. Промывание фильтра для удаления избытка несвязавшейся меченой ДНК-зонда.

4. Детекция гибридных молекул зонд/мишень.

В диагностических тестах, основанных на гибридизации нуклеиновых кислот, ключевыми являются три компонента: ДНК-зонд, ДНК-мишень и метод детекции гибридизационного сигнала. Система детекции должна быть в высшей степени специфичной и высокочувствительной.

*Флуоресцеин (диоксифлуоран, уранин А) - органическое соединение, флуоресцентный краситель. В аналитической химии флуоресцеин используется в качестве люминесцентного кислотно-основного индикатора. В биохимии и молекулярной биологии изотиоцианатные производные флуоресцеина в качестве биологических красок для определения антигенов и антител.

* Детекция – это обнаружение, выявление, нахождение чего либо.

*конъюгирование=сопряжение

*Если в одной "пробирке" провести плавление и отжиг смеси ДНК, например, человека и мыши, то некоторые участки цепей ДНК мыши будут воссоединяться с комплементарными участками цепей ДНК человека с образованием гибридов. Число таких участков зависит от степени родства видов. Чем ближе виды между собой, тем больше участков комплементарности нитей ДНК. Это явление называется гибридизация ДНК-ДНК.

122. Методы и условия применения прямой ДНК-диагностики.

Краткий обзор:

С помощью прямых методов выявляются нарушения в первичной нуклеотидной последовательности ДНК (мутации и их типы). Прямые методы отличаются точностью, достигающей почти 100 %.

Целью прямой диагностики является идентификация мутантных аллелей (нарушения в первичной нуклеотидной последовательности ДНК, мутации и их типы).

Недостатком метода прямой ДНК-диагностики является необходимость знания точной локализации гена и спектра его мутаций. Методы прямой ДНК-диагностики показаны для таких заболеваний, как фенилкетонурия (мутация R408W), муковисцидоз - (наиболее частая мутация delF508), хорея Гентингтона (экспансия тринуклеотидных повторов-CTG-повторы) и др.

Полный ответ:

С помощью прямых методов выявляются нарушения в первичной нуклеотидной последовательности ДНК (мутации и их типы). Прямые методы отличаются точностью, достигающей почти 100 %. Однако на практике указанные методы могут применяться при определенных условиях:

1) известной цитогенетической локализации гена, ответственного за развитие наследственного заболевания,

2) должен быть клонированным ген заболевания и известна его нуклеотидная последовательность.

Целью прямой диагностики является идентификация мутантных аллелей (нарушения в первичной нуклеотидной последовательности ДНК, мутации и их типы). Высокая точность метода прямой ДНК-диагностики в большинстве случаев не требует ДНК-анализа всех членов семьи, так как выявление мутации в соответствующем гене позволяет почти со 100-процентной точностью подтвердить диагноз и определить генотип всех членов семьи больного ребенка, включая гетерозиготных носителей.

Недостатком метода прямой ДНК-диагностики является необходимость знания точной локализации гена и спектра его мутаций.

Методы прямой ДНК-диагностики показаны для таких заболеваний, как фенилкетонурия (мутация R408W), муковисцидоз - (наиболее частая мутация delF508), хорея Гентингтона (экспансия тринуклеотидных повторов-CTG-повторы) и др.

Однако к настоящему времени гены многих заболеваний не картированы, неизвестна их экзонно-интронная организация, и многие наследственные болезни отличаются выраженной генетической гетерогенностью, что не позволяет в полной мере использовать прямые методы ДНК-диагностики. Поэтому информативность метода прямой ДНК-диагностики широко варьирует. Так, при диагностике хореи Гентингтона, ахондроплазии она составляет 100 %, при фенилкетонурии, муковосицидозе, адреногенитальном синдроме - от 70 до 80 %, а при болезни Вильсона-Коновалова и миопатии Дюшенна/Бекера - 45-60 %. В связи с этим используются косвенные методы молекулярно-генетической диагностики наследственных болезней.

Традиционная цитогенетика при изучении кариотипа всегда была ограничена бэндовым уровнем разрешения. Даже при использовании высокоразрешающих методов дифференциального окрашивания хромосом мы всего лишь выявляли большее количество бэндов на хромосоме, но не были уверены, что добираемся до молекулярного уровня разрешения. Последние достижения ДНК-технологий и цитогенетики сделали возможным использование методов FISH для анализа изменений хромосомной ДНК на молекулярном уровне. Молекулярная цитогенетика обеспечила революционный прорыв в цитогенетике, позволив:

Осуществлять анализ структуры ДНК хромосом в диапазоне 10-100 килобаз;
проводить диагностику неделящихся интерфазных клеток, что оказало огромное влияние на пренатальную диагностику и преимплантационную генетическую диагностику (ПГД).

Технология FISH использует ДНК-зонд, который связывается или ренатурирует специфические последовательности ДНК внутри хромосомы. Денатурированный зонд инкубируется с нативной ДНК клетки, также денатурированной до одноцепочечного состояния. Зонд замещает биотин-дезоксиуридинтрифосфат или дигоксигенин-уридинтрифосфат на тимидин. После ренатурации зондом нативной ДНК комплекс «зонд-ДНК» можно обнаружить при добавлении меченного флюорохромом авидина, связывающегося с биотином, или меченного флюорохромом антидигоксигенина. Дополнительное усиление сигнала можно получить, добавив антиавидин и изучив получившийся комплекс с помощью флюоресцентной микроскопии. Пометив несколькими различными флюорохромами разные ДНК-зонды, можно одновременно визуализировать несколько хромосом или хромосомных сегментов внутри одной клетки в виде разноцветных сигналов.

Возможность определения специфических генных сегментов , имеющихся или отсутствующих на хромосомах, позволила диагностировать синдромы генных последовательностей на уровне ДНК, как, впрочем, и транслокации в интерфазных ядрах, зачастую - в отдельных клетках.

Материалом для FISH могут служить или метафазные хромосомы, полученные из делящихся клеток, или интерфазные ядра из клеток, не находящихся в стадии деления. Срезы предварительно обрабатывают РНКазой и протеиназой для удаления РНК, которая может вступать в перекрестную гибридизацию с зондом и хроматином. Затем их нагревают в формамиде, чтобы денатурировать ДНК, и фиксируют ледяным спиртом. Затем зонд подготавливают к гибридизации путем нагревания. После этого зонд и хромосомный препарат смешивают и герметизируют покровным стеклом при 37 °С для гибридизации. Изменяя температуру инкубации или солевой состав раствора для гибридизации, можно повысить специфичность связывания и уменьшить фоновую маркировку.

Применение флюоресцентной гибридизации in situ - технологии FISH

Эффективность технологии FISH впервые была продемонстрирована при локализации генов на . С внедрением метода флюоресцентного мечения, гибридизация in situ оказалась незаменимой для диагностики хромосомных аномалий, не выявляемых традиционными методами бэндинга. FISH также сыграла ключевую роль в совершении одного из самых необычных открытий современной генетики - геномного импринтинга.


Свое развитие технология FISH получила в трех формах. Центромерные, или альфа-сателлитные, зонды характеризуются относительной хромосомной специфичностью, их использовали чаще всего в генетике интерфазных клеток. Эти зонды генерируют в некоторой степени диффузные сигналы адекватной силы в области центромеры, но не вступают в перекрестную гибридизацию с хромосомами, имеющими аналогичные центромерные последовательности. В настоящее время разработаны однокопийные зонды, дающие дискретный сигнал от специфического бэнда хромосомы и позволяющие избежать феномена перекрестной гибридизации. Эти зонды также можно использовать для определения копийности и специфичных регионов хромосомы, предположительно связанных с тем или иным синдромом. Однокопийные и центромерные зонды, разработанные для хромосом 13, 18, 21, X и Y, используют для пренатальной диагностики.

Возможно также «окрашивание» целых хромосом с помощью FISH . Благодаря технологии спектрального кариотипирования, при которой используют смесь различных флюорохромов, теперь стало возможным создание уникального флюоресцентного паттерна для каждой отдельной хромосомы с 24 отдельными цветами. Эта технология позволяет определять сложные хромосомные перестройки, не видимые при использовании традиционных цитогенетических методик.

Метод FISH в пренатальной диагностике. Для женщин старшего репродуктивного возраста беременность может оказаться поводом не столько для радости, сколько для беспокойства. С возрастом женщины связан риск развития хромосомных аномалий плода. Амниоцентез, осуществляемый на 16-й неделе беременности, с последующим анализом кариотипа занимает 10-14 дней. Использование FISH в предварительном обследовании позволяет ускорить диагностику и уменьшить время ожидания. Большинство генетиков и лабораторий придерживаются мнения, что метод FISH не следует использовать изолированно для принятия решения о дальнейшем ведении беременности. Метод FISH обязательно следует дополнять кариотипическим анализом, и его результаты как минимум должны коррелировать с патологической картиной ультразвукового исследования (УЗИ) или биохимического скрининга по крови матери.

Синдромы генных последовательностей известны также под названием синдромов микроделеции, или сегментарной анеусомии. Это делеции смежных фрагментов хромосомы, вовлекающие, как правило, многие гены. Синдромы генных последовательностей были впервые описаны в 1986 г. с использованием классических методик цитогенетики. Теперь, благодаря FISH, возможна идентификация субмикроскопических делеции на уровне ДНК, что позволило выявлять наименьший делецированный регион, связанный с развитием того или иного синдрома, получивший название критического региона. После определения критического региона для синдрома зачастую становится возможным идентифицировать специфические гены, отсутствие которых признают ассоциированным с этим синдромом. В недавно вышедшем руководстве по синдромам генных последовательностей сообщают о 18 синдромах делеции и микроделеции, ассоциированных с 14 хромосомами. Некоторые наиболее часто встречающиеся синдромы генных последовательностей и их клинические проявления приведены в табл. 5-2.

Теломеры - образования, прикрывающие с концов длинные и короткие плечи хромосом. Они состоят из повторяющихся последовательностей TTAGGG и предотвращают слияние концевых участков хромосом между собой. Теломерные зонды играют важную роль в распознавании комплексных транслокаций, которые невозможно определить традиционными цитогенетическими методами. Кроме того, одним из открытий Проекта «Геном человека» был тот факт, что регионы хромосом, прилежащие к теломерам, богаты генами. В настоящее время показано, что субмикроскопические субтеломерные делеции ответственны за возникновение многих генетически обусловленных заболеваний.

Похожие публикации