Строение экстра и интрамуральных ганглиев. Интрамуральный отдел внс метасимпатическая нервная система. Органы нервной системы

Часть нервной системы, контролирующая висцеральные функции организма, такие как моторика и секреция органов пищеварительной системы, и кровяное давление, потоотделение, температура тела, обменные процессы и др., называется автономной, или вегетативной, нервной системой . По своим физиологическим особенностям и морфологическим признакам вегетативная нервная система делится на симпатическую и парасимпатическую. В большинстве случаев обе системы одновременно принимают участие в иннервации органов. Вегетативная нервная система состоит из центральных отделов, представленных ядрами головного и спинного мозга, и периферических: нервных стволов, узлов (ганглиев) и сплетений. Ядра центрального отдела вегетативной нервной системы находятся в среднем и продолговатом мозге, а также в боковых рогах грудных, поясничных и крестцовых сегментов спинного мозга. К симпатической нервной системе относятся вегетативные ядра боковых рогов грудного и верхнепоясничного отделов спинного мозга, к парасимпатической - вегетативные ядра III, VII, IX и X пар черепных нервов и вегетативные ядра крестцового отдела спинного мозга. Мультиполярные нейроны ядер центрального отдела представляют собой ассоциативные нейроны рефлекторных друг вегетативной нервной системы. Их нейриты покидают центральную нервную систему через передние корешки спинного мозга или черепные нервы и оканчиваются синапсами на нейронах одного из периферических вегетативных ганглиев. Это преганглионарные волокна вегетативной нервной системы, обычно миелиновые. Периферические узлы вегетативной нервной системы лежат как вне органов (симпатические паравертебральные и превертебральные ганглии, парасимпатические узлы головы), так и в стенке органов в составе интрамуральных нервных сплетений пищеварительного тракта, сердца, матки, мочевого пузыря и др. Паравертебральные ганглии расположены по обе стороны позвоночника и со своими соединительными стволами образуют симпатические цепочки. Превертебральные ганглии образуют кпереди от брюшной аорты и ее главных ветвей брюшное сплетение, в состав которого входят чревный, верхний брыжеечный и нижний брыжеечный ганглии. Вегетативные ганглии снаружи покрыты соединительнотканной капсулой. Прослойки соединительной ткани проникают в паренхиму узла, образуя его остов. Узлы состоят из мультиполярных нервных клеток, весьма разнообразных по форме и величине. Дендриты нейронов многочисленны и сильно ветвятся. Аксоны в составе постганглионарных (обычно безмиелино- вых) волокон поступают в соответствующие внутренние органы. Каждый нейрон и его отростки окружены глиальной оболочкой. Наружная поверхность глиальной оболочки покрыта базальной мембраной, кнаружи от которой расположена тонкая соединительнотканная оболочка. Преганглионарные волокна, вступая в соответствующий ганглий, заканчиваются на дендритах или перикарионах нейронов. В составе симпатических ганглиев имеются небольшие фуппы гранулосодержащих, мелких интенсивно флюоресцирующих клеток (МИФ-клетки) . Они характеризуются короткими отростками и обилием в цитоплазме фанулярных пузырьков, соответствующих по флюоресценции и электронно-микроскопической характеристике пузырькам клеток мозгового вещества надпочечника. МИФ-клетки окружены глиальной оболочкой. На телах МИФ-клеток, реже на их отростках, видны холинергические синапсы, образованные терминалами преганглионарных волокон. МИФ-клетки рассматриваются как внутриганглионарная тормозная система. Они, возбуждаясь преганглионарными холинергическими волокнами, выделяют катехоламины. Последние, распространяясь диффузно или по сосудам ганглия, оказывают тормозящее влияние на синаптическую передачу с преганглионарных волокон на периферические нейроны ганглия. Ганглии парасимпатического отдела вегетативной нервной системы лежат или вблизи иннервируемого органа, или в его интрамуральных нервных сплетениях. Преганглионарные волокна заканчиваются на телах нейронов, а чаще на их дендритах холинергическими синапсами. Аксоны этих клеток (постганглионарные волокна) следуют в мышечной ткани иннервируемых органов в виде тонких варикозных терминалей и образуют мионевральные синапсы. Интрамуральные сплетения . Значительное количество нейронов вегетативной нервной системы сосредоточено в нервных сплетениях самих иннервируемых органов: в пищеварительном тракте, сердце, мочевом пузыре и др. Ганглии интрамуральных сплетений, как и другие вегетативные узлы, содержат, кроме эфферентных нейронов, рецепторные и ассоциативные клетки местных рефлекторных дуг. Морфологически в интрамуральных нервных сплетениях различают три типа клеток, описанных Догелем. Длинно- аксонные эфферентные нейроны (клетки 1-го типа) имеют много коротких ветвящихся дендритов и длинный нейрит, уходящий за пределы ганглия. Равноотростчатые (афферентные) нейроны (клетки 2-го типа) содержат несколько отростков. Клетки 3-го типа (ассоциативные) посылают свои отростки в соседние ганглии, где они заканчиваются на дендритах их нейронов. Постганглионарные волокна нейронов интрамуральных сплетений в мышечной ткани органа образуют терминальное сплетение, тонкие стволы которого содержат несколько варикозно-расширенных аксонов. Варикозные расширения содержат синаптические пузырьки и митохондрии. Межварикозные участки (шириной 0,1-0,5 мкм) заполнены нейротрубочками и нейрофиламентами. Синаптические пузырьки холинергических мионевральных синапсов мелкие светлые (размером 30-60 нм), адренергических - мелкие гранулярные (размером 50-60 нм).

Морфо - функциональная характеристика сосудистой системы. Источник развития сосудов. Артерии: классификация, их строение, функция. Взаимосвязь структуры артерии и гемодинамических условий. Возрастные изменения.

Сердечно-сосудистая система - совокупность органов (сердце, кровеносные и лимфатические сосуды), обеспечивающая распространение по организму крови и лимфы, содержащих питательные и биологически активные вещества, газы, продукты метаболизма. Кровеносные сосуды представляют собой систему замкнутых трубок различного диаметра, осуществляющих транспортную функцию, регуляцию кровоснабжения органов и обмен веществ между кровью и окружающими тканями. Развитие Классификация . По особенностям строения артерии бывают трех типов: эластического, мышечного и смешанного (мышечно-эластического). Классификация основывается на соотношении количества мышечных клеток и эластических волокон в средней оболочке артерий. Артерии эластического типа Артерии эластического типа характеризуются выраженным развитием в их средней оболочке эластических структур (мембраны, волокна). К ним относятся сосуды крупного калибра, такие как аорта и легочная артерия, в которых кровь протекает под высоким давлением (120-130 мм рт.ст.) и с большой скоростью (0,5-1,3 м/с). В эти сосуды кровь поступает либо непосредственно из сердца, либо вблизи от него из дуги аорты. Артерии крупного калибра выполняют главным образом транспортную функцию. Наличие большого количества эластических элементов (волокон, мембран) позволяет этим сосудам растягиваться при систоле сердца и возвращаться в исходное положение во время диастолы. Внутренняя оболочка аорты включает эндотелий, подэндотелиальный слой и сплетение эластических волокон. Эндотелий аорты человека состоит из клеток, различных по форме и размерам, расположенных на базальной мембране. По протяженности сосуда размеры и форма клеток неодинаковы. Иногда клетки достигают 500 мкм в длину и 150 мкм в ширину. Чаше они бывают одноядерными, но встречаются и многоядерные. Размеры ядер также неодинаковы. В эндотелиальных клетках слабо развита эндо плазматическая сеть гранулярного типа. Подэндотелиалъный слой составляет примерно 15-20 % толщины стенки сосуда и состоит из рыхлой тонкофибриллярной соединительной ткани, богатой клетками звездчатой формы. В подэндотелиальном слое встречаются отдельные продольно направленные гладкие мышечные клетки (гладкие миоциты). Глубже подэндотелиального слоя в составе внутренней оболочки расположено густое сплетение эластических волокон, соответствующее внутренней эластической мембране. Внутренняя оболочка аорты в месте отхождения от сердца образует три карманоподобные створки («полулунные клапаны»). Средняя оболочка аорты состоит из большого количества (50-70) эластических окончатых мембран, связанных между собой эластическими волокнами и образующих единый эластический каркас вместе с эластическими элементами других оболочек. Между мембранами средней оболочки артерии эластического типа залегают гладкие мышечные клетки. Такое строение средней оболочки делает аорту высокоэластичной и смягчает толчки крови, выбрасываемой в сосуд во время сокращения левого желудочка сердца, а также обеспечивает поддержание тонуса сосудистой стенки во время диастолы. Наружная оболочка аорты построена из рыхлой волокнистой соединительной ткани с большим количеством толстых эластических и коллагеновых волокон, имеющих главным образом продольное направление. В средней и наружной оболочках аорты, как и вообще во всех крупных сосудах, проходят питающие сосуды и нервные стволики. Наружная оболочка предохраняет сосуд от перерастяжения и разрывов. Артерии мышечного типа К артериям мышечного типа относятся преимущественно сосуды среднего и мелкого калибра, т.е. большинство артерий организма (артерии тела, конечностей и внутренних органов). В состав внутренней оболочки входят эндотелий с базальной мембраной, подэндотелиальный слой и внутренняя эластическая мембрана. Эндотелиальные клетки, расположенные на базальной мембране, вытянуты вдоль продольной оси сосуда. Подэндотелиальный слой состоит из тонких эластических и коллагеновых волокон, преимущественно продольно направленных, а также малоспециализированных соединительнотканных клеток. Во внутренней оболочке некоторых артерий - сердца, почек, яичников, матки, пупочной артерии, легких - обнаруживаются продольно расположенные гладкие миоциты. Подэндотелиальный слой лучше развит в артериях среднего и крупного калибра и слабее - в мелких артериях. Кнаружи от подэндотелиального слоя расположена тесно связанная с ним внутренняя эластическая мембрана. В мелких артериях она очень тонкая. В более крупных артериях мышечного типа эластическая мембрана четко выражена. Средняя оболочка артерии содержит гладкиемиоциты, расположенные по пологой спирали, между которыми находятся в небольшом числе соединительнотканные клетки и волокна (коллагеновые и эластические). Коллагеновые волокна образуют опорный каркас для гладких миоцитов. Эластические волокна стенки артерии на границе с наружной и внутренней оболочками сливаются с эластическими мембранами. Таким образом, создается единый эластический каркас, который, с одной стороны, придает сосуду эластичность при растяжении, а с другой - упругость при сдавлении. На границе между средней и наружной оболочками располагается наружная эластическая мембрана. Она состоит из продольно идущих толстых, густо переплетающихся эластических волокон, которые иногда приобретают вид сплошной эластической пластинки. Наружная оболочка состоит из рыхлой волокнистой соединительной ткани, в которой соединительнотканные волокна имеют преимущественно косое и продольное направление. Артерии мышечно-эластического типа По строению и функциональным особенностям артерии мышечно-эластического, или смешанного, типа занимают промежуточное положение между сосудами мышечного и эластического типов. К ним относятся, в частности, сонная и подключичная артерии. Внутренняя оболочка этих сосудов состоит из эндотелия, расположенного на базальной мембране, подэндотелиального слоя и внутренней эластической мембраны. Эта мембрана располагается на границе внутренней и средней оболочек и характеризуется четкой выраженностью и отграниченностью от других элементов сосудистой стенки. Средняя оболочка артерий смешанного типа состоит из примерно равного количества гладких мышечных клеток, спирально ориентированных эластических волокон и окончатых эластических мембран. Между гладкими мышечными клетками и эластическими элементами обнаруживается небольшое количество фибробластов и коллагеновых волокон. В наружной оболочке артерий можно выделить два слоя: внутренний, содержащий отдельные пучки гладких мышечных клеток, и наружный, состоящий преимущественно из продольно и косо расположенных пучков коллагеновых и эластических волокон и соединительнотканных клеток. В ее составе присутствуют сосуды сосудов и нервные волокна. Строение сосудов непрерывно меняется в течение всей жизни человека . В стенках артерий происходит разрастание соединительной ткани, что ведет к их уплотнению. В артериях эластического типа этот процесс выражен сильнее, чем в остальных артериях. После 60-70 лет во внутренней оболочке всех артерий обнаруживаются очаговые утолщения коллагеновых волокон, в результате чего в крупных артериях внутренняя оболочка по размерам приближается к средней. В мелких и средних артериях внутренняя оболочка разрастается слабее. Внутренняя эластическая мембрана с возрастом постепенно истончается и расщепляется. Мышечные клетки средней оболочки атрофируются. Эластические волокна подвергаются зернистому распаду и фрагментации, в то время как коллагеновые волокна разрастаются. В наружной оболочке у лиц старше 60-70 лет возникают продольно лежащие пучки гладких мышечных клеток.

Морфо - функциональная характеристика сосудистой системы. Источник развития сосудов. Вены: классификация, их строение, функция. Взаимосвязь структуры вен и гемодинамических условий. Возрастные изменения.

Сердечно-сосудистая система - совокупность органов (сердце, кровеносные и лимфатические сосуды), обеспечивающая распространение по организму крови и лимфы, содержащих питательные и биологически активные вещества, газы, продукты метаболизма. Кровеносные сосуды представляют собой систему замкнутых трубок различного диаметра, осуществляющих транспортную функцию, регуляцию кровоснабжения органов и обмен веществ между кровью и окружающими тканями. Развитие . Первые кровеносные сосуды появляются в мезенхиме стенки желточного мешка на 2-3-й неделе эмбриогенеза человека, а также в стенке хориона в составе так называемых кровяных островков. Часть мезенхимных клеток по периферии островков теряет связь с клетками, расположенными в центральной части, уплощается и превращается в эндотелиальные клетки первичных кровеносных сосудов. Клетки центральной части островка округляются, дифференцируются и превращаются в клетки крови. Из мезенхимных клеток, окружающих сосуд, позднее дифференцируются гладкие мышечные клетки, перициты и адвентициальные клетки сосуда, а также фибробласты. В теле зародыша из мезенхимы образуются первичные кровеносные сосуды, имеющие вид трубочек и щелевидных пространств. В конце 3-й недели внутриутробного развития сосуды тела зародыша начинают сообщаться с сосудами внезародышевых органов. Дальнейшее развитие стенки сосудов происходит после начала циркуляции крови под влиянием тех гемодинамических условий (кровяное давление, скорость кровотока), которые создаются в различных частях тела. Вены большого круга кровообращения осуществляют отток крови от органов, участвуют в обменной и депонирующей функциях. Различают поверхностные и глубокие вены, причем последние в двойном количестве сопровождают артерии. Вены широко анастомозируют, образуя в органах сплетения. Во многих венах (в подкожных и других) имеются клапаны, являющиеся производными внутренней оболочки. Вены головного мозга и его оболочек, внутренних органов, подчревные, подвздошные, полые и безымянные клапанов не содержат. Клапаны в венах способствуют току венозной крови к сердцу, препятствуя ее обратному движению. Одновременно клапаны предохраняют сердце от излишней затраты энергии на преодоление колебательных движений крови, постоянно возникающих в венах под влиянием различных внешних воздействий (изменение атмосферного давления, мышечное сжатие и др.). Классификация. По степени развития мышечных элементов в стенках вен они могут быть разделены на две группы: вены волокнистого (безмышечного) и вены мышечного типа. Вены мышечного типа в свою очередь подразделяются на вены со слабым, средним и сильным развитием мышечных элементов. Вены волокнистого типа отличаются тонкостью стенок и отсутствием средней оболочки, в связи с чем их называют еще венами безмышечного типа. К венам этого типа относят безмышечные вены твердой и мягкой мозговых оболочек, вены сетчатки глаза, костей, селезенки и плаценты. Вены мозговых оболочек и сетчатки глаза податливы при изменении кровяного давления, могут сильно растягиваться, но скопившаяся в них кровь сравнительно легко под действием собственной силы тяжести оттекает в более крупные венозные стволы. Вены костей, селезенки и плаценты также пассивны в продвижении по ним крови. Это объясняется тем, что все они плотно сращены с плотными элементами соответствующих органов и не спадаются, поэтому отток крови по ним совершается легко. Эндотелиальные клетки, выстилающие эти вены, имеют более извилистые границы, чем в артериях. Снаружи к ним прилежит базальная мембрана, а затем тонкий слой рыхлой волокнистой соединительной ткани, срастающийся с окружающими тканями. Вены мышечного типа характеризуются наличием в их оболочках гладких мышечных клеток, количество и расположение которых в стенке вены обусловлены гемодинамическими факторами. Вены со слабым развитием мышечных элементов различны по диаметру. Сюда относятся вены мелкого и среднего калибра (до 1-2 мм), сопровождающие артерии мышечного типа в верхней части туловища, шеи и лица, а также такие крупные вены, как, например, верхняя полая вена. Вены мелкого и среднего калибра со слабым развитием мышечных элементов имеют плохо выраженный подэндотелиальный слой, а в средней оболочке содержится небольшое количество мышечных клеток. В наружной оболочке мелких вен встречаются единичные продольно направленные гладкие мышечные клетки. Среди вен крупного калибра, в которых слабо развиты мышечные элементы, наиболее типична верхняя полая вена, в средней оболочке стенки которой отмечается небольшое количество гладких мышечных клеток. Примером вены среднего калибра со средним развитием мышечных элементов является плечевая вена. Эндотелиальные клетки, выстилающие ее внутреннюю оболочку, короче, чем в соответствующей артерии. Подэндотелиальный слой состоит из соединительнотканных волокон и клеток, ориентированных в основном вдоль сосуда. Внутренняя оболочка этого сосуда формирует клапанный аппарат, а также имеет в своем составе отдельные продольно направленные гладкие мышечные клетки. Внутренняя эластическая мембрана в вене не выражена. На границе между внутренней и средней оболочками располагается только сеть эластических волокон. Эластические волокна внутренней оболочки плечевой вены, как и в артериях, связаны с эластическими волокнами средней и наружной оболочек и составляют единый каркас. Средняя оболочка этой вены гораздо тоньше средней оболочки соответствующей артерии. Она обычно состоит из циркулярно расположенных пучков гладких миоцитов, разделенных прослойками волокнистой соединительной ткани. Наружная эластическая мембрана в этой вене отсутствует, поэтому соединительнотканные прослойки средней оболочки переходят непосредственно в рыхлую волокнистую соединительную ткань наружной оболочки. К венам с сильным развитием мышечных элементов относятся крупные вены нижней половины туловища и ног. Бедренная вена. Внутренняя оболочка ее состоит из эндотелия и подэндотелиального слоя, образованного рыхлой волокнистой соединительной тканью, в которой продольно залегают пучки гладких мышечных клеток. Внутренняя эластическая мембрана отсутствует, однако на ее месте видны скопления эластических волокон. Внутренняя оболочка бедренной вены формирует клапаны, представляющие собой тонкие складки ее. Эндотелиальные клетки, покрывающие клапан со стороны, обращенной в просвет сосуда, имеют удлиненную форму и направлены вдоль створок клапана, а на противоположной стороне клапан покрыт эндотелиальными клетками полигональной формы, лежащими поперек створок. Основу клапана составляет волокнистая соединительная ткань. При этом на стороне, обращенной к просвету сосуда, под эндотелием залегают преимущественно эластические волокна, а на противоположной стороне - много коллагеновых волокон. В основании створки клапана может находиться некоторое количество гладких мышечных клеток. Средняя оболочка бедренной вены содержит пучки циркулярнорасположенных гладких мышечных клеток, окруженных коллагеновыми и эластическими волокнами. Выше основания клапана средняя оболочка истончается. Ниже места прикрепления клапана мышечные пучки перекрещиваются, создавая утолщение в стенке вены. В наружной оболочке, образованной рыхлой волокнистой соединительной тканью, обнаруживаются пучки продольно расположенных гладких мышечных клеток, сосуды сосудов, нервные волокна. Нижняя полая вена также относится к венам с сильным развитием мышечных элементов. Внутренняя оболочка нижней полой вены представлена эндотелием, подэндотелиальным слоем и слоем эластических волокон. Во внутренней части средней оболочки наряду с гладко- мышечными клетками залегает подынтимальная сеть кровеносных и лимфатических капилляров, а в наружной части - артериолы и венулы. Внутренняя и средняя оболочки нижней полой вены человека развиты относительно слабо. Во внутренней оболочке в подэндотелиальном слое находятся немногочисленные продольно расположенные гладкие мышечные клетки. В средней оболочке выявляется циркулярный мышечный слой, который в грудном участке нижней полой вены истончается. Наружная оболочка нижней полой вены имеет большое количество продольно расположенных пучков гладких мышечных клеток и по всей толщине превышает внутреннюю и среднюю оболочку вместе взятые. Между пучками гладких мышечных клеток лежат прослойки рыхлой волокнистой соединительной ткани. Возрастные изменения в венах сходны с таковыми в артериях. Однако перестройка стенки вены человека начинается еще на первом году жизни. К моменту рождения человека в средней оболочке стенок бедренной и подкожных вен нижних конечностей имеются лишь пучки циркулярно ориентированных мышечных клеток. Только к моменту вставания на ноги (к концу первого года) и повышения дистального гидростатического давления развиваются продольные мышечные пучки. Просвет вены по отношению к просвету артерии у взрослых (2:1) больше, чем у детей (1:1). Расширение просвета вен обусловлено меньшей эластичностью стенки вен, возрастанием у взрослых кровяного давления.

Морфо - функциональная характеристика сосудов микроциркуляторного русла. Артериолы, капилляры, венулы: функции и строение. Органоспецифичность капилляров. Понятие о гистогематическом барьере.

Микроциркуляторное русло. Этим термином в ангиологии обозначается система мелких сосудов, включающая артериолы, гемокапилляры, венулы, а также артериоловенулярные анастомозы. Этот функциональный комплекс кровеносных сосудов, окруженный лимфатическими капиллярами и лимфатическими сосудами, вместе с окружающей соединительной тканью обеспечивает регуляцию кровенаполнения органов, транскапиллярный обмен и дренажно-депонирующую функцию. Чаще всего элементы микроциркуляторного русла образуют густую систему анастомозов прекапиллярных, капиллярных и посткапиллярных сосудов, но могут быть и другие варианты с выделением какого-либо основного, предпочтительного канала, например анастомоза прекапиллярной артериолы и посткапиллярной венулы и др. Артериолы Это наиболее мелкие артериальные сосуды мышечного типа диаметром не более 50-100 мкм, которые, с одной стороны, связаны с артериями, а с другой - постепенно переходят в капилляры. В артериолах сохраняются три оболочки, характерные для артерий вообще, однако выражены они очень слабо. Внутренняя оболочка этих сосудов состоит из эндотелиальных клеток с базальной мембраной, тонкого подэндотелиального слоя и тонкой внутренней эластической мембраны. Средняя оболочка образована 1-2 слоями гладких мышечных клеток, имеющих спиралевидное направление. В артериолах обнаруживаются перфорации в базальной мембране эндотелия и внутренней эластической мембране, благодаря которым осуществляется непосредственный тесный контакт эндотелиоцитов и гладких мышечных клеток. Между мышечными клетками артериол обнаруживается небольшое количество эластических волокон. Наружная эластическая мембрана отсутствует. Наружная оболочка представлена рыхлой волокнистой соединительной тканью. Кровеносные капилляры наиболее многочисленные и самые тонкие сосуды, имеющие, однако, различный просвет. Это обусловлено как органными особенностями капилляров, так и функциональным состоянием сосудистой системы. В кроветворных органах, некоторых железах внутренней секреции, печени встречаются капилляры с широким, но меняющимся на протяжении сосуда диаметром. Такие капилляры называются синусоидными. Специфические вместилища крови капиллярного типа - лакуны - имеются в пещеристых телах половою члена. В большинстве случаев капилляры формируют сеть, однако они могут образовывать петли (в сосочках кожи, ворсинках кишки, синовиальных ворсинках суставов и др.), а также клубочки (сосудистые клубочки в почке). В любой ткани в обычных физиологических условиях находится до 50 % нефункционируюших капилляров. В стенке капилляров различают три тонких слоя (как аналоги трех оболочек рассмотренных выше сосудов). Внутренний слой представлен эндотелиальными клетками, расположенными на базальной мембране, средний состоит из перицитов1, заключенных в базальную мембрану, а наружный - из редко расположенных адвентициальных клеток и тонких коллагеновых волокон, погруженных в аморфное вещество. Эндотелиальный слой. Внутренняя выстилка капилляра представляет собой пласт лежащих на базальной мембране вытянутых, полигональной формы эндотелиальных клеток с извилистыми границами, которые хорошо выявляются при импрегнации серебром. Ядра эндотелиальных клеток обычно уплощенные, овальной формы. Клетки эндотелия обычно тесно прилежат друг к другу, часто обнаруживаются плотные и щелевидные контакты. Вдоль внутренней и наружной поверхностей эндотелиальных клеток располагаются пиноцитозные пузырьки и кавеолы, отображающие трансэндотелиальный транспорт различных веществ и метаболитов. В венозном отделе капилляра их больше, чем в артериальном. Органеллы, как правило, немногочисленны и расположены в околоядерной зоне. Внутренняя поверхность эндотелия капилляра, обращенная к току крови, может иметь субмикроскопические выступы в виде отдельных микроворсинок, особенно в венозном отделе капилляра. В венозных отделах капилляров цитоплазма эндотелиоцитов образует клапанообразные структуры. Эти цитоплазма- тические выросты увеличивают поверхность эндотелия и в зависимости от активности транспорта жидкости через эндотелий изменяют свои размеры. Эндотелий участвует в образовании базальной мембраны. Эндотелиальные клетки образуют между собой простые соединения, контакты типа замка и плотные контакты с локальным слиянием внешних листков плазмолеммы контактирующих эндотелиоцитов и облитерацией межклеточной щели. Базальная мембрана эндотелия капилляров - это тонкофибриллярная, пористая, полупроницаемая пластина толщиной 30-35 нм, в состав которой входят коллаген IV и V типов, гликопротеины, а также фибронектин, ламинин и сульфатосодержащие протеогликаны. Базальная мембрана выполняет опорную, разграничительную и барьерную функции. Перициты. Эти соединительнотканные клетки имеют отростчатую форму и в виде корзинки окружают кровеносные капилляры, располагаясь в расщеплениях базальной мембраны эндотелия. На перицитах некоторых капилляров обнаружены эфферентные нервные окончания, функциональное значение которых, по-видимому, связано с регуляцией изменения просвета капилляров. Адвентициальные клетки. Это малодифференцированные клетки, расположенные снаружи от перицитов. Они окружены аморфным веществом соединительной ткани, в котором находятся тонкие коллагеновые волокна. Адвентициальные клетки являются камбиальными полипотентными предшественниками фибробластов, остеобластов и адипоцитов. Классификация капилляров . Различают три типа капилляров. Наиболее распространенный тип капилляров - соматический, описанный выше (к этому типу относятся капилляры со сплошной эндотелиальной выстилкой и базальной мембраной); второй тип - фенестрированные капилляры с порами в эндотелиоцитах, затянутых диафрагмой (фенестрами) и третий тип - капилляры перфорированного типа со сквозными отверстиями в эндотелии и базальной мембране. Капилляры соматического типа находятся в сердечной и скелетной мышцах, в легких, ЦНС и других органах. Фенестрированные капилляры встречаются в эндокринных органах, в собственной пластинке слизистой оболочки тонкой кишки, в бурой жировой ткани, в почке. Перфорированные капилляры характерны для органов кроветворения, в частности для селезенки, а также для печени. Кровеносные капилляры осуществляют основные обменные процессы между кровью и тканями, а в некоторых органах (легкие) участвуют в обеспечении газообмена между кровью и воздухом. Тонкость стенок капилляров, огромная площадь их соприкосновения с тканями (более 6000 м2), медленный кровоток (0,5 мм/с), низкое кровяное давление (20-30 мм рт.ст.) обеспечивают наилучшие условия для обменных процессов. Стенка капилляров тесно связана функционально и морфологически с окружающей соединительной тканью (изменение состояния базальной мембраны и основного вещества соединительной ткани). Венулы.

Морфо - функциональная характеристика сосудов микроциркуляторного русла. Артериолы, венулы, артериоло – венулярные анастомозы: функции и строение. Классификация и строение различных типов артериоло – венулярных анастомозов.

Микроциркуляторное русло - система мелких сосудов, включающая артериолы, гемокапилляры, венулы, а также артериоловенулярные анастомозы. Этот функциональный комплекс кровеносных сосудов, окруженный лимфатическими капиллярами и лимфатическими сосудами, вместе с окружающей соединительной тканью обеспечивает регуляцию кровенаполнения органов, транскапиллярный обмен и дренажно-депонирующую функцию. Чаще всего элементы микроциркуляторного русла образуют густую систему анастомозов прекапиллярных, капиллярных и посткапиллярных сосудов, но могут быть и другие варианты с выделением какого-либо основного, предпочтительного канала, например анастомоза прекапиллярной артериолы и посткапиллярной венулы и др. Артериолы Это наиболее мелкие артериальные сосуды мышечного типа диаметром не более 50-100 мкм, которые, с одной стороны, связаны с артериями, а с другой - постепенно переходят в капилляры. В артериолах сохраняются три оболочки, характерные для артерий вообще, однако выражены они очень слабо. Внутренняя оболочка этих сосудов состоит из эндотелиальных клеток с базальной мембраной, тонкого подэндотелиального слоя и тонкой внутренней эластической мембраны. Средняя оболочка образована 1-2 слоями гладких мышечных клеток, имеющих спиралевидное направление. В артериолах обнаруживаются перфорации в базальной мембране эндотелия и внутренней эластической мембране, благодаря которым осуществляется непосредственный тесный контакт эндотелиоцитов и гладких мышечных клеток. Между мышечными клетками артериол обнаруживается небольшое количество эластических волокон. Наружная эластическая мембрана отсутствует. Наружная оболочка представлена рыхлой волокнистой соединительной тканью. Венулы. Различают три разновидности венул: посткапиллярные, собирательные и мышечные. Посткапиллярные венулы (диаметр 8-30 мкм) по своему строению напоминают венозный отдел капилляра, но в стенке этих венул отмечается больше перицитов, чем в капиллярах. В собирательных венулах (диаметр 30-50 мкм) появляются отдельные гладкие мышечные клетки и более четко выражена наружная оболочка. Мышечные венулы (диаметр 50-100 мкм) имеют один-два слоя гладких мышечных клеток в средней оболочке и сравнительно хорошо развитую наружную оболочку. Венозный отдел микроциркуляторного русла вместе с лимфатическими капиллярами выполняет дренажную функцию, регулируя гематолимфатическое равновесие между кровью и внесосудистой жидкостью, удаляя продукты метаболизма тканей. Через стенки венул, так же как через капилляры, мигрируют лейкоциты. Медленный кровоток (не более 1-2 мм в секунду) и низкое кровяное давление (около 10 мм рт.ст.), а также растяжимость этих сосудов создают условия для депонирования крови. Артериоловенулярные анастомозы (ABA) - это соединения сосудов, несущих артериальную кровь в вены в обход капиллярного русла. Они обнаружены почти во всех органах, диаметр ABA колеблется от 30 до 500 мкм, а длина может достигать 4 мм. Объем кровотока в ABA во много раз больше, чем в капиллярах, скорость кровотока значительно увеличена. Так, если через капилляр 1 мл крови проходит в течение 6 ч, то такое же количество крови через ABA проходит за 2 с. ABA отличаются высокой реактивностью и способностью к ритмическим сокращениям с частотой до 12 раз в минуту. Классификация. Различают две группы анастомозов: 1) истинные ABA (шунты), по которым сбрасывается чисто артериальная кровь, 2)атипичные ABA (полушунты), по которым течет смешанная кровь. Первая группа истинных анастомозов (шунты) может иметь различную внешнюю форму - прямые короткие соустья, петли, ветвящиеся соединения. По своему строению они подразделяются на две подгруппы: а) простые ABA, б) ABA, снабженные специальными сократительными структурами. В простых истинных анастомозах границы перехода одного сосуда в другой соответствуют участку, где заканчивается средняя оболочка артериолы. Регуляция кровотока осуществляется гладкомышечными клетками средней оболочки самой артериолы, без специальных дополнительных сократительных аппаратов. Во второй подгруппе анастомозы могут иметь специальные сократительные устройства в виде валиков или подушек в подэндотелиальном слое, образованные продольно расположенными гладкомышечными клетками. Сокращение подушек, выступающих в просвет анастомоза, приводит к прекращению кровотока. К этой же подгруппе относятся ABA эпителиоидного типа (простые и сложные). Простые ABA эпителиоидного типа характеризуются наличием в средней оболочке внутреннего продольного и наружного циркулярного слоев гладких мышечных клеток, которые по мере приближения к венозному концу заменяются на короткие овальные светлые клетки (Е-клетки), похожие на эпителиальные. В венозном сегменте ABA стенка его резко истончается. Средняя оболочка здесь содержит лишь незначительное количество гладких мышечных клеток в виде цирку- лярно расположенных поясков. Наружная оболочка состоит из рыхлой соединительной ткани. Сложные, или клубочковые, ABA эпителиоидного типа отличаются от простых тем, что приносящая (афферентная) артериола делится на 2-4 ветви, которые переходят в венозный сегмент. Эти ветви окружены одной общей соединительнотканной оболочкой. Такие анастомозы часто обнаруживаются в дерме кожи и гиподерме, а также в параганглиях. Вторая группа - атипичные анастомозы (полушунты) представляет собой соединения артериол и венул, по которым кровь протекает через короткий, но широкий, диаметром до 30 мкм, капилляр. Поэтому сбрасываемая в венозное русло кровь является не полностью артериальной. ABA принимают участие в регуляции кровенаполнения органов, местного и общего давления крови, в мобилизации депонированной в венулах крови. Эти соединения играют определенную роль в стимуляции венозного кровотока, артериализации венозной крови, мобилизации депонированной крови и регуляции тока тканевой жидкости в венозное русло. Велика роль ABA в компенсаторных реакциях организма при нарушении кровообращения и развитии патологических процессов.

Ганглии (иначе - нервные узлы) - это совокупность особых клеток. Она состоит из тел, дендритов и аксонов. Они, в свою очередь, относятся к нервным клеткам. Также нервные узлы включают в себя вспомогательные Их задачей является создание опоры для нейронов. Как правило, нервные ганглии покрыты соединительными тканями. Эти скопления встречаются не только у позвоночных, но и у некоторых беспозвоночных животных. Соединяясь между собой, нервные узлы создают сложные структурные системы. Примером могут являться структуры цепочки или сплетения. Далее в статье подробнее будет описано, узлы, как происходит взаимодействие между ними. Кроме того, будет приведена классификация и описание основных видов.

Позвоночные животные

Ганглии, существующие у этих особей, имеют некоторые особенности. Так, они не входят в пределы центральной нервной системы. Некоторые называют их Однако наиболее правильным считается термин "ядро". Нервные узлы и система, которую они формируют, являются связующими элементами между компонентами нервной системы. Они пропускают импульсы и осуществляют управление работой определенных внутренних органов.

Классификация

Все ганглии подразделяются на несколько типов. Рассмотрим основные. Понятие "спинальный ганглий" объединяет сенсорные (афферентные) элементы. Второй тип - автономные элементы. Они располагаются в соответствующей (автономной) нервной системе. Основной вид - базальный. Их составляющими являются нейронные узлы, которые находятся в белом веществе. Оно содержится в головном мозге. Работа нейронов заключается в регулировании некоторых функций организма, а также в содействии в выполнении нервных процессов. Существует также вегетативный тип. Он представляет собой один узел нервов. Относится этот элемент к Эти узлы проходят вдоль позвоночника. Вегетативные ганглии являются очень маленькими. Их размер может быть меньше миллиметра, а самые большие соизмеримы с горошинами. Задачей является регуляция функционирования внутренних органов и распределение импульсов.

Сравнение с термином "сплетение"

В книгах часто встречается понятие "сплетение". Его можно принять за синоним к слову "ганглии". Однако сплетением называют конкретные нервные узлы. Они присутствуют в определенном количестве на замкнутом участке. А ганглий - это область соединения синаптических контактов.

Нервная система

С точки зрения анатомии выделяются два ее типа. Первый называют центральной Сюда можно отнести головной мозг и спинной. Второй тип представляет собой совокупность узлов, нервных окончаний и самих нервов. Этот комплекс носит название периферической нервной системы.

Нервную систему формируют нервная трубка и ганглиозная пластина. К черепной части первой относятся головной мозг с органами чувств, к туловищному отделу - спинной мозг. Ганглиозная пластина формирует спинномозговые, вегетативные узлы и хромаффинную ткань. Нервная ткань существует как слагаемое системы, регулирующее соответствующие процессы организма.

Общие сведения

Нервные узлы - это объединение нервных клеток, выходящее за границы центральной нервной системы. Существуют вегетативные и чувствительные виды. Последние располагаются рядом с корешками спинного мозга и черепно-мозговыми нервами. По форме спинномозговой узел напоминает веретено. Окружен он оболочкой из соединительной ткани. Она также проникает в сам узел, при этом удерживая в себе кровеносные сосуды. Нервные клетки, находящиеся в спинномозговом узле, светлые, крупного размера, ядра их легко различимы. Нейроны формируют группы. Составляющими центра спинномозгового узла являются отростки нервных клеток и прослойки эндоневрия. Отростки-дендриты начинаются в чувствительной зоне а заканчиваются в периферийной части, где находятся их рецепторы. Нередким случаем является превращение биполярных нейронов в псевдоуниполярные. Это происходит во время их созревания. Из псевдоуниполярного нейрона выходит отросток, обвивающий клетку. Он разграничивается на афферентную, другое название "дендритная", и эфферентную, иначе - аксональную, части.

Дендриты и аксоны

Эти структуры покрывают составляющими которых являются нейролеммоциты. Нервные клетки спинномозгового узла окружают клетки олигодендроглий, имеющие такие названия, как мантийные глиоциты, глиоциты натрия, а также клетки-сателлиты. У этих элементов очень маленькие круглые ядра. Кроме того, оболочку этих клеток окружает капсула из соединительных тканей. Компоненты ее отличаются от прочих ядрами овальной формы. Биологически активными веществами, содержащимися в нервных клетках спинномозгового узла, являются ацетилхолин, глутаминовая кислота, субстанция P.

Вегетативные, или автономные, структуры

Автономные нервные узлы располагаются в нескольких местах. Во-первых, близ позвоночника (там находятся паравертебральные структуры). Во-вторых, перед позвоночником (превертебральные). Помимо этого, автономные узлы иногда находятся и в стенках органов. Например, в сердце, бронхах и мочевом пузыре. Такие ганглии называют интрамуральными. Еще один вид находится неподалеку от поверхности органов. С автономными структурами соединяются преганглионарные нервные волокна. Они обладают отростками нейронов из ЦНС. Вегетативные скопления делятся на два типа: симпатические и парасимпатические. Почти для всех органов получение постганглионарных волокон осуществляется от клеток, которые могут находиться в обоих типах вегетативных структур. Но воздействие, которое оказывают нейроны, отличается в зависимости от типа скоплений. Так, симпатическое действие может усиливать работу сердца, тогда как парасимпатическое ее замедляет.

Строение

Независимо от типа автономного узла их строение практически полностью совпадает. Каждую структуру покрывает оболочка соединительной ткани. В вегетативных узлах существуют особенные нейроны под названием "мультиполярные". Их отличает необычная форма, а также местоположение ядра. Существуют нейроны с несколькими ядрами и клетки с увеличенным количеством хромосом. Нейронные элементы и их отростки заключены в капсулу, составляющими которой являются глиальные клетки-сателлиты. Их называют мантийными глиоцитами. На верхнем слое этой оболочки находится мембрана, окруженная соединительной тканью.

Интрамуральные структуры

Эти нейроны вместе с проводящими путями могут составлять собой метасимпатический участок автономной нервной системы. По мнению гистолога Догеля, среди интрамуральных типов структур выделяются клетки трех разновидностей. К первым относятся длинноаксонные эфферентные элементы I типа. Эти клетки имеют нейроны больших размеров, у которых дендриты длинные, а аксон короткий. Для равноотросчатых афферентных нервных компонентов характерны длинные и дендриты, и аксон. А ассоциативные нейроны соединяют между собой клетки двух первых типов.

Периферическая система

Задача нервов обеспечивать связью нервные центры спинного, головного мозга и нервные структуры. Элементы системы взаимодействуют посредством соединительной ткани. Нервные центры - это области, отвечающие за обработку информации. Почти все рассматриваемые структуры состоят и из афферентных волокон, и из эфферентных. Набор волокон, являющийся, собственно, нервом, может содержать в себе не только структуры, защищенные электроизолирующей миелиновой оболочкой. В них присутствуют и те, что такого "покрытия" не имеют. Кроме того, нервные волокна разделены прослойкой соединительной ткани. Ее отличает рыхлость и волокнистость. Называется эта прослойка эндоневрием. Он содержит малое количество клеток, основную его часть составляют коллагеновые ретикулярные волокна. В этой ткани находятся небольшие кровеносные сосудики. Некоторые пучки с нервными волокнами окружает слой другой соединительной ткани - периневрий. Его составляющими являются последовательно расположенные клетки и волокна коллагена. Капсула, обволакивающая весь нервный ствол (она называется эпиневрий), образуется из соединительной ткани. Она, в свою очередь, обогащена клетками-фибробластами, макрофагами и компонентами жира. В ней находятся кровеносные сосуды с нервными окончаниями.

Вегетативные ганглии представляют собой скопление многочислен-ных мультиполярных нервных клеток.

Величина вегетативных ганглиев существенно варьирует. В связи с этим различают крупные, средней величины, мелкие и очень мелкие (микроганглии) ганглии.

Необходимо отметить, что кроме анатомически обособленных ганглиев, по ходу вегетативных ветвей периферических нервов встречается большое количество нервных клеток, подобных нервным клеткам вегетативного ганглия. Эти нейроны, мигрирующие сюда в ходе эмбриогенеза, локализуются по ходу нервов поодиночке или образуют небольшие группы – микроганглии.

Вегетативный ганглий с поверхности покрыт фиброзной соединительнотканной капсулой, от которой внутрь отходят многочисленные прослойки соединительной ткани, образующей строму узла. По этим прослойкам в узел проходят кровеносные сосуды, питающие его и образующие в нем капиллярную сеть. В капсуле и строме узла часто вблизи кровеносных сосудов встречаются рецепторы – диффузные, кустиковидные или инкапсулированные.

Мультиполярные нервные клетки вегетативного ганглия впервые были описаны А.С. Догелем. При этом Догель выделил 3 типа нервных клеток вегетативного ганглия, которые получили названияклеток Догеля I , II, III типа . Морфофункциональные характеристики клеток Догеля существенно разнятся.

Клетки Догеля I типа по функциональному значению являются эффекторными (двигательными) нейронами. Это более или менее крупные нервные клетки, с несколько короткими дендритами, не выходящими за пределы данного ганглия. Аксон этих клеток более длинный выходит за пределы ганглия и направляется к рабочему аппарату – гладкомышечным клеткам, железистым клеткам, образуя на них двигательные (или соответственно секреторные) нервные окончания. Аксоны и дендриты клеток ДогеляIтипа являются безмякотными. Дендриты часто образуют пластинчатые расширения, на которых (как и на теле клетки) располагаются синаптические окончания, образующиеся разветвлениями преганглионарного нервного волокна.

Тела нейронов в вегетативном ганглии, в отличие от спиномозгового ганглия, располагаются беспорядочно по всему узлу и более рыхло (т.е. более редко). На препаратах, окрашенных гематоксилином или другими общегистологическими красителями, отростки нервных клеток остаются не выявленными, а клетки имеют такую же округлую безотросчатую форму, как в спиномозговых узлах. Тело каждой нервной клетки (как и в спинальном ганглии) окружено слоем уплощенных элементов олигодендроглии – слоем сателлитов.

К наруже от слоя сателлитов имеется еще тонкая соединительно-тканная капсула. Клетки Догеля Iтипа являются основной клеточной формой вегетативных ганглиев.

Клетки Догеля II типа – это также мультиполярные нервные клетки, с несколькими длинными дендритами и нейритом, уходящим за пределы данного ганглия в соседние ганглии. Аксон с поверхности покрыт миелином. Дендриты этих клеток начинаются рецепторными аппаратами в гладких мышцах. С функциональной точки зрения клетки ДогеляIIтипа являются чувствительными. В отличие от чувствительных псевдоуниполярных нервных клеток спиномозгового узла клетки ДогеляIIтипа, по-видимому, образуют рецепторное (афферентное) звено местных рефлекторных дуг, замыкаемых без захода нервного импульса в центральную нервную систему.

Клетки Догеля III типа представляют собой местные ассоциативные (вставочные) элементы, соединяющие своими отростками несколько клетокIиIIтипа. Их дендриты короткие, но более длинные, чем у клетокIтипа, не выходят за пределы данного ганглия, а образуют корзинчатые разветвления, оплетающие тела других клеток данного ганглия. Нейрит клетки ДогеляIIIтипа идет в другой ганглий и там вступает в синаптическую связь с клеткамиIтипа. Следовательно, клеткиIIIтипа входят в качестве ассоциативного звена в местные рефлекторные дуги.

Нельзя не отметить, существует такая точка зрения, что клетки Догеля IIIтипа имеют рецепторную или эффекторную природу.

Соотношение численности клеток Iи II типов Догеля в различных вегетитивных ганглиях неодинаково. Парасимпатические ганглии, в отличие от симпатических ганглиев, характеризуются преобладанием клеток с короткими внутрикапсулярными дендритами, отсутствием или малым количеством пигмента в клетках. Кроме того в парасимпатических ганглиях, как правило, тела лежат значительно компактнее, чем в симпатических ганглиях. Кроме того, в симпатических ганглиях имеютсяМИФ-клетки (мелкие клетки с интенсивной флюоросценцией).

Через вегетативный ганглий проходят проводящие пути трех видов: центростремительные, центробежные и периферические (местные) рефлекторные.

Центростремительные пути образованы чувствительными отростками псевдоуниполярных клеток спинального ганглия, начинающихся рецепторами в иннервируемых тканях, а также внутри ганглия. Эти волокна проходят транзитом через вегетативные ганглии.

Центробежные пути представлены преганглионарными волокнами, которые многократно ветвятся в вегетативном узле и образуют синапсы на многих клеточных телах эффекторных нейронов. Например, в верхнем шейном узле соотношение числа преганглионарных волокон, вступивших в него, к постганглионарным равно 1:32. Это явление приводит, при возбуждении преганглионарных волокон, к резкому расширению области возбуждения (геперализация эффектора). Благодаря этому, сравнительно небольшое количество центральных вегетативных нейронов обеспечивает нервными импульсами все органы и ткани. Итак, например, при раздражении у животного преганглионарных симпатических волокон, проходящих через передние корешки IYгрудного сегмента, может наблюдаться сужение сосудов кожи головы, шеи, расширение коронарных сосудов, сужение сосудов кожных покровов передней конечности, сосудов почки и селезенки.

Продолжение этих путей составляют постганглионарные волокна, достигающие иннервируемых тканей.

Периферические (местные) рефлекторные пути начинаются в тканях разветвлениями отростков собственных чувствительных нейронов вегетативных ганглиев (т.е. клетками IIтипа Догеля). Нейриты же этих кле-ток заканчиваются на клетках ДогеляIтипа, чьи постганглионарные волокна входят в состав центробежных путей.

Морфологическим субстратом рефлекторной деятельности вегетативной нервной системы является рефлекторная дуга. Для рефлектор-ной дуги вегетативной нервной системы характерны все три звена – рецепторное (афферентное), вегетативное (ассоциативное) и эффекторное (двигательное), но локализация их иная чем в соматической.

Интересно отметить, что многие морфологи и физиологи указывают как на отличительный признак вегетативной нервной системы, отсутствие в ее составе собственного афферентного (рецепторного) звена, т.е. они считают, что чувствительная иннервация внутренних органов, сосудов и т.д. осуществляется дендритами псевдоуниполярных клеток спинального ганглия, т.е. соматической нервной системы.

Правильнее считать, что спиномозговые узлы содержат нейроны, иннервирующие скелетную мускулатуру, кожу (т.е. нейроны соматической нервной системы), так и нейроны, иннервирующие все внутренние органы, сосуды (т.е. вегетативные нейроны).

Одним словом, аффекторное звено, как и в соматической (анимальной) нервной системе, в вегетативной нервной системе представлено клеткой, лежащей в спиномозговом узле.

Тело нейрона ассоциативного звена располагается, в отличие от соматической рефлекторной нервной дуги, не в области заднего рога, а в боковых рогах серого вещества, и аксон этих клеток выходит за пределы мозга и оканчивается в одном из вегетативных ганглиев.

Наконец, наибольшие отличия между анимальной и вегетативной рефлекторными дугами наблюдаются в эфферентном звене. Так, тело эфферентного нейрона в соматической нервной системе находится в сером веществе спинального или головного ганглия и лишь его аксон идет на периферию в составе того или иного черепно или спиномозгового нерва. В вегетативной системе тела эффекторных нейронов находятся на периферии: они либо разбросаны по ходу некоторых нервов, либо образуют скопления – вегетативные ганглии.

Таким образом, для вегетативной нервной системы, в силу такой локализации эффекторных нейронов, характерно наличие, по крайней мере, одного перерыва эфферентного пути, который проходит в вегетативном ганглии, т.е. здесь нейриты вставочных нейронов, контактируют с нейронами эффекторными, образуя на их телах и дендриты синапсы. Следовательно, вегетативные ганглии представляют собой периферические нервные центры. Этим они принципиально отличаются от спинальных ганглиев, которые не являются нервными центрами, т.к. в них нет синапсов и не происходит переключения нервных импульсов.

Таким образом, спиномозговые узлы являются смешанными образованиями, анимально-вегетативными.

Особенностью рефлекторной дуги симпатической нервной системы является наличие коротких преганглионарных волокон и очень длинных постганглионарных волокон.

Особенностью рефлекторной дуги парасимпатической нервной системы является, напротив, наличие очень длинных преганглионарных и очень коротких постганглионарных волокон.

Основные функциональные различия симпатической и парасимпатической систем заключаются в следующем. Медиатором, т.е. веществом, образующимся в области синапсов и осуществляющим химическую передачу импульса, в симпатических нервных окончаниях является симпатин (вещество, тождественное гормону мозгового вещества надпочечника – ноадреналину).

Медиатором в парасимпатических нервных окончаниях является «вещество вагуса» (вещество, тождественное ацетилхолину). Впрочем эта разница касается только постганглионарных волокон. Синапсы, образованные преганглионарными волокнами и в симпатической и парасимпатической системах холинергичны, т.е. в качестве медиатора они образуют холиноподобное вещество.

Названные химические вещества – медиаторы и сами по себе, даже без раздражения вегетативных нервных волокон, вызывают в рабочих органах эффекты, аналогичные действию соответствующих вегетативных нервных волокон. Так, ноадреналин при введении в кровь ускоряет сердцебиение, но замедляет перистальтику кишечного тракта, а ацетилхолин – наоборот. Ноадреналин вызывает сужение, а ацетилхолин – расширение просвета сосудов.

Холинергичны и синапсы, образуемые волокнами соматической нервной системы.

Деятельность вегетативной нервной системы находится под контролем коры больших полушарий, а также подкорковых вегетативных центров полосатого тела и, наконец, вегетативных центров промежуточного мозга (ядро гипоталамуса).

В заключении необходимо отметить, что учение о вегетативной нервной системе большой вклад внесли и советские ученые Б.И. Лаврентьев, А.А. Заварзин, Д.И. Голуб, удостоенные государственных премий.

Литература:

      Жаботинский Ю.М. Нормальная и патологическая морфология вегетативных ганглиев. М.,1953

      Заварзин А.А. Очерк по эволюционной гистологии нервной системы. М-Л,1941

      А.Г. Кнорре, И.Д.Лев. Вегетативная нервная система. Л.,1977,с.120

      Колосов Н.Г. Иннервация пищеварительного тракта человека. М-Л,1962

      Колосов Н.Г. Вегетативный узел. Л.,1972

      Колосов Н.Г., Хабарова А.Л. Структурная организация вегетативных ганглиев. Л.,Наука, 1978.-72с.

      Кочетков А.Г., Кузнецов Б.Г., Коновалова Н.В. Вегетативная нервная система. Н-Новгород, 1993.-92с.

      Мельман Е.П. Функциональная морфология иннервация органов пищеварения. М.,1970

      Ярыгин Н.Е. и Ярыгин В.Н. Патологические и приспособительные изменения нейрона. М.,1973.

Автономная нервная система, регулирующая висцеральные функции организма, подразделяется на симпатическую и парасим­патическую, оказывающие различное влияние на иннервируемые вместе органы нашего организма. И в симпатической, и в парасим­патической системе есть центральные отделы, имеющие ядерную организацию (ядра серого вещества головного и спинного мозга), и периферические (нервные стволы, ганглии, сплетения). К цен­тральным отделам парасимпатической нервной системы относят вегетативные ядра 3, 7, 9, 10 пар черепно-мозговых нервов и про­межуточные латеральные ядра крестового отдела спинного мозга, а к симпатической нервной системе корешковые нейроны промежу­точных латеральных ядер серого вещества тораколюмбального отдела позвоночника.

Центральные отделы автономной нервной системы имеют ядер­ную организацию и состоят из мультиполярных ассоциативных нейроцитов вегетативных рефлекторных дуг. Для вегетативной рефлекторной дуги, в отличие от соматической, характерна двуч-ленность ее эфферентного звена. Первый преганглионарный ней­рон эфферентного звена вегетативной рефлекторной дуги распола­гается в центральном отделе вегетативной нервной системы, а вто­рой в периферическом вегетативном ганглии. Аксоны вегетатив­ных нейронов центральных отделов, называемые преганглионар-ными волокнами (и в симпатическом и в парасимпатическом звене обычно миелиновые и холинергические) идут в составе передних корешков спинного мозга или черепных нервов и дают синапсы на нейронах одного из периферических вегетативных ганглиев. Аксоны нейронов периферических вегетативных ганглиев, назы­ваемые постганглионарными волокнами, заканчиваются эффекторными нервными окончаниями на гладких миоцитах во внутренних органах, сосудах, железах. Постганглионарные нервные волокна (обычно безмиелиновые) в симпатической нервной системе адре-нергические, а в парасимпатической - холинергические. Перифе-рические узлы вегетативной нервной системы, состоящие из муль­типолярных нейронов, могут находиться вне органов - симпатические паравертебральные и превертебральные ганглии, парасим­патические узлы головы, а также в стенке органов - интрамуральные ганглии в стенке пищеварительной трубки и других органах. Ганглии интрамуральных сплетений содержат кроме эфферентных нейронов (как и другие вегетативные ганглии) чувствительные и вставочные клетки местных рефлекторных дуг. Три основных типа клеток выделяют в интрамуральных нервных сплетениях. Длинноаксонные эфферентные нейроны - клетки первого типа, имею­щие короткие дендриты и длинный аксон, покидающий ганглий. Равноотростчатые, афферентные нейроны - клетки второго типа, содержат длинные дендриты и поэтому их аксоны морфологически различить не удается. Аксоны этих нейроцитов (показано экспери­ментально) образуют синапсы на клетках первого типа. Клетки третьего типа - ассоциативные, отдают свои отростки в соседние ганглии, заканчиваясь на дендритах их нейронов. В желудочно-кишечном тракте располагается несколько интрамуральных спле­тений: подслизистое, мышечное (самое крупное) и подсерозное. В мышечном сплетении обнаружены холинергические нейроны, возбуждающие двигательную активность, тормозные - адренергические и пуринергические (неадренергические) с крупными элек­тронно-плотными гранулами. Кроме этого имеются пептидэргические нейроны, выделяющие гормоны. Постганглионарные волокна нейронов интрамуральных сплетений в мышечной ткани органов образуют терминальные сплетения, содержащие варикознорасширенные аксоны. Последние содержат синаптические пузырьки - мелкие и светлые в холинергических мионевральных синапсах и мелкие гранулярные в адренергических.

В вегетативной нервной системе различают центральные и периферические отделы. Центральные отделы симпатической нервной системы представлены ядрами боковых рогов тораколюмбального отдела спинного мозга. В парасимпатической нервной системе центральные отделы включают ядра среднего и продолговатого мозга, а также ядра боковых рогов сакрального отдела спинного мозга. Парасимпатические волокна краниобульбарного отдела выходят в составе III-й, VII-й, IX-й и Х-й пар черепных нервов.
Периферические отделы вегетативной нервной системы образованы нервными стволами, ганглиями и сплетениями.

Вегетативные рефлекторные дуги начинаются чувствительным нейроном, тело которого лежит в спинномозговом узле (ганглии), как и в соматической рефлекторной дуг. Ассоциативные нейроны находятся в боковых рогах спинного мозга. Здесь нервные импульсы переключаются на промежуточные преганглионарные нейроны, отростки которых покидают центральные ядра и достигают вегетативных ганглиев, где передают импульсы на двигательный нейрон. В связи с этим различают нервные волокна преганглионарные и постганглионарные. Первые из них покидают центральную нервную систему в составе вентральных корешков спинномозговых нервов и черепных нервов. Как в симпатической, так и в парасимпатической системах преганглионарные нервные волокна принадлежат холинергическим нейронам. Аксоны нейронов, расположенных в вегетативных ганглиях, называются постганглионарными. Они не образуют прямых контактов с эффекторными клетками. Их терминальные отделы по своему ходу формируют расширения - варикозности, в составе которых находяся пузырьки медиатора. В области варикозности нет глиальной оболочки и нейромедиатор, выделяясь в окружающую среду, влияет на эффекторные клетки (например, на клетки желез, гладкие миоциты и др.).

В периферических ганглиях симпатической нервной системы, как правило, находятся адренергические эфферентные нейроны (за исключением нейронов, имеющих синаптические связи с потовыми железами, где симпатические нейроны являются холинергическими). В парасимпатических ганглиях эфферентные нейроны всегда холинергические.

Ганглии представляют собой скопления мультиполярных нейронов (от нескольких клеток до десятков тысяч). Экстраорганные (симпатические) ганглии имеют хорошо выраженную соединительнотканную капсулу, как продолжение периневрия. Парасимпатические ганглии находятся, как правило, в интрамуральных нервных сплетениях. Ганглии интрамуральных сплетений, как и другие вегетативные узлы, содержат вегетативные нейроны местных рефлекторных дуг. Мультиполярные нейроны диаметром 20-35 мкм расположены диффузно, каждый нейрон окружен глиоцитами ганглия. Кроме того, описаны нейроэндокринные, хеморецепторные, биполярные, а у некоторых позвоночных и униполярные нейроны. В симпатических ганглиях имеются мелкие интенсивно флюоресцирующие клетки (МИФ-клетки) с короткими отростками и большим количеством гранулярных пузырьков в цитоплазме. Они выделяют катехоламины и оказывают тормозящее влияние на передачу импульсов с преганглионарных нервных волокон на эфферентный симпатический нейрон. Эти клетки называют интернейронами.

Среди крупных мультиполярных нейронов вегетативных ганглиев различают: двигательные (клетки Догеля I-го типа), чувствительные (клетки Догеля II-го типа) и ассоциативные (клетки Догеля III-го типа). Двигательные нейроны имеют короткие дендриты с пластинчатыми расширениями ("рецептивные площадки"). Аксон этих клеток очень длинный, уходит за пределы ганглия в составе постганглионарных тонких безмиелиновых нервных волокон и оканчивается на гладких миоцитах внутренних органов. Клетки I-го типа называют длинноаксонными нейронами. Нейроны II-го типа - равноотростчатые нервные клетки. От их тела отходят 2-4 отростка, среди которых различить аксон трудно. Не разветвляясь, отростки уходят далеко от тела нейрона. Их дендриты имеют чувствительные нервные окончания, а аксон оканчивается на телах двигательных нейронов в соседних ганглиях. Клетки II-го типа являются чувствительными нейронами местных вегетативных рефлекторных дуг. Клетки Догеля III-го типа по форме тела похожи на вегетативные нейроны П-го типа, но их дендриты не выходят за пределы ганглия, а нейрит направляется в другие ганглии. Многие исследователи считают эти клетки разновидностями чувствительных нейронов.

Таким образом, в периферических вегетативных ганглиях имеются местные рефлекторные дуги, состоящие из чувствительных, двигательных и, возможно, ассоциативных вегетативных нейронов.

Интрамуральные вегетативные ганглии в стенке пищеварительного тракта отличаются тем, что в их составе, кроме двигательных холинергических нейронов, имеются тормозные нейроны. Они представлены адренергическими и пуринергическими нервными клетками. В последних медиатором является пуриновый нуклеотид. В интрамуральных вегетативных ганглиях встречаются также пептидергические нейроны, выделяющие вазоинтестинальный пептид, соматостатин и ряд других пептидов, с помощью которых осуществляются нейроэндокринная регуляция и модуляция деятельности тканей и органов пищеварительной системы.

Учебное видео анатомии вегетативной нервной системы (ВНС)

При проблемах с просмотром скачайте видео со страницы
Похожие публикации