Кто построил телескоп. Изобретение оптического телескопа. XVII век в истории наблюдений за звездами

Часто изобретение первого телескопа приписывают Гансу Липпершлею из Голландии, 1570-1619 годы, однако почти наверняка он не являлся первооткрывателем. Скорее всего, его заслуга в том, что он первый сделал новый прибор телескоп популярным и востребованным. А также именно он подал в 1608 году заявку на патент на пару линз, размещенный в трубке. Он назвал устройство подзорной трубой. Однако его патент был отклонен, поскольку его устройство показалось слишком простым.

Задолго до него Томас Диггес, астроном, в 1450 году попытался увеличить звезды с помощью выпуклой линзы и вогнутого зеркала. Однако у него не хватило терпения доработать устройство, и полу-изобретение вскоре было благополучно забыто. Сегодня Диггеса помнят за описание гелиоцентрической системы.

К концу 1609 года небольшие подзорные трубы, благодаря Липпершлею, стали распространены по всей Франции и Италии. В августе 1609 года Томас Харриот доработал и усовершенствовал изобретение, что позволило астрономам рассмотреть кратеры и горы на Луне.

Галилео Галилей и телескоп

Большой прорыв произошел, когда итальянский математик Галилео Галилей узнал о попытке голландца запатентовать линзовую трубу. Вдохновленный открытием, Галлей решил сделать такой прибор для себя. В августе 1609 года именно Галилео изготовил первый в мире полноценный телескоп. Сначала, это была всего лишь зрительная труба - ком-бинация очковых линз, сегодня бы ее назвали рефрактор. До Галилео, скорее всего, мало кто дога-дался использовать на пользу астро-номии эту развлекательную трубку. Благодаря прибору, сам Галилей открыл горы и кратеры на Луне, доказал сферичность Луны, открыл четыре спутника Юпитера, кольца Сатурна и сделал множество других полезных открытий.

Сегодняшнему человеку телескоп Галилео не покажется особенным, любой десятилетний ребенок может легко собрать гораздо лучший прибор с использованием современных линз. Но телескоп Галилео был единственным реальным работоспособным телескопом на тот день с 20-кратным увеличением, но с маленьким полем зрения, немного размытым изображением и другими недостатками. Именно Галилео открыл век ре-фрактора в астрономии — 17 век.

XVII век в истории наблюдений за звездами

Время и развитие науки позволяло создавать более мощные телескопы, которые давали видеть много больше. Астрономы начали использовать объективы с большим фокусным расстоянием. Сами телескопы превратились в большие неподъемные трубы по размеру и, конечно, были не удобны в использовании. Тогда для них изобрели штативы. Телескопы постепенно улучшали, дорабатывали. Однако его максимальный диаметр не превышал нескольких сантиметров — не удавалось изготавливать линзы большого размера.

К 1656 году Христиан Гюйенс сделал телескоп, увеличивающий в 100 раз наблюдаемые объекты, размер его был более 7 метров, апертура около 150 мм. Этот телескоп уже относят к уровню сегодняшних любительских телескопов для начинающих. К 1670-х годам был построен уже 45-метровый телескоп, который еще больше увеличивал объекты и давал больший угол зрения.

Исаак Ньютон и изобретение рефлектора

Но даже обычный ветер мог служить препятствием для получения четкого и качественного изображения. Телескоп стал расти в длину. Первооткрыватели, пытаясь выжать максимум из этого прибора, опирались на открытый ими оптический закон — уменьшение хроматической абер-рации линзы происходит с увеличением ее фокусно-го расстояния. Чтобы убрать хроматические помехи, исследователи делали телескопы самой не-вероятной длины. Эти трубы, которые назвали тогда телескопами, достигали 70 метров в длину и доставляли множество неудобств в работе с ними и настройке их. Недостатки рефракторов заставили великие умы искать решения к улучшению телескопов. Ответ и новый способ был найден: собирание и фокусировке лучей стала производиться с помощью вогнутого зеркала. Рефрактор переродился в рефлектор, полностью освободившийся от хроматизма.

Заслуга эта целиком и полностью принадлежит Исааку Ньютону , именно он сумел дать новую жизнь телескопам с помощью зеркала. Его первый рефлектор имел диаметр всего четыре сантиметра. А первое зеркало для телескопа диаметром 30 мм он сделал из сплава меди, олова и мышьяка в 1704 году. Изображение стало четким. Кстати, его первый телескоп до сих пор бережно хранится в астрономическом музее Лондона.

Но еще долгое время оптикам никак не удавалось делать полноценные зеркала для рефлекторов. Годом рождения нового типа телескопа принято считать 1720 год, когда англичане построили первый функциональный ре-флектор диаметром в 15 сантиметров. Это был прорыв. В Европе появился спрос на удобоносимые, почти компактные телескопы в два метра длиной. О 40-метровых трубах рефракторов стали забывать.

К концу 18 века компактные удобные телескопы пришли на замену громоздким рефлекторам. Металлические зеркала тоже оказались не слишком практичны - дорогие в производстве, а также тускнеющие от времени. К 1758 году с изобретением двух новых сортов стекла: легкого - крон и тяжелого - флинта, появилась возможность создания двухлинзовых объективов. Чем благополучно и воспользовался ученый Дж. Доллонд , который изготовил двухлинзовый объектив, впоследствии названный доллондовым.

Телескопы Гершеля и Росса


После изобретения ахроматических объективов победа рефрактора была абсолютная, оставалось лишь улучшать линзо-вые телескопы. О вогнутых зеркалах забыли. Возродить их к жизни удалось руками астрономов-любителей. Вильям Гершель, английский музыкант, в 1781 году открывший планету Уран. Его открытию не было равным в астрономии с глубокой древности. Причем Уран был открыт с помощью небольшого самодельного рефлектора. Успех побудил Гершеля начать изготовление рефлекторов большего разме-ра. Гершель собственноручно в мастерской сплавлял зеркала из меди и олова. Главный труд его жизни - большой телескоп с зеркалом диаметром 122 см. Это диа-метр его самого большого телескопа. Открытия не заставили себя ждать, благодаря этому телескопу, Гершель открыл шестой и седьмой спутники планеты Сатурн. Другой, ставший не менее известным, астроном-любитель английский землевладелец лорд Росс изобрел рефлектор с зер-калом с диаметром в 182 сантиметра. Благодаря телескопу, он открыл ряд неизвестных спиральных туманно-стей. Телескопы Гершеля и Росса обладали множеством недостатков. Объективы из зеркального металла оказались слишком тяжелыми, отражали лишь малую часть падающего на них света и тускнели. Требовался новый совершенный материал для зеркал. Этим материалом оказалось стекло. Французский физик Леон Фуко в 1856 году попробовал вставить в рефлектор зеркалом из посеребренного стекла. И опыт удался. Уже в 90-х годах астроном-любитель из Англии построил рефлектор для фотографиче-ских наблюдений со стеклянным зерка-лом в 152 сантиметра в диаметре. Очередной прорыв в телескопостроении был очевиден.

Этот прорыв не обошелся без участия русских ученых. Я.В. Брюс прославился разработкой специальных металлических зеркал для телескопов. Ломоносов и Гершель, независимо друг от друга, изобрели совершенно новую конструкцию телескопа, в которой главное зеркало наклоняется без вторичного, тем самым уменьшая потери света.

Немецкий оптик Фраунгофер поставил на конвейер производство и качество линз. И сегодня в Тартуской обсерватории стоит телескоп с целой, работающей линзой Фраунгофера. Но рефракторы немецкого оптика также были не без изъяна - хроматизма.

Расцвет рефракторной астрономии

Двухзеркальная система в телескопе предложена французом Кассегреном. Реализовать свою идею в полной мере Кассегрен не смог из-за отсутствия технической возможности изобретения нужных зеркал, но сегодня его чертежи реализованы. Именно телескопы Ньютона и Кассегрена считаются первыми «современными» телескопами, изобретенными в конце 19 века. Кстати, космический телескоп Хаббл работает как раз по принципу телескопа Кассегрена. А фундаментальный принцип Ньютона с применением одного вогнутого зеркала использовался в Специальной астрофизической обсерватории в России с 1974 года. Расцвет рефракторной астрономии произошел в 19 веке, тогда диа-метр ахроматических объективов постепенно рос. Если в 1824 го-ду диаметр был еще 24 сантиметра, то в 1866 году его размер вырос вдвое, в 1885 году диаметр стал составлять 76 сантиметров (Пулковская обсерватория в России), в к 1897 году изобретен иеркский рефрактор. Можно посчитать, что за 75 лет линзовый объектив увеличивался со скоро-стью одного сантиметра в год.

К концу 19 века изобрели новый метод производства линз. Стеклянные поверхности начали обрабатывать серебряной пленкой, которую наносили на стеклянное зеркало путем воздействия виноградного сахара на соли азотнокислого серебра. Эти принципиально новые линзы отражали до 95% света, в отличие от старинных бронзовых линз, отражавших всего 60% света. Л. Фуко создал рефлекторы с параболическими зеркалами, меняя форму поверхности зеркал. В конце 19 века Кросслей, астроном-любитель, обратил свое внимание на алюминиевые зеркала. Купленное им вогнутое стеклянное параболическое зеркало диаметром 91 см сразу было вставлено в телескоп. Сегодня телескопы с подобными громадными зеркалами устанавливаются в современных обсерваториях. В то время как рост рефрактора замедлился, разработка зеркального телескопа набирала обороты. С 1908 по 1935 года различные обсерватории мира соорудили более полутора десятков ре-флекторов с объективом, превышающим иеркский. Самый большой телескоп установлен в обсерватории Моунт-Внльсон, его диаметр 256 сантиметров. И даже этот предел соврем скоро превзойден вдвое. В Калифорнии смонтирован американский рефлектор-гигант, на сегодня его возраст более двадцати лет.

Новейшая история телескопов

Более 40 лет назад в 1976 году ученые СССР построили 6-метровый телескоп БТА - Большой Телескоп Азимутальный. До конца 20 века БРА считался крупнейшим в мире телескопом Изобретатели БТА были новаторами в оригинальных технических решениях, таких как альт-азимутальная установка с компьютерным ведением. Сегодня это новшества применяются практически во всех телескопах-гигантах. В начале 21 века БТА оттеснили во второй десяток крупных телескопов мира. А постепенная деградация зеркала от времени - на сегодня его качество упало на 30% от первоначального - превращает его лишь в исторический памятник науке.

К новому поколению телескопов относятся два больших телескопа 10-метровых близнеца KECK I и KECK II для оптических инфракрасных наблюдений. Они были установлены в 1994 и 1996 году в США. Их собрали благодаря помощи фонда У. Кека, в честь которого они и названы. Он предоставил более 140 000 долларов на их строительство. Эти телескопы размером с восьмиэтажный дом и весом более 300 тонн каждый, но работают они с высочайшей точностью. Принцип работы - главное зеркало диаметром 10 метров, состоящее из 36 шестиугольных сегментов, работающих как одно отражательное зеркало. Установлены эти телескопы в одном из оптимальных на Земле мест для астрономических наблюдений - на Гаваях, на склоне потухшего вулкана Мануа Кеа высотой 4 200 м. К 2002 году эти два телескопа, расположенных на расстоянии 85 м друг от друга, начали работать в режиме интерферометра, давая такое же угловое разрешение, как 85-метровый телескоп.

А в июне 2019 года NASA планирует вывести на орбиту уникальный инфракрасный телескоп (JWST) с 6,5-метровым зеркалом.

История телескопа прошла долгий путь - от итальянских стекольщиков до современных гигантских телескопов-спутников. Современные крупные обсерватории давно компьютеризированы. Однако любительские телескопы и многие аппараты, типа Хаббл, все еще базируются на принципах работы, изобретенных Галилеем.

Ирина Калина, 15.04.2014
Обновление: Татьяна Сидорова, 02.11.2018
Перепечатка без активной ссылки запрещена!


Брайан Грин

Слово «телескоп» в переводе с греческого обозначает «далеко смотреть» (τῆλε - далеко + σκοπέω - смотрю). Это прибор, предназначенный для наблюдения небесных тел.

Самые первые чертежи простейшего линзового телескопа (однолинзового и двухлинзового) были обнаружены ещё в записях Леонардо Да Винчи (1509 год). Сохранилась его запись: «Сделай стекла, чтобы смотреть на полную Луну». Леонардо строит или, по крайней мере, рисует станки для шлифовки вогнутых зеркал и разбирает производство очковых линз. Несомненно, что Леонардо не только мечтал о телескопических устройствах, но действительно их осуществлял. В кодексе А (лист 12) находятся следующие строки, поясненные рисунком: «Чем дальше отодвигаешь ты стекло от глаза, тем большими покажет оно предметы для глаз 50 лет; если глаза для сравнения глядят один через очковое стекло, другой вне его, то для одного предмет покажется большим, а для другого малым; но для этого видимые вещи должны быть удалены от глаза на 200 футов» . Леонардо передает здесь не все известное, но крайне просто повторимое наблюдение о значительных увеличениях, достигаемых при рассматривании простым глазом действительного изображения удаленного предмета от выпуклой линзы, если фокусное расстояния линзы больше, чем расстояние наилучшего зрения».
Годом изобретения телескопа, а точнее, зрительной трубы , считают 1608 год , а автором - голландского очкового мастера Иоанна Липперсгея , который продемонстрировал своё изобретение в Гааге. Но патент на изобретение ему не выдали, так как оказалось, что такие зрительные трубы были уже у других. Затем выяснилось, что такие трубы были еще раньше: в опубликованной в 1604 г. Кеплером работе было указано, что он рассмотрел ход лучей в оптической системе, состоящей из двояковыпуклой и двояковогнутой линз.

Таким образом, первенство изобретения прообраза телескопа (зрительной трубы) доказать трудно.

В 1609 году он создал свою первую зрительную трубу с трёхкратным увеличением. В том же году он построил телескоп длиной около полуметра с восьмикратным увеличением. Позже им был создан телескоп, дававший 32-кратное увеличение: длина телескопа была около метра, а диаметр объектива - 4,5 см. В сравнением с сегодняшними телескопами, это был очень несовершенный телескоп, обладавший всеми возможными аберрациями (ошибками или погрешностями изображения в оптической системе). Несмотря на это, с помощью этого несовершенного телескопа Галилей сделал ряд открытий.
Но сам Галилей свои астрономические зрительные трубы называл perspicillum .
Название «телескоп» предложил в 1611 году греческий математик Джованни Демизиани .
Первый телескоп Галилея имел апертуру (способность собирать свет и противостоять размытию деталей изображения) 4 сантиметра, фокусное расстояние около 50 сантиметров и степень увеличения 3x. Второй телескоп имел апертуру 4,5 сантиметра, фокусное расстояние 125 сантиметров, степень увеличения 34х. Несмотря на то, что телескопы Галилея были весьма несовершенны, в течение двух первых лет наблюдений ему удалось обнаружить четыре спутника планеты Юпитер, фазы Венеры, пятна на Солнце, горы на поверхности Луны (дополнительно была измерена их высота), наличие у диска Сатурна придатков в двух противоположных точках (природу этого явления Галилей разгадать не смог).

Устройство телескопа

Телескоп-рефрактор содержит два основных узла: линзовый объектив и окуляр. Объектив создаёт уменьшенное обратное изображение бесконечно удалённого предмета в фокальной плоскости (плоскость, на которой расположены точки, в которых собираются попавшие в систему плоскопараллельные пучки лучей). Это изображение рассматривается в окуляр как в лупу. В силу того, что каждая отдельно взятая линза обладает различными аберрациями (хроматической, сферической и проч.), обычно используются сложные объективы. Такие объективы представляют собой выпуклые и вогнутые линзы, составленные и склеенные с тем, чтобы минимизировать аберрации.

Телескоп Галилео Галилея

Телескоп Галилея имел в качестве объектива одну собирающую линзу, а окуляром служила рассеивающая линза. Такая оптическая схема даёт неперевернутое (земное) изображение. Главными недостатками этого телескопа являются очень малое поле зрения и сильная хроматическая аберрация. Такая система все ещё используется в театральных биноклях и иногда в самодельных любительских телескопах. В связи с тем, что телескоп Галилея дает прямое изображение, он может быть использован и как подзорная труба.

Современные телескопы мало похожи на первый телескоп Галилея и представляют собой сложнейшие технические кон-струкции. Но принцип их устройства остаётся прежним. С по-мощью линзы или параболического зеркала собирается свет от небесного объекта и строится изо-бражение в фокусе линзы или зеркала. Здесь помещается при-ёмник излучения, который фиксирует изображение для даль-нейшего изучения.

Небесные светила изучают, собирая, принимая, реги-стрируя и исследуя приходящее от звёзд излучение. Глаз то-же является прибором, собирающим и регистрирующим пада-ющий на него свет. Свет от звезды, проходящий через зрачок глаза, собирается хрусталиком на сетчатке. Энергия падающе-го света вызывает отклик нервных окончаний. В мозг посту-пает сигнал, и мы видим звезду. Но энергии, приходящей от звезды, может быть слишком мало (звезда слабая). Тогда сет-чатка не прореагирует, и мы звезды не увидим.

Принципиально телескоп от глаза отличается только раз-мерами, способом концентрации света и природой регистрато-ра света.

Важнейшими характеристиками телескопа являют-ся его разрешающая и проницающая способности .

Разрешающая способность

Разрешающая способность телескопа определяется наи-меньшим угловым расстоянием между светящимися точка-ми, которые могут быть видны (разрешены) как отдельные объекты.

Разрешающая способность телескопа определяется его размерами. Дифракция световых лучей на краю отверстия приводит к тому, что невозможно в телескопе различить две светящиеся точки, если направления на них образуют угол меньше предельного.

Предельный угол

Предельный угол для идеального объектива и видимого света определяется по формуле

где α — предельный угол, выраженный в угловых секундах; D — диаметр телескопа (в см). Для человеческого глаза пре-дельный угол равен 28” (фактически 1—1,5’), для крупнейше-го в мире телескопа диаметром 10 м предельный угол равен 0,015". Реально предельный угол в несколько раз больше из-за влияния атмосферы.

Проницающая способность

Проницающая способность телескопа определяется наи-меньшей регистрируемой освещённостью, создаваемой светя-щимся объектом.

Проницающая способность телескопа определяется прежде всего его диаметром: чем больше диаметр, тем больше света он собирает. Важную роль играют и приёмники излучения. Если 200 лет назад в телескоп просто смотрели и пытались зарисовать то, что видят, а 40 лет назад в основном фотогра-фировали созданное телескопом изображение, то теперь поль-зуются электронными приёмниками изображения, которые мо-гут регистрировать примерно 60% падающих на него фотонов (фотопластинка регистрирует примерно в 10—100 раз мень-шую долю).

Сейчас наступает новый этап в создании наземных телескопов, которые можно с полным основанием назвать при-борами XXI в. Во-первых, они очень большие — диаметр их главного зеркала 8—10 м. Во-вторых, они построены с использованием новых принципов. Их зер-кала подстраиваются под изменения, происходящие в атмос-фере, так что расфокусировка изображения, вызванная пе-репадами плотности воздуха и его потоками, сводится к минимуму. Такая оптика, «умеющая» приспосабливаться к быстроменяющимся условиям, называется адаптивной . Для по-вышения разрешающей способности телескопов применяются также методы оптической интерферометрии с большой базой.

К новому поколению телескопов относятся 10-метровые телескопы Кека (США), 10-метровый телескоп Хобби-Эберли и 8-метровые телескопы Джемини, Субару, телескоп VLT (Very Large Telescope — Очень Большой Телескоп) Европейской юж-ной обсерватории, а также находящийся в стадии постройки Большой Бинокулярный Телескоп (Large Binocular Telescope) в Аризоне (США).

Очень важно то обстоятельство, что во всех этих телеско-пах главное зеркало образовано отдельными зеркалами, чис-ло которых различно в разных телескопах. Так, в телескопе Субару смонтировано 261 зеркало, в VLT — 150 осевых и 64 боковых зеркала, в телескопе Джемини — 128 зеркал. В Большом Бинокулярном Телескопе (LBT) имеется два главных зеркала, состоящие также из многих элементов. Диаметр глав-ных зеркал всех этих телескопов лежит в диапазоне от 8,1 до 8,4 м.

Зеркала в современных телескопах управляемы. У каждого имеется система при-способлений, которые могут, давя на зеркало, нужным обра-зом изменять его форму, что стало возможным, когда начали изготовлять очень тонкие и лёгкие зеркала. Материал с сайта

С помощью телескопа необходимо получать как можно более ясное изображение удалённой звез-ды, которое должно выглядеть одной точкой. Большие объек-ты, вроде галактик , могут рассматриваться как множество то-чек. Свет от далёкой звезды распространяется в виде сфери-ческой волны, проходящей огромное расстояние в космичес-ком пространстве. Фронт волны, достигшей Земли, можно счи-тать плоским из-за гигантского радиуса сферы — расстояния до звезды.

Если на телескоп падает плоская волна, то в фокальной плоскости появляется точка, размер которой определяется толь-ко дифракцией света, т. е. выполняется условие предельного угла. Именно это имеет место в космическом телескопе Хаб-бла, который, несмотря на то, что его диаметр всего 2.4 м, по-лучает изображение лучше, чем 4—6-метровые телескопы ста-рой конструкции.

Прежде чем попасть в телескоп, волна проходит через зем-ную атмосферу и турбулентность воздуха, что нарушает пло-скую форму фронта. Изображение искажается. Адаптивная оп-тика призвана скомпенсировать отклонения и восстановить из-начальную (плоскую) форму волнового фронта.

Если вы решили купить телескоп, то вам сначала нужно понять, что он собой представляет, какие виды их бывают, и какой вариант лучше выбрать. В этом мы и попытаемся помочь вам разобраться.

Если вы решили купить телескоп, то вам сначала нужно понять, что он собой представляет, какие виды их бывают, и какой вариант лучше выбрать. В этом мы и попытаемся помочь вам разобраться.

Что такое телескоп и зачем он нужен
Телескоп - это прибор, который позволяет наблюдать за разными небесными объектами, которые сильно удалены от точки наблюдения. Наиболее часто они применяются для наблюдения именно за небесными телами, но иногда с их помощью рассматриваются и земные объекты. Ранее они были очень дорогими, и позволить их себе могли только астрономы и уфологии. Сегодня приборы такого рода гораздо доступнее, и позволить их себе могут и обычные люди. Например, купить их может помочь магазин «Звездочет».

Оптические телескопы
Разные телескопы могут работать в разных диапазонах электромагнитных спектров. Наиболее распространен оптический телескоп. Практически все любительские телескопы сегодня являются оптическими. Такие приборы работают со светом. Также бывают радиотелескопы, нейтринные, гравитационные, рентгеновские и гамма телескопы. Однако это все относится к научному оборудованию, которое в быту не применяется.

Виды телескопов
Оптические телескопы, как профессиональные, так и любительские, подразделяются на три типа. Главный критерий тут – объектив телескопа, вернее принцип, по которому он работает. Различные виды телескопов вы можете найти на сайте www.astronom.ru .

Линзовый телескоп
Линзовыми называются рефракторами, и они появились на свет самыми первыми. Создателем их стал Галилео Галилей. Преимущество таких телескопов в том, что им почти не нужно специальное обслуживание, они гарантируют хорошую цветопередачу, четкое изображение. Такие варианты хорошо подходят для изучения Луны, планет, а также двойных звезд. Стоит отметить, что эти устройства максимально подходят для профессионалов, так как они не так уж просты в использовании, а кроме того имеют достаточно большие размеры и высокую стоимость.

Зеркальный телескоп

Зеркальными называются рефлекторами. Их объективы состоят только их зеркал. Как и выпуклая линза, зеркало вогнутого типа собирает свет в определенной точке. Если в этой точке будет помещен окуляр, то можно увидеть изображение. Среди достоинств такого телескопа выделяется минимальная цена на единицу диаметра устройства, так как большие зеркала изготовлять значительно выгоднее, чем большие линзы. Также они компактны и легки в транспортировке, при этом дают яркие картинки с небольшими искажениями. Конечно, у зеркальных есть и свои недостатки. Это дополнительное время на термостабилизацию, отсутствие защиты от пыли и воздуха, которые могут портить изображение.

Зеркально-линзовые телескопы
Они называются катадиоптрическими, и в них могут применяться как линзы, так и зеркала. Плюс такого телескопа - универсальность, так как с их помощью можно наблюдать и планеты с Луной, и объекты дальнего космоса. Также они весьма компактны и выгодны. Единственный момент – это сложность конструкции, что усложняет самостоятельную юстировку устройства.

Трудно сказать, кто первый изобрел телескоп. Известно, что еще древние употребляли увеличительные стекла. Дошла до нас и легенда о том, что якобы Юлий Цезарь во время набега на Британию с берегов Галлии рассматривал в подзорную трубу туманную британскую землю. Роджер Бекон, один из наиболее замечательных ученных и мыслителей XIII века, он изобрел такую комбинацию линз, с помощью которой отдаленные предметы при рассматривании их кажутся близкими

Так ли это было в действительности - неизвестно. Бесспорно, однако, что в самом начале XVII века в Голландии почти одновременно об изобретении подзорной трубы заявили три оптика - Липперсгей, Мециус и Янсен. Рассказывают, что будто бы дети одного из оптиков, играя с линзами, случайно расположили две из них так, что далекая колокольня вдруг показалась близкой. Как бы там ни было, к конце 1608 года первые подзорные трубы были изготовлены и слухи об этих новых оптических инструментах быстро распространились по Европе

В Падуе в это время уже пользовался широкой известностью Галилео Галилей, профессор местного университета, красноречивый оратор и страстный сторонник учения Коперника. Услышав о новом оптическом инструменте, решил собственноручно построить подзорную трубу. Сам он рассказывает об этом так: «Месяцев десять тому назад стало известно, что некий фламандец построил перспективу, при помощи которой видимые предметы, далеко расположенные от глаз, становятся отчетливо различимы, как будто они находятся вблизи. Это и было причиной, по которой я обратился к изысканию оснований и сре дств дл я изобретения сходного инструмента. Вскоре после этого, опираясь на учение о преломлении, я постиг суть дела и сначала изготовил свинцовую трубу, на концах которой я поместил два оптических стекла, оба плоских с одной стороны, с другой стороны одно стекло выпукло-сферическое, другое вогнутое»

Этот первенец телескопической техники давал увеличение всего в три раза. Позже Галилео удалось построить более совершенный инструмент, увеличивающий в 30 раз. И тогда, как пишет Галилей «оставив дела земные, я обратился к небесам»

7 января 1610 года навсегда останется памятной датой в истории человечества. Вечером этого дня Галилей впервые направил построенный им телескоп на небо. Название «телескоп» было присвоено новому инструменту по решению итальянской Академии наук. Он увидел то, что предвидеть заранее было невозможно. Луна, испещренная горами и долинами, оказалась миром, схожим хотя бы по рельефу с Землей. Планета Юпитер предстала перед глазами изумленного Галилея крошечным диском, вокруг которого обращались четыре необычные звездочки - его спутники. Картина эта в миниатюре напоминала Солнечную систему по представлению Коперника. При наблюдениях в телескоп планета Венера оказалась похожей на маленькую луну. Она меняла свои фазы, что свидетельствовал о о ее обращении вокруг Солнца. На самом Солнце (поместив перед глазами темное стекло) Галилей увидел черные пятна, опровергнув тем самым общепринятое учение Аристотеля о «неприкосновенной чистоте небес». Эти пятна смещались по отношению к краю солнца, из чего Галилей сделал правильный вывод о вращении Солнца вокруг оси

В темные прозрачные ночи в поле зрения галилеевского телескопа было видно множество звезд, недоступных невооруженным глазу. Некоторые туманные пятна на ночном небе оказались скопищами слабо светящихся звезд. Великим собранием скучено расположенных звездочек оказался и Млечный путь - беловатая, слабо светящаяся полоса, опоясывавшая все небо

Несовершенство первого телескопа помешало Галилею рассмотреть кольца Сатурна. Вместо колец он увидел по оде стороны Сатурна два каких-то странных придатка

Открытия Галилея положили начало телескопической астрономии. Но его телескопы, утвердившие окончательно новое коперническое мировоззрение, были очень не совершенны

Уже при жизни Галилея им на смену пришли телескопы несколько иного типа. Изобретателем нового инструмента был уже знакомый нам Иоган Кеплер. В 1611 году в трактате «Диоптрика» Кеплер дал описание телескопа, состоявшего из двух двояковыпуклых линз. Сам Кеплер, будучи типичным астрономом - теоретиком, ограничился лишь описанием схемы нового телескопа, а первым, кто построил такой телескоп и употребил его для астрономических целей, был иезуит Шейкер, оппонент Галилея в их горячих спорах о природе солнечных пятен

Галилей изготовил трубу с увеличением в 30 раз. Эта труба имела длину 1245 мм; объективом у нее была выпуклая линза, диаметром в 53,5 мм; плосковогнутый окуляр имел диаметр в25 мм. Труба с увеличением в 30 раз была лучшей из труб Галилея; она до сих пор сохраняется в музее во Флоренции. При ее помощи Галилей сделал все свои телескопические открытия

Галилей открыл на Луне горы и горные цепи, а также несколько темных пятен, которые назвал морем. При первом же знакомстве с поверхностью Луны Галилео бросилось в глаза сведущее обстоятельство: поверхность Луны казалась похожей на поверхность Земли - на лунной поверхности (как и на земной) оказались и большие горы, и горные цепи, и моря, и долины. Галилей первое время предполагал присутствие на Луне воды (в морях) и атмосферной оболочки

В конце 1609 и в начале 1610 годов Галилей исследовал при помощи телескопа различные небесные объекты, в том числе млечный Путь. Аристотель считал Млечный Путь атмосферным явлением. Но в телескоп Галилей сразу увидел, что сияние Млечного Пути вызывается бесчисленно скученно расположенными звездочками. Таким образом, Млечный путь оказался скоплением звезд, т.е. явлением космическим, а вовсе не атмосферным

Изумительное открытие сделал Галилей, наблюдая в начале января 1610 года планету Юпитер

Сохранился журнал наблюдений Галилея, который он начал регулярно вести с 7 января 1610 года. 7 января он увидел около Юпитера три светлые звездочки; две находились к востоку от Юпитера, а третья - к западу. 8 января он опять направил свою трубу на Юпитер. И что же? Расположение звездочек изменилось. Все три звездочки помещались теперь к западу от планеты и ближе одна к другой, чем в предшествующее наблюдение. «Они, - пишет Галилей в «Звездном вестнике», - по прежнему стояли на одной прямой линии, но уже были разделены собой равными промежутками». 9 января было видно только две, и обе они находились к востоку от Юпитера

13 января Галилей увидал уже четыре звездочки около Юпитера; затем все четыре звездочки он снова наблюдал 15,19, 20, 21, 22 и 26 января и окончательно уверился в том, что он сделал совершенно неожиданное открытие: установил существование четырех спутников планеты Юпитер. Этих спутников Галилей решил назвать «светилами Медичи», посвятив свое открытие герцогу Тосканскому Козимо II Медичи

В октябре 1610 года Галилей сделал новое сенсационное открытие: он заметил фазы Венеры. Галилей был уверен, что Венера имеет фазы и нисколько не был удивлен, что их увидел. К концу 1610 года относится еще одно замечательное открытие: Галилей усмотрел на диске Солнца темные пятна. Эти пята приблизительно в тоже время увидели и другие: английский математик Гарриот (1560 - 1621), голландский астроном Иоганн Фабриций (1587 - 1615) и иезуит Христофор Шейнер (1575 - 1650)

Фабриций первый оповестил ученый мир о своем открытии, издав на латинском языке брошюру «Рассказ о пятнах, наблюдениях о Солнце, и кажущемся их перемещении вместе с Солнцем». В этой брошюре автор утверждает, что впервые заметил пятно на диске Солнца 9 марта 1611 года. После нескольких дней наблюдений пятно исчезло на западном краю солнечного диска, а недели через две снова появилось на восточном. Из этих наблюдений Фабриций заключил, что пятно совершает обращение вокруг Солнца. Вскоре, однако, он понял, что перемещение пятна по солнечному диску только кажущееся, и что в действительности само Солнце вращается вокруг оси

Герриот увидел три черных пятна на солнечном диске 1 декабря 1610 года. Наконец, иезуит Христофор Шейнер увидел солнечные пятна в 1611 году, но не торопился с опубликованием своего неожиданного открытия

Открытие Галилея сравнивали с открытием Америки; писали, что текущее столетие будет по праву гордится открытием «новых небес». Имя Галилея прославлялось в многочисленных письмах, в честь него сочинялись оды. Он сделал в короткое время самым знаменитым ученым Европы. Галилей демонстрировал в телескоп небесные объекты многим своим согражданам и случайным посетителям

Замечание Галилея относительно природы Луны и относительно лунных гор и горных цепей и сделанные им измерения высот лунных гор показывают, что он стоял на точке зрения Коперника и Бруно. Из чтения «Звездного вестника» читатели могли вывести только такое заключение, что Галилей, на основании своих телескопических наблюдений, считает Луну сходной по своей природе с Землей

С точки зрения церкви это пахло ересью, так как шло в разрез с освещавшейся церковью идеей Аристотеля о категорическом различие «земного» и « небесного». В свою трубу Галилей не один раз наблюдал «пепельный свет» молодой Луны; он, как за столетие до этого и Леонардо да Винчи, объяснил совершенно правильно явление пепельного света тем, что темная часть поверхности луны в это время освещается светом Солнца, отраженным от земной поверхности. Галилей использовал свое объяснение в чисто коперническом духе в качестве сильного аргумента в пользу того предложения, что и зама Земля, подобно другим планетам, является светилом. Галилей так и пишет: «При помощи доказательств и естественнонаучных выводов мы стократно подтвердили, что Земля движется, как планета, и превосходит Луну блеском своего света». Подобное заключение вело прямо к нарушению основного положения учения Коперника, что Земля - одна из планет, обращающихся вокруг Солнца. Ученые различных лагерей, читавшие «Звездный вестник», хорошо это понимали. Вот почему «Звездный вестник» одними читался с восторгом, другими - с отвращением, как книга еретическая, противная церковной традиции и физике Аристотеля. Говоря о спутниках Юпитера. Галилей также открыто заявляет себя коперниканцем

Против открытий, описанных в «Звездном вестнике», посыпались печатные возражения. Немецкий астролог Мартин Хорки написал брошюру под заглавием: «Очень краткий поход против «Звездного вестника»». Это произведение - стряпня астролога, проникнутого верой в свою «науку» и не желавшего «верить галилеевой трубе», так как «трубы порождают иллюзии». Спутники Юпитера придуманы Галилеем, утверждал Хорки, «для удовлетворения ненасытной его жадности к золоту»

Другой оппонент - итальянец Коломбе - послал Галилею целый трактат, где между прочим возражал против лунных гор и вообще против всякого рода возвышений и углублений на луне. По мнению Коломбе, наблюдавшиеся Галилеем на луне пропасти и впадины заполнены каким-то совершенно прозрачным кристаллическим веществом. Таким образом, Луна все-таки представляет собою точную сферу, как и предполагал «великий учитель Аристотель»

Флорентинец Франческо Сицци тоже выпустил памфлет против «Звездного вестника», где свел споры о новых неожиданных открытиях Галилея к чисто богословским тонкостям. Так, Сицци заявляет, что во второй книге Моисея и в четвертой главе книги пророка Захарии будто бы содержаться указания, что число планет на небе равно семи. Число семь вообще является символом совершенства, например, в голове человека - семь «отверстий» (два уха, два глаза, две ноздри и один рот). Аналогично бог создал семь планет: две «благодетельные» - Юпитер и Венеру, две «вредоносные» - Марс и Сатурн, две являющиеся «светилами» - Солнце и Луну, и одну «безразличную» - Меркурий. Отсюда Сицци делает вывод: никаких новых планет (т.е. спутников Юпитера) не может быть, а Галилей с его трубой грубо ошибся

Таковы были аргументы тогдашних ученых. Однако открытия Галилея скоро были подтверждены. Существование спутников юпитера констатировал Иоган Кеплер. Он описал свои наблюдения в небольшой брошюре на латинском языке: «Рассказ Иоганна Кеплера о его наблюдениях четырех спутников Юпитера, которых флорентийский математик Галилей по праву открытия назвал Медическими светилами». Кеплер наблюдал в довольно посредственную трубу. Несколько раз в начале сентября 1610 года Кеплер ясно видел то двух, то трех спутников Юпитера, но в наблюдении четвертого не был уверен. В ноябре 1610 года Пейреск во Франции тоже регулярно, как и Галилей, стал наблюдать спутников Юпитера, задавшись целью составить таблицы их движения. В наблюдениях ему помогали Готье и Гассенди. Таблиц, однако, им составить не удалось, так как наблюдения их были недостаточно точны

Галилею хотелось подтвердить сделанные им телескопические открытия, отведя нелепые обвинения его в том, что он все это просто придумал. Вскоре ему это удалось. Римская коллегия подтвердила с некоторыми, очень незначительными оговорками действительность телескопических открытий Галилея. Отцы-иезуиты римской коллегии сами наблюдали весьма тщательно и усердно, записи и чертежи их наблюдений юпитеровых спутников сохранились и были опубликованы в миланском издании сочинений Галилея. Таким образом, в ожесточенной борьбе между учеными-новаторами и учеными-схоластиками, занимавшим положение Аристотеля, победил Галилей. Но его победа над упрямыми противниками создала ему множество врагов среди ученых схоластического лагеря. Католическая церковь всячески поддерживала учение Аристотеля, так что печатные выступления Галилея против последнего расценивалось его противниками как выпад против церкви и общепринятого тогда церковного миро представления. Борьба Галилея за новую науку, за новое коперническое мировоззрение началась. В последующие годы эта борьба еще более развернулась и обострилась

Рассмотрим оптические схемы и принцип действия галилеевского и кеплеровского телескопов. Линза А, обращенная к объективу наблюдения, называется объективом, а та линза В, к которой прикладывает свой глаз наблюдатель - окуляром. Если линза толще посередине, чем на краях, она называется собирательной или положительной, в противном случае - рассеивающей или отрицательной. В телескопе самого Галилея объективом служила плосковыпуклая линза, а окуляром - плосковогнутая. По существу, галилеевский телескоп был прообразом современного театрального бинокля, в котором используются двояковыпуклые и двояковогнутые линзы в телескопе Кеплера и объектив и окуляр были положительными двояковыпуклыми линзами

Представим себе простейшую двояковыпуклую линзу, сферические поверхности которой имеют одинаковую кривизну. Прямые, соединяющие центры этих поверхностей, называются оптической осью линзы. Если на такую линзу падают лучи, идущие параллельно оптической оси, они, преломляются в линзе, собираются в точке оптической оси, называемом фокусом линзы. Расстояние от центра линзы до ее фокуса называют фокусным расстоянием

Чем больше фокусное кривизна поверхностей собирательной линзы, тем меньше ее фокусное расстояние. В фокусе такой линзы всегда получается действительное изображение предмета

Иначе ведут себя рассеивающие, отрицательные линзы. Падающий на них параллельно оптической оси пучок они рассеивают и в фокусе такой линзы сходятся не сами лучи, а их продолжение. Поэтому рассеивающие линзы имеют, как говорят, мнимый фокус и дают мнимое изображение

Небесные светила, практически говоря, находятся «в бесконечности», то изображение их получаются в фокальной плоскости, то есть в плоскости, проходящей через фокус F и перпендикулярной к оптической оси. Между фокусом и объективом Галилей поместил рассеивающую линзу, которая давала мнимое, прямое увеличение изображение MN

Главным недостатком галилеевского телескопа было очень малое поле зрения - так называют угловой поперечник кружка неба, видимого в телескоп. Из-за этого наводить телескоп на небесное светило и наблюдать его Галилею было очень трудно. По этой же причине галилеевские телескопы после смерти их изобретателя в астрономии не употреблялись и их реликтом можно считать современные театральные бинокли

В кеплеровском телескопе изображение получается действительное, увеличенное и перевернутое. Последнее обстоятельство, неудобное при наблюдениях земных предметов в астрономии несущественно - ведь в космосе нет какого-то абсолютного верха или низа, а потому небесные тела не могут быть повернуты телескопом «вверх ногами»

Первое из двух главных преимуществ телескопа - это увеличение угла зрения, под которым видим небесные объекты. Человеческий глаз способен в отдельности различать две части предмета, если угловое расстояние между ними не меньше одной минуты дуги. Поэтому, например, на Луне невооруженный глаз различает только крупные детали, поперечник которых превышает 100 км. В благоприятных условиях, когда Солнце затянуто облачной дымкой, на его поверхности удается рассмотреть самые крупные из солнечных пятен. Никаких других подробностей невооруженным глазом на небесных телах не видно. Телескоп же увеличивает угол зрения в десятки и сотни раз

Второе преимущество телескопа по сравнению с глазом заключается в том, что телескоп собирает гораздо больше света, чем зрачок человеческого глаза, имеющий даже в полной темноте диаметр не больше 8 мм. Очевидно, что количество света, собираемого телескопом, во столько раз больше того количества, которое собирает глаз, во сколько площадь объектива больше площади зрачка. Иначе говоря, это отношение равно отношению квадратов диаметров объектива и зрачка

Собранный телескопом свет выходит из его окуляра концентрированным световым пучком. Наименьшее его сечение называется выходным зрачком. У галилеевской трубы выходного зрачка нет. В сущности, выходной зрачок - это изображение объектива, создаваемое окуляром. Можно доказать, что увеличение телескопа (то есть увеличение угла зрения по сравнению с невооруженным глазом) равно отношению фокусного расстояния объектива к фокусному расстоянию окуляра. Казалось бы, можно достичь любых увеличений. Теоретически это так, но практически все выглядит иначе. Во-первых, чем больше употребляемое в телескопе увеличение, тем меньше его поле зренья. Во-вторых, с ростом увеличения становятся все заметней движения воздуха. Неоднородные воздушные струи размазывают, портят изображение и иногда то, что видно при малых увеличениях, пропадает для больших. Наконец, чем больше увеличение, тем бледнее, тусклее изображение небесного светила (например, Луны). Иначе говоря, с ростом увеличения хотя и видно больше подробностей на Луне, солнце и планетах, но зато уменьшается поверхностная яркость их изображений. Есть и другие препятствия, мешающие применять очень большие увеличения (например, в тысячи и десятки тысяч раз). Приходится искать некоторый оптимум и поэтому даже в современных телескопах, как правило, наибольшие увеличения не превосходят нескольких сотен раз

При создании телескопов со времен Галилея придерживаются следующего правила: выходной зрачок телескопа не должен быть больше зрачка наблюдателя. Легко сообразить, что в противном случае часть света, собранного объективом, будет напрасно потеряна. Очень важной величиной, характеризующей объектив телескопа, является его относительное отверстие, то есть отношение диаметра объектива телескопа к его фокусному расстоянию. Светосилой объектива называется квадрат относительного отверстия телескопа. Чем « светосильнее » телескоп, т.е. чем больше светосила его объектива, тем более яркие изображения объектов он дает. Количество же света, собираемого телескопом, зависит лишь от диаметра его объектива (но не от светосилы). Из-за явления, именуемого в оптике дифракцией, при наблюдениях в телескопы яркие звезды кажутся небольшими дисками, окруженными несколькими концентрическими радужными кольцами. Разумеется, к настоящим дискам звезд дифракционные диски никакого отношения не имеют

Таково было скромное начало развернувшегося позже «Чемпионата» телескопов - длительной борьбы за усовершенствование этих главных астрономических инструментов

Похожие публикации