Аналитическая зависимость давления насыщенного пара от температуры. Химия нефти

На этом уроке мы разберём свойства несколько специфичного газа - насыщенного пара. Мы дадим определение этому газу, укажем, чем он принципиально отличается от идеальных газов, рассмотренных нами ранее, и, конкретнее, чем отличается зависимость давления насыщенного газа. Также в этом уроке будет рассмотрен и описан такой процесс, как кипение.

Для понимания отличий насыщенного пара от идеального газа нужно представить себе два опыта.

Во-первых, возьмём герметично закрытый сосуд с водой и начнём его нагревать. С увеличением температуры молекулы жидкости будут иметь всё большую кинетическую энергию, и всё большее количество молекул сможет вырваться из жидкости (см. рис. 2), следовательно, будет расти концентрация пара и, следовательно, его давление. Итак, первое положение:

Давление насыщенного пара зависит от температуры

Рис. 2.

Однако, это положение вполне ожидаемо и не столь интересно, как следующее. Если поместить жидкость с её насыщенным паром под подвижный поршень и начать этот поршень опускать, то, несомненно, концентрация насыщенного пара увеличится из-за уменьшения объёма. Однако через некоторое время пар перейдёт с жидкостью к новому динамическому равновесию путём конденсации лишнего количества пара, и давление в конце концов не поменяется. Второе положение теории насыщенного пара:

Давление насыщенного пара не зависит от объёма

Теперь же следует отметить тот факт, что давление насыщенного пара хоть и зависит от температуры, как и идеальный газ, но характер этой зависимости несколько иной. Дело в том, что, как мы знаем из основного уравнения МКТ, давление газа зависит как от температуры, так и от концентрации газа. И поэтому давление насыщенного пара зависит от температуры нелинейно до тех пор, пока увеличивается концентрация пара, то есть пока вся жидкость не испарится. На приведённом ниже графике (рис. 3) показан характер зависимости давления насыщенного пара от температуры,

Рис. 3

причём переход от нелинейного участка к линейному как раз и означает точку испарения всей жидкости. Так как давление насыщенного газа зависит только от температуры, возможно абсолютно однозначно установить, какое будет давление насыщенного пара при заданной температуре. Эти соотношения (а также значения плотности насыщенного пара) занесены в специальную таблицу.

Обратим теперь наше внимание на такой важный физический процесс, как кипение. В восьмом классе уже давалось определение кипению как процессу парообразования более интенсивному, нежели испарение. Теперь же мы несколько дополним это понятие.

Определение. Кипение - процесс парообразования, протекающий по всему объёму жидкости. Каков же механизм кипения? Дело в том, что в воде всегда есть растворённый воздух, а в результате увеличения температуры его растворимость уменьшается, и образуются микропузырьки. Так как дно и стенки сосуда не идеально гладкие, эти пузырьки цепляются за неровности внутренней стороны сосуда. Теперь раздел вода-воздух существует не только у поверхности воды, но и внутри объёма воды, и в пузырьки начинают переходить молекулы воды. Таким образом, внутри пузырьков появляется насыщенный пар. Далее эти пузырьки начинают всплывать, увеличиваясь в объёме и принимая большее количество молекул воды внутрь себя, а у поверхности лопаются, выбрасывая насыщенный пар в окружающую среду (рис. 4).

Рис. 4. Процесс кипения ()

Условием же образования и всплытия этих пузырьков является следующее неравенство: давление насыщенного пара должно быть больше или равняться атмосферному давлению.

Таким образом, так как давление насыщенного пара зависит от температуры, температура кипения определяется давлением окружающей среды: чем оно меньше, тем при более низкой температуре закипает жидкость, и наоборот.

На следующем уроке мы начнём рассматривать свойства твёрдых тел.

Список литературы

  1. Мякишев Г.Я., Синяков А.З. Молекулярная физика. Термодинамика. - М.: Дрофа, 2010.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Илекса, 2005.
  3. Касьянов В.А. Физика 10 класс. - М.: Дрофа, 2010.
  1. Physics.ru ().
  2. Chemport.ru ().
  3. Narod.ru ().

Домашнее задание

  1. Стр. 74: № 546-550. Физика. Задачник. 10-11 классы. Рымкевич А.П. - М.: Дрофа, 2013. ()
  2. Почему альпинисты не могут сварить яйца на высоте?
  3. Какие вы можете привести способы остудить горячий чай? Обоснуйте их с точки зрения физики.
  4. Почему следует ослаблять газовый напор на конфорке после закипания воды?
  5. *Каким образом можно добиться нагревания воды выше ста градусов по Цельсию?

Зависимость давления насыщенного пара от температуры. Состояние насыщенного пара приближенно описывается уравнением состояния идеального газа (3.4), а его давление приближенно определяется формулой

С ростом температуры давление растет. Так как давление насыщенного пара не зависит от объема, то, следовательно, оно зависит только от температуры.

Однако эта зависимость найденная экспериментально, не является прямо пропорциональной, как у идеального газа при постоянном объеме. С увеличением температуры давление насыщенного пара растет быстрее, чем давление идеального газа (рис. 52, участок кривой АВ).

Это происходит по следующей причине. При нагревании жидкости с паром в закрытом сосуде часть жидкости превращается в пар. В результате согласно формуле (5.1) давление пара растет не только вследствие повышения температуры, но и вследствие увеличения концентрации молекул (плотности) пара. Основное различие в поведении идеального газа и насыщенного пара состоит в том, что при изменении температуры пара в закрытом сосуде (или при изменении объема при постоянной температуре) меняется масса пара. Жидкость частично превращается в пар или, напротив, пар частично конденсируется. С идеальным газом ничего подобного не происходит.

Когда вся жидкость испарится, пар при дальнейшем нагревании перестанет быть насыщенным и его давление при постоянном объеме будет возрастать прямо пропорционально абсолютной температуре (участок ВС на рисунке 52).

Кипение. Зависимость давления насыщенного пара от температуры объясняет, почему температура кипения жидкости зависит от давления. При кипении по всему объему жидкости образуются быстро растущие пузырьки пара, которые всплывают на поверхность. Очевидно, что пузырек пара может расти, когда давление насыщенного пара внутри него немного превосходит давление в жидкости, которое складывается из давления воздуха на поверхность жидкости (внешнее давление) и гидростатического давления столба жидкости.

Кипение начинается при температуре, при которой давление насыщенного пара в пузырьках сравнивается с давлением в жидкости.

Чем больше внешнее давление, тем выше температура кипения. Так, при давлении в паровом котле, достигающем Па, вода не кипит и при температуре 200°С. В медицинских учреждениях кипение воды в герметически закрытых сосудах - авто клавах (рис. 53) - также происходит при повышенном давлении. Поэтому температура кипения значительно выше 100°С. Автоклавы применяют для стерилизации хирургических инструментов, перевязочного материала и т. д.

Наоборот, уменьшая давление, мы тем самым понижаем температуру кипения. Откачивая насосом воздух и пары воды из колбы, можно заставить воду кипеть при комнатной температуре (рис. 54). При подъеме в горы атмосферное давление уменьшается. Поэтому уменьшается температура кипения. На высоте

7134 м (пик Ленина на Памире) давление приближенно равно Па (300 мм рт. ст.). Температура кипения воды там составляет примерно 70 °С. Сварить, например, мясо при этих условиях невозможно.

Различие температур кипения жидкостей определяется различием в давлении их насыщенных паров. Чем выше давление насыщенного пара, тем ниже температура кипения соответствующей жидкости, так как при меньших температурах давление насыщенного пара становится равным атмосферному. Например, при 100 °С давление насыщенных паров воды равно (760 мм рт. ст.), а паров ртути всего лишь 117 Па (0,88 мм рт. ст.). Кипит ртуть при 357 °С при нормальном давлении.

Критическая температура. При увеличении температуры одновременно с увеличением давления насыщенного пара растет также его плотность. Плотность жидкости, находящейся в равновесии со своим паром, наоборот, уменьшается вследствие расширения жидкости при нагревании. Если на одном рисунке начертить кривые зависимости плотности жидкости и ее пара от температуры, то для жидкости кривая пойдет вниз, а для пара - вверх (рис. 55).

При некоторой температуре, называемой критической, обе кривые сливаются, т. е. плотность жидкости становится равной плотности пара.

Критической называется температура, при которой исчезают различия в физических свойствах между жидкостью и ее насыщенным паром.

При критической температуре плотность (и давление) насыщенного пара становится максимальной, а плотность жидкости, находящейся в равновесии с паром, - минимальной. Удельная теплота парообразования уменьшается с ростом температуры и при критической температуре становится равной нулю.

Каждое вещество характеризуется своей критической температурой. Например, критическая температура воды , а жидкого оксида углерода (IV)

Давление насыщенного пара жидкости резко увеличивается с повышением температуры. Это видно из рисунка 12, на котором изображены кривые давления пара некоторых жидкостей, начинающиеся в точках плавления и оканчивающиеся в критических точках.

Рис. 12. Зависимость давления насыщенного пара некоторых жидкостей от температуры.

Функциональная зависимость давления насыщенного пара жидкости от температуры может быть выражена уравнением (IV, 5), а вдали от критической температуры уравнением (IV, 8).

Считая теплоту испарения (возгонки) постоянной в небольшом интервале температур, можно проинтегрировать уравнение (IV, 8)

(IV, 9)

Представив уравнение (IV, 9) в виде неопределенного интеграла, получим:

(IV, 10),

где С - константа интегрирования.

В соответствии с этими уравнениями зависимость давления насыщенного пара жидкости (или кристаллического вещества) от температуры может быть выражена прямой линией в координатах (в этом случае тангенс наклона прямой равен ). Такая зависимость имеет место лишь в некотором интервале температур, далеких от критической.

На рис.13 изображена зависимость давления насыщенного пара некоторых жидкостей в указанных координатах, удовлетворительно укладывающаяся на прямые линии в интервале 0-100°С.

Рис. 13. Зависимость логарифма давления насыщенного пара некоторых жидкостей от обратной температуры.

Однако уравнение (IV, 10) не охватывает зависимости давления насыщенного пара от температуры во всем интервале температур - от температуры плавления до критической. С одной стороны, теплота испарения зависит от температуры, и интегрирование должно производиться с учётом этой зависимости. С другой стороны, насыщенный пар при высоких температурах нельзя считать идеальным газом, т.к. при этом существенно возрастает его давление. Поэтому уравнение, охватывающее зависимость P = f(T) в широком интервале температур, неизбежно становится эмпирическим.

Сверхкритическое состояние – четвертая форма агрегатного состояния вещества, в которое способны переходить многие органические и неорганические вещества.

Впервые сверхкритическое состояние вещества обнаружил Каньяр де ла Тур в 1822 году. Настоящий интерес к новому явлению возник 1869 году после экспериментов Т.Эндрюса. Проводя опыты в толстостенных стеклянных трубках, учёный исследовал свойства CO 2 , легко сжижающегося при повышении давления. В результате он установил, что при 31° С и 7,2 МПа , мениск – граница, разделяющая жидкость и находящийся в равновесии с ней пар, исчезает, при этом система становится гомогенной (однородной) и весь объем приобретает вид молочно-белой опалесцирующей жидкости. При дальнейшем повышении температуры она быстро становится прозрачной и подвижной, состоящей из постоянно перетекающих струй, напоминающих потоки теплого воздуха над нагретой поверхностью. Дальнейшее повышение температуры и давления не приводило к видимым изменениям.



Точку, в которой происходит такой переход, он назвал критической, а состояние вещества, находящегося выше этой точки – сверхкритическим. Несмотря на то, что внешне это состояние напоминает жидкость, в применении к нему сейчас используется специальный термин – сверхкритический флюид (от английского слова fluid , то есть «способный течь»). В современной литературе принято сокращенное обозначение сверхкритических флюидов – СКФ.

Расположение линий, разграничивающих области газообразного, жидкого и твердого состояния, а также положение тройной точки, где сходятся все три области, для каждого вещества индивидуальны. Сверхкритическая область начинается в критической точке (обозначена звездочкой), которая характеризуется непременно двумя параметрами – температурой (Т кр .) и давлением (Р кр .). Понижение либо температуры, либо давления ниже критических значений выводит вещество из сверхкритического состояния.

Факт существования критической точки позволил понять, почему некоторые газы, например, водород, азот и кислород долгое время не удавалось получить в жидком виде при повышении давления, из-за чего их называли перманентными газами (от латинского permanentis – «постоянный»). На приведённой выше диаграмме видно, что область существования жидкой фазы расположена слева от линии критической температуры. Таким образом, для сжижения какого-либо газа его необходимо сначала охладить до температуры ниже критической. У СО 2 критическая температура выше комнатной, поэтому его можно сжижать при указанных условиях, повышая давление. У азота критическая температура намного ниже: –239,9° С, поэтому, если сжимать азот, находящийся при нормальных условиях, можно достичь в конечном итоге сверхкритической области, но жидкий азот при этом образоваться не может. Необходимо сначала охладить азот ниже критической температуры и затем, повышая давление, достичь области, где возможно существование жидкости. Аналогичная ситуация для водорода, кислорода (критические температуры соответственно –118,4° С и –147° С), поэтому перед сжижением их охлаждают до температуры ниже критической, и лишь затем повышают давление. Сверхкритическое состояниевозможно для большинства веществ, нужно лишь, чтобы вещество не разлагалось при критической температуре. В сравнении с указанными веществами критическая точка для воды достигается с большим трудом: t кр = 374,2° С и Р кр = 21,4 МПа .

Критическая точка признается как важный физический параметр вещества, такой же, как точка плавления или кипения. Плотность СКФ исключительно низкая, например, вода в состоянии СКФ имеет плотность в три раза ниже, чем при обычных условиях. Все СКФ имеют крайне низкую вязкость.

Сверхкритические флюиды представляют собой нечто среднее между жидкостью и газом. Они могут сжиматься как газы (обычные жидкости практически несжимаемы) и, в тоже время, способны растворять многие вещества в твёрдом и жидком состояниях, что газам несвойственно. Сверхкритический этанол (при температуре выше 234° С) очень легко растворяет некоторые неорганические соли (CoCl 2 , KBr, KI). Диоксид углерода, закись азота, этилен и некоторые другие газы в состоянии СКФ приобретают способность растворять многие органические вещества – стеариновую кислоту, парафин, нафталин. Свойства сверхкритического СО 2 как растворителя можно регулировать – при повышении давления его растворяющая способность резко увеличивается.

Сверхкритические флюиды стали широко использовать только в 1980-х, когда общий уровень развития промышленности сделал установки для получения СКФ широко доступными. С этого момента началось интенсивное развитие сверхкритических технологий. СКФ – это не только хорошие растворители, но и вещества с высоким коэффициентом диффузии, т.е. они легко проникают в глубинные слои различных твердых веществ и материалов. Наиболее широкое применение нашёл сверхкритический СО 2 , который оказался растворителем широкого круга органических соединений. Диоксид углерода стал лидером в мире сверхкритических технологий, т.к. обладает целым комплексом преимуществ. Перевести его в сверхкритическое состояние достаточно легко (t кр – 31° С, Р кр – 73,8 атм. ), кроме того, он не токсичен, не горюч, не взрывоопасен, к тому же, дешев и доступен. С точки зрения любого технолога он является идеальным компонентом любого процесса. Особую привлекательность ему придает то, что он является составной частью атмосферного воздуха и, следовательно, не загрязняет окружающую среду. Сверхкритический СО 2 можно считать экологически абсолютно чистым растворителем.

Сейчас сложились и продуктивно сосуществуют два самостоятельных направления использования сверхкритических флюидов. Эти два направления различаются конечными целями того, что достигается с помощью этих сверхкритических сред. В первом случае СКФ используются для экстракции необходимых веществ из различных материалов, продуктов или отходов производства. И в этом есть огромная экономическая заинтересованность. Во втором случае СКФ используют непосредственно для осуществления ценных, часто новых химических превращений. Надо подчеркнуть, что достоинства СКФ в качестве экстрагентов обусловлены прежде всего тем, что они оказались способными исключительно эффективно растворять неполярные соединения, в том числе и твердые вещества. Это основное достоинство резко усиливается уже упоминавшейся нами высокой диффузионной способностью СКФ и их исключительно низкой вязкостью. Обе последние особенности приводят к тому, что скорость экстракции становится чрезвычайно высокой. Приведём только некоторые примеры.

Так, деасфальтизация смазочных масел осуществляется с использованием сверхкритического пропана. Сырое масло растворяется в сверхкритическом пропане при давлении, заметно более высоком, чем Р кр . При этом в раствор переходит всё, кроме тяжелых асфальтовых фракций. Из-за огромной разницы в вязкостях сверхкритического раствора и асфальтовой фракции механическое разделение осуществляется очень легко. Затем сверхкритический раствор поступает в расширительные емкости, в которых давление постепенно снижается, оставаясь, однако, выше Р кр вплоть до последней ёмкости. В этих ёмкостях последовательно выделяются из раствора всё более легкие примесные фракции нефтей из-за снижения их растворимости с падением давления. Разделение фаз в каждой из этих ёмкостей опять осуществляется очень легко вследствие резкого различия их вязкостей. В последней ёмкости давление ниже Р кр , пропан при этом испаряется, в результате выделяется очищенное от нежелательных примесей масло.

Кофеин – препарат, используемый для улучшения деятельности сердечно-сосудистой системы, получают из кофейных зерен даже без их предварительного измельчения. Полнота извлечения достигается за счёт высокой проникающей способности СКФ. Зерна помещают в автоклав – ёмкость, выдерживающую повышенное давление, затем подают в неё газообразный СО 2 , далее создают необходимое давление (>73 атм. ), в результате СО 2 переходит в сверхкритическое состояние. Всё содержимое перемешивают, после чего флюид вместе с растворенным кофеином сливают в открытую емкость. Диоксид углерода, оказавшись в условиях атмосферного давления, превращается в газ и улетает в атмосферу, а экстрагированный кофеин остается в открытой емкости в чистом виде.

В настоящее время большое практическое значение имеет высокая растворимость H 2 в сверхкритических средах, поскольку полезные процессы гидрирования очень распространены. Так, например, разработан эффективный процесс каталитического гидрирования CO 2 в сверхкритическом состоянии, приводящий к образованию муравьиной кислоты. Процесс протекает очень быстро и чисто.

Так как велиична давления насыщенного пара за-всиит от температуры воздуха, при повыешнии по-следней воздух может воспринять больше водяно-го пара, при этом давлнеие насыщения увеличивается. Повышение давлнеия насыщения происходит не линей-но, а по слонжой кривой. Этот факт является настоль-ко важным для строительной физкии, что его не слеудет упускать из виду. Например, при темпертауре 0 °С (273,16 К) давлнеие насыщенного пара рнас состав-ляет 610,5 Па (Паскаль), при +10 °С (283,16 К) оно оказывеатся равным 1228,1 Па, при +20°С (293,16 К) 2337,1 Па, а при +30 °С (303,16 К) оно равно 4241,0 Па. Следоваетльно, при повышении температуры на 10 °С (10 К) давлнеие насыщенного пара повышеатся при-близительно вдвое.

Зависимость парциального давлнеия водяного па-ра от измеенний температуры приведена на рис. 3.

АБСОЛЮТНАЯ ВЛАЖНОСТЬ ВОЗДУХА f

Плотность водяного пара, т.е. содеражние его в воз-духе, называтес3я абсолютной влажностью воздуха и измеряется в г/м.

Максимум плотонсти водяного пара, который возмо-жен при опредеелнной температуре воздуха, называется плотнсотью насыщенного пара, которая, в свою очеердь создает давление насыщения. Плотонсть насыщенного пара fнас и его давлнеие рнас увеличиваются с по-вышнеием температуры воздуха. Ее повышение также является криволиенйным, однако ход этой кривой не такой круотй, как ход кривой рнас. Обе кривые зависят от велчиин 273,16/Тфакт[К]. Поэтмоу, ес-ли известно отношение рнас/fнас, они могут быть взамино проверены.

Абсолютная влажность возудха в воздухонепрони-цаемом замкнутом прострнастве не зависит от темпе-

ратуры до тех пор, пока не достигеатся плотонсть на-сыщенного пара. Зависимость абсолютной влажности возудха от его температуры покаазна на рис. 4.

ОТНОСИТЕЛЬНАЯ ВЛАЖНОСТЬ ВОЗДУХА

Отношение фактичсекой плотности водяного пара к плотонсти насыщенного пара или отноешние абсолют-ной влажности воздуха к максимальной влажности возудха при определенной его темпертауре называет-ся относительной влажностью воздхуа. Она выражает-ся в процентах.

При пониежнии температуры воздухонепроницаемого замкнутого пространства относительная влажность воз-духа повышеатся до тех пор, пока значнеие ϕ не ста-нет равным 100% и тем самым не будет достингута плот-ность насыщенного пара. При дальнйешем охлажеднии соответствующее избыточное количество водяного па-ра конденсируется.

При повыешнии температуры замкнутого простраснт-ва значение относительной влажности воздуха снижает-ся. Рис. 5 иллюстиррует зависимость относительной влажности возудха от температуры. Относительную влажность возудха измеряют при помощи гигроемтра или психрометра. Очень наденжый аспирационный психрометр Ассмана измеряет разнсоть температур двух точных термометров, один из котоырх, обернут влажной марелй. Охлаждение вследствие испарения воды оказывеатся тем большим, чем суше окружающий возудх. Из отношения разности темпеартур к фактичес-кой температуре воздуха можно опредлеить относитель-ную влажность окружающего воздуха.

Вместо нетончого волосяного гигрометра, который иногда применяют при выскоой влажности, исполь-зуют литий-хлроидный измерительный щуп. Он сос-

тоит из металлиечской гильзы со стеклотканевой обо-локчой, раздельной обмотки из нагревательной прово-локи и термоемтра сопротивления. Тканевая оболчока заполнена водным литий-хлоридным раствором и на-хоидтся под действием переменного напряжения между обеими обмотакми. Вода испаряется, происохдит крис-таллизация соли и сопротилвение существенно повы-шается. Вследствие этого содеражние водяного пара в окружающем возудхе и мощность накала уравнове-шиваются. По разнсоти температур между окружаю-щим воздхуом и встроенным термометром при помо-щи специальной измерительной схемы определяют относительную влажность воздуха.

Измерительный щуп реагриует на влияние влажнос-ти возудха на гигроскопчиеское волокно, которое вы-полнено так, чтобы между двумя электрдоами возни-кал достатчоной силы ток. Последний растет по мере увелиечния относительной влажности в опредеелнной зависимости от температуры воздуха.

Емкостным измерительным щупом является конден-сатор с перфорирвоанной плитой, снабженной гигро-скопическим диэлектирком, емкость которого изме-няется с изменнеием относительной влажности, а также темпертауры окружающего воздуха. Измерительный щуп можно применять как состваную часть так называмеого элемента RC схемы мультивибартора. При этом влаж-ность воздуха перевоидтся в определенную частоту, которая может иметь выскоие значения. Таким обрзаом достигают чрезвычайно большой чувствительности при-бора, котроая позволяет фиксировать минимальные измеенния влажности.

ПАРЦИАЛЬНОЕ ДАВЛЕНИЕ ВОДЯНОГО ПАРА р

В отлчиие от давления насыщенного пара рнас, ко-троое обозначает максимальное парциальное давлнеие водяного пара в возудхе при определенной темпера-туре, понятие парциальное давлнеие водяного пара р ознаачет давление пара, который нахоидтся в нена-сыщенном состоянии, поэтому в каждом случае это давлнеие должно быть меньше, чем рнас.

По мере увелиечния содержания водяного пара в сухом возудхе значение р приблиажется к соответ-ствующему значению рнас. При этом атмосфреное давление Робщ остатеся постоянным. Поскольку пар-циальное давление водяного пара р предстваляет собой лишь часть общего давлнеия всех компоннетов смеси, его величину невозможно опредлеить путем пря-мого измерения. Напротив, давлнеие пара рнас мож-но определить, если в сосуде снаачла создать вакуум, а затем ввести в него воду. Велиична повышения дав-ления вследтсвие испарения соответствует значению рнас, относящемуся к темпертауре насыщенного па-ром пространства.

При изветсном рнас можно косвенно измеирть р следующим образом. В сосуде нахоидтся смесь воздуха и водяного пара внаачле неизвестного состава. Давле-ние внутри сосуда Pобщ = pв + p, т.е. атмосфреному давлнеию окружающего воздуха. Если теперь запе-реть сосуд и ввести в него опредеелнное количество воды, то давлнеие внутри сосуда повысится. После насыещния водяного пара оно составит pв + рнас. Ус-танолвенную с помощью микромаонметра разность дав-лений рнас - p вычитают из уже извеснтого значения давления насыщенного пара, котроое соответствует тем-пературе в сосуде. Результат будет соответсвтовать пар-циальному давлению p первоначального содержмио-го сосуда, т.е. окружающего воздуха.

Проще вычилсить парциальное давление p, исполь-зуя данные таблиц давлнеия насыщенного пара рнас для определенного уровня темпертауры. Величина отноше-ния p/рнас соответтсвует величине отношения плот-ности водяного пара f к плотонсти насыщенного пара fнас, котроая равна значнеию относительной влаж-

ности воздхуа. Таким образом, полуачем уравне-

ние р =рнас.

Вследствие этого, при изветсных темпертауре воздуха и давлении насыщения рнас можно быстро и наглядно опредлеить значение парциального давления p. Напрмиер, относительная влажность воздуха составляет 60%, а темпертаура воздуха равна 10°С. Тогда, поскольку при этой темпертауре давление насыщенного пара pнас = 1228,1 Па, парциальное давлнеие р будет равно 736,9 Па (рис 6).

ТОЧКА РОСЫ ВОДЯНОГО ПАРА т

Соедржащийся в воздухе водяной пар обычно нахоидтся в ненасыщенном состоянии и поэотму имеет определенное парциальное давлнеие р и определенную относительную влажность возудха <р < 100%.

Если воздух нахоидтся в прямом конткате с твердыми материалами, температура поверхонсти которых ниже его температуры, то при соответсвтующей разнице температур воздух гранинчого слоя охлаждается и относительная влажность его повышеатся до тех пор, пока ее значнеие не достгиает 100%, т.е. плотности насыщенного пара. Даже при незначиетльном дальнйешем охлаждении на поверхности твердого матеирала начинает конденсироваться водяной пар. Это происохдит до тех пор, пока не устаноивтся новое равновесное состояние темпертауры поверхности материала и плотонсти насыщенного пара. Вследствие высокой плотонсти охлажденный воздух опускается, а более теплый - поднимеатся. Количество конденсата будет увеличиавться, пока не устаноивтся равновесие и процесс конденсации не прекратится.

Процесс конденсации связан с высвободжением тепла, количество которого соответствует теполте парообразования воды. Это приводит к повыешнию температуры поверхности твердых веществ.

Точкой росы т назывеатся температура поверхонсти, плотность пара вблизи которой станоивтся равной плотности насыщенного пара, т.е. относительная влажность возудха достигает 100%. Конденсация водяного пара начинеатся сразу же после того, как его темпертаура опускается ниже точки росы.

Если изветсны температура воздуха вв и относительная влажность , можно состваить уравнение p(вв) = рнас(т) = pнас. Для расечта требуемого значения рнас используют табилцу давлений насыщенного пара.

Рассмотрим пример такого расечта (рис. 7). Темпертаура воздуха вв = 10°С, относительная влажность воздуха= 60%, pнас (+10 °С) = 1228,1 П рнас(т) = = 0 6 х 1228,1 Па = 736,9 Па, точка росы= +2,6°С (таблица).

Точку росы можно опредлеить графическим способом с помощью кривой давлнеия насыщения Точку росы можно рассчтиать только в том слуаче, когда кроме температуры воздуха изветсна также его относитель-ная влажность. Вместо расечта можно воспользовать-ся измерением. Если медленно охладжать полирован-ную поверхность плиты (или мембрнаы), выполненную из теплопроовдного материала, до тех пор, пока не нач-нется выпаедние на ней конденсата, и измеирть затем темпертауру этой поверхности, можно прямым путем найти точку росы окружающего возудха Примене-ние этого метода не треубет знания относительной влаж-ности воздуха, хотя можно дополниетльно по темпе-ратуре возудха и точке росы вычислить значение

На этом приницпе базируется действиегигрометра для опредеелния точки росы Даниеля и Рейнольта, кото-рый разраобтан в первой полоивне XIX столетия. В последнее время благдоаря применению электроники он был настолько улучешн, что позволяет опредлеить точку росы с очень выскоой точностью. Таким обра-зом, можно соответсвтующим образом калибровать нормальный гигрометр и контролриовать его с помощью гигромтера, предназначенного для определения точки росы.

Поскольку насыщенный пар представляет собой один из компонентов термодинамически равновесной системы гомогенного по составу, но различного по фазовым фракциям вещества, то понимание влияния отдельных физических факторов на величину создаваемого им давления позволяют использовать эти знания в практической деятельности, например, при определении скорости выгорания тех или иных жидкостей в случае возгорания и пр.

Зависимость давления насыщенного пара от температуры

Давление насыщенного пара становится тем больше, чем больше увеличивается температура. При этом изменение величин не является прямо пропорциональным, а происходит значительно быстрее. Это связано с тем, что с увеличением температуры ускоряется движение молекул относительно друг друга и им легче преодолеть силы взаимного притяжения и перейти в иную фазу, т.е. количество молекул в жидком состоянии уменьшается, а в газообразном возрастает до тех пор, пока вся жидкость не превратится в пар. Это увеличивающееся давление и обусловливает поднимание крышки в кастрюле или , когда начинает закипать вода.

Зависимость давления насыщенного пара от других факторов

На величину давления насыщенного пара оказывает влияние и количество перешедших в газообразное состояние молекул, так как их число определяет массу образующегося пара в закрытом сосуде. Эта величина не является постоянной, так как при разности температур дна сосуда и закрывающей его крышки постоянно происходят два взаимно противоположных процесса – парообразование и конденсация.

Поскольку для каждого вещества при определённой температуре существуют известные показатели перехода определённого количества молекул из одной фазы состояния вещества в другую, то изменить величину давления насыщенного пара можно путём изменения объёма сосуда. Так, один и тот же объём воды, например 0,5 л, создаст разное по величине давление в пятилитровой канистре и чайнике.

Определяющим фактором для определения справочной величины давления насыщенного пара при неизменном объёме и постепенном повышении температуры является молекулярная структура самой жидкости, подвергаемой нагреванию. Так, показатели для ацетона, спирта и обычной воды будут существенно отличаться друг от друга.

Чтобы увидеть процесс кипения жидкости необходимо не только довести давление насыщенного пара до определённых пределов, но и соотнести эту величину с внешним атмосферным давлением, так как процесс кипения возможен только в том случае, когда давление снаружи выше давления внутри сосуда.

Похожие публикации