Квантовая физика для чайников: суть простыми словами. Поймёт даже ребёнок. Точнее, особенно ребенок

Отправить

Квантовая механика

Что такое квантовая механика?

Квантовая механика (КМ (QM); также известная как квантовая физика или квантовая теория), включая квантовую теорию поля, является областью физики, которая изучает законы природы, проявляющиеся на малых расстояниях и при малых энергиях атомов и субатомных частиц. Классическая физика - физика, существовавшая до квантовой механики, вытекает из квантовой механики как её предельный переход, справедливый только при больших (макроскопических) масштабах. Квантовая механика отличается от классической физики тем, что энергия, импульс и другие величины, часто ограничиваются дискретными значениями (квантование), объекты имеют характеристики и частиц, и волн (корпускулярно-волновой дуализм), и существуют ограничения на точность, с которой величины могут быть определены (принцип неопределенности).

Квантовая механика последовательно вытекает из решения Максом Планком в 1900 году задачи излучения черного тела (опубликовано в 1859 году) и работы Альберта Эйнштейна 1905 года, в которой была предложена квантовая теория для объяснения фотоэлектрического эффекта (опубликована в 1887 году). Ранняя квантовая теория, была глубоко переосмыслена в середине 1920-х годов.

Переосмысленная теория формулируется на языке специально разработанных математических формализмов. В одном из них, математическая функция (волновая функция) предоставляет информацию об амплитуде вероятности положения, импульса и других физических характеристиках частицы.

Важными областями применения квантовой теории являются: квантовая химия, сверхпроводящие магниты, светоизлучающие диоды, а также лазер, транзистор и полупроводниковые устройства, такие как микропроцессор, медицинские и исследовательские изображения, такие как магнитно-резонансная томография и электронная микроскопия, и объяснения многих биологических и физических явлений.

История квантовой механики

Научное исследование волновой природы света началось в XVII и XVIII веках, когда ученые Роберт Хук, Кристиан Гюйгенс и Леонард Эйлер предложили волновую теорию света, основанную на экспериментальных наблюдениях. В 1803 году Томас Янг, английский учёный широкого профиля, провел знаменитый эксперимент с двойной щелью, который он позже описал в работе, озаглавленной "Природа света и цветов". Этот эксперимент сыграл важную роль во всеобщем признании волновой теории света.

В 1838 году Майкл Фарадей открыл катодные лучи. За этими исследованиями последовала формулировка Густавом Кирхгофом проблемы излучения абсолютно черного тела в 1859 году, предположение Людвига Больцмана в 1877 году того, что энергетические состояния физической системы могут быть дискретными, и квантовая гипотеза Макса Планка в 1900 году. Гипотеза Планка о том, что энергия излучается и поглощается дискретным "квантом" (или энергетическими пакетами), точно соответствует наблюдаемым моделям излучения абсолютно черного тела.

В 1896 году Вильгельм Вин эмпирически определил закон распределения излучения абсолютно черного тела, названный в его честь, законом Вина. Людвиг Больцман самостоятельно пришел к этому результату, анализируя уравнения Максвелла. Однако закон действовал только на высоких частотах и занижал излучение на низких частотах. Позже Планк исправил эту модель с помощью статистической интерпретации термодинамики Больцмана и предложил то, что в настоящее время называется законом Планка, что привело к развитию квантовой механики.

После решения Максом Планком в 1900 году проблемы излучения черного тела (опубликовано 1859), Альберт Эйнштейн предложил квантовую теорию, чтобы объяснить фотоэлектрический эффект (1905, опубликовано 1887). В 1900-1910 годы атомная теория и корпускулярная теория света впервые стали широко признаваться в качестве научного факта. Соответственно, эти последние теории можно рассматривать как квантовые теории материи и электромагнитного излучения.

Среди первых изучавших квантовые явления в природе были Артур Комптон, Ч. В. Раман и Питер Зееман, в честь каждого из которых названы некоторые квантовые эффекты. Роберт Эндрюс Милликен исследовал фотоэффект экспериментально, а Альберт Эйнштейн разработал теорию для него. В то же время, Эрнест Резерфорд экспериментально обнаружил ядерную модель атома, по которой Нильс Бор разработал свою теорию строения атома, которая впоследствии была подтверждена опытами Генри Мозли. В 1913 году Петер Дебай расширил теорию Нильса Бора о строении атома, введя эллиптические орбиты, эту же концепцию также предложил и Арнольд Зоммерфельд. Этот этап развития физики известен под названием старая квантовая теория.

Согласно Планку, энергия (Е) кванта излучения пропорциональна частоте излучения (v):

где h - постоянная Планка.

Планк осторожно настаивал на том, что это просто математическое выражение процессов поглощения и испускания излучения и не имеет ничего общего с физической реальностью самого излучения. Фактически, он считал свою квантовую гипотезу математическим трюком, совершенным для того, чтобы получить правильный ответ, а не крупным фундаментальным открытием. Однако в 1905 году Альберт Эйнштейн дал квантовой гипотезе Планка физическую интерпретацию и использовал ее для объяснения фотоэлектрического эффекта, при котором освещение светом определенных веществ может вызывать испускание электронов из вещества. За эту работу Эйнштейн получил Нобелевскую премию по физике 1921 года.

Эйнштейн затем доработал эту идею, чтобы показать, что электромагнитная волна, какой и является свет, также может быть описана как частица (позже названная фотоном), с дискретной квантовой энергией, которая зависит от частоты волны.

На протяжении первой половины 20-го века Максом Планком, Нильсом Бором, Вернером Гейзенбергом, Луи де Бройлем, Артуром Комптоном, Альбертом Эйнштейном, Эрвином Шредингером, Максом Борном, Джоном фон Нейманом, Полем Дираком, Энрико Ферми, Вольфгангом Паули, Максом фон Лауэ, Фрименом Дайсоном, Давидом Гильбертом, Вильгельмом Вином, Шать­енд­ра­натом Бозе, Арнольдом Зоммерфельдом и другими закладывались основы квантовой механики. Копенгагенская интерпретация Нильса Бора получила всеобщее признание.

В середине 1920-х годов развитие квантовой механики привело к тому, что она стала стандартной формулировкой для атомной физики. Летом 1925 года Бор и Гейзенберг опубликовали результаты, которые закрыли старую квантовую теорию. Из уважения к их частицеподобному поведению в определенных процессах и измерениях, кванты света стали называть фотонами (1926). Из простого постулата Эйнштейна зародился шквал обсуждений, теоретических построений и экспериментов. Таким образом, появились целые области квантовой физики, что привело к её широкому признанию на пятом Сольвеевском конгрессе в 1927 году.

Было установлено, что субатомные частицы и электромагнитные волны не являются ни просто частицами, ни волнами, а имеют определенные свойства каждой из них. Так возникло понятие корпускулярно–волнового дуализма.

К 1930 году квантовая механика была дополнительно унифицирована и сформулирована в работах Дэвида Гильберта, Поля Дирака и Джона фон Неймана, в которых уделялось большое внимание измерению, статистическому характеру наших знаний о реальности и философским размышлениям о "наблюдателе". Впоследствии она проникла во многие дисциплины, включая квантовую химию, квантовую электронику, квантовую оптику и квантовую информационную науку. Её теоретические современные разработки включают теорию струн и теории квантовой гравитации. Она также предоставляет удовлетворяющее объяснение многих особенностей современной периодической таблицы элементов и описывает поведение атомов при химических реакциях и движение электронов в компьютерных полупроводниках, и поэтому играет решающую роль во многих современных технологиях.

Хотя квантовая механика была построена для описания микромира, она также необходима для объяснения некоторых макроскопических явлений, таких как сверхпроводимость и сверхтекучесть.

Что означает слово квант?

Слово квант происходит от латинского "quantum", что означает "насколько много" или "сколько". В квантовой механике квант означает дискретную единицу, закрепленную за определенными физическими величинами, такими как энергия атома в состоянии покоя. Открытие того, что частицы представляют собой дискретные пакеты энергии с волноподобными свойствами привело к созданию занимающегося атомными и субатомными системами раздела физики, который сегодня называют квантовой механикой. Она закладывает фундамент математической основы для многих областей физики и химии, в том числе физики конденсированных сред, физики твердого тела, атомной физики, молекулярной физики, вычислительной физики, вычислительной химии, квантовой химии, физики элементарных частиц, ядерной химии и ядерной физики. Некоторые фундаментальные аспекты теории до сих пор активно изучаются.

Значение квантовой механики

Квантовая механика имеет важное значение для понимания поведения систем в атомных и меньших масштабах расстояний. Если бы физическая природа атома описывалась исключительно классической механикой, то электроны не должны были вращаться вокруг ядра, так как орбитальные электроны должны испускать излучение (вследствие кругового движения) и в конечном итоге сталкиваться с ядром из-за потери энергии на излучение. Такая система не могла объяснить устойчивость атомов. Вместо этого электроны находятся в неопределенных, недетерминистических, размазанных, вероятностных корпускулярно-волновых орбиталях около ядра, вопреки традиционным представлениям классической механики и электромагнетизма.

Первоначально квантовая механика была разработана для лучшего объяснения и описания атома, особенно различий в спектрах света, излучаемых различными изотопами одного и того же химического элемента, а также описания субатомных частиц. Короче говоря, квантово-механическая модель атома оказалась поразительно успешной в той области, где классическая механика и электромагнетизм оказались беспомощны.

Квантовая механика включает в себя четыре класса явлений, которые классическая физика не может объяснить:

  • квантование отдельных физических свойств
  • квантовая запутанность
  • принцип неопределенности
  • корпускулярно-волновой дуализм

Математические основы квантовой механики

В математически строгой формулировке квантовой механики, разработанной Полем Дираком, Давидом Гильбертом, Джоном фон Нейманом и Германом Вейлем, возможные состояния квантово-механической системы символизируются единичными векторами (называемые векторы состояния). Формально они принадлежат комплексному сепарабельному гильбертову пространству - иначе, пространству состояний или связанному с ним гильбертову пространству системы, и определены с точностью до произведения на комплексное число с единичным модулем (фазовый множитель). Другими словами, возможные состояния являются точками в проективном пространстве гильбертова пространства, как правило, называемом комплексным проективным пространством. Точный характер этого гильбертова пространства зависит от системы - например, пространство состояний положения и импульса является пространством квадратно-интегрируемых функций, в то время как пространство состояний для спина одного протона является всего лишь прямым произведением двух комплексных плоскостей. Каждая физическая величина представлена ​​гипермаксимально эрмитовым (точнее: самосопряженным) линейным оператором, действующим на пространстве состояний. Каждое собственное состояние физической величины соответствует собственному вектору оператора, и связанное с ним собственное значение соответствует значению физической величины в этом собственном состоянии. Если спектр оператора является дискретным, физическая величина может принимать только дискретные собственные значения.

В формализме квантовой механики состояние системы в данный момент описывается сложной волновой функцией, также называемой вектором состояния в комплексном векторном пространстве. Данный абстрактный математический объект позволяет рассчитать вероятности исходов конкретных экспериментов. Например, позволяет вычислить вероятность нахождения электрона в определенной области вокруг ядра в определенное время. В отличие от классической механики, здесь никогда нельзя сделать одновременного предсказания с произвольной точностью для сопряженных переменных, таких как положение и импульс. Например, можно считать, что электроны (с некоторой вероятностью) находятся где-то в пределах заданной области пространства, но их точное местоположение неизвестно. Можно нарисовать вокруг ядра атома области постоянной вероятности, часто называемые «облаками», чтобы представлять, где электрон может находиться с наибольшей вероятностью. Принцип неопределенности Гейзенберга количественно оценивает неспособность точной локализации частицы с заданным импульсом, являющимся сопряженной к положению величиной.

Согласно одной из интерпретаций, в результате измерения волновая функция, содержащая информацию о вероятности состояния системы, распадается из заданного начального состояния до определенного собственного состояния. Возможными результатами измерения являются собственные значения оператора, представляющего физическую величину - что объясняет выбор эрмитового оператора, у которого все собственные значения являются действительными числами. Распределение вероятностей физической величины в данном состоянии, можно найти путем вычисления спектрального разложения соответствующего оператора. Принцип неопределенности Гейзенберга представляется формулой, в которой операторы, соответствующие определенным величинам не коммутируют.

Измерение в квантовой механике

Вероятностный характер квантовой механики, таким образом, вытекает из акта измерения. Это один из самых сложных для понимания аспектов квантовых систем, и он был центральной темой в знаменитых дебатах Бора с Эйнштейном, в ходе которых оба ученых попытались прояснить эти фундаментальные принципы посредством мысленных экспериментов. В течение десятилетий после формулирования квантовой механики широко изучался вопрос о том, что представляет собой "измерение". Новые интерпретации квантовой механики были сформулированы, чтобы покончить с понятием "коллапс волновой функции". Основная идея заключается в том, что когда квантовая система взаимодействует с измерительным аппаратом, их соответствующие волновые функции становятся запутанными, так что исходная квантовая система перестает существовать как самостоятельная сущность.

Вероятностный характер предсказаний квантовой механики

Как правило, квантовая механика не ставит в соответствие определенные значения. Вместо этого она делает предсказание, используя распределение вероятностей; то есть, она описывает вероятность получения возможных результатов от измерения физической величины. Часто эти результаты деформированы, как облака плотности вероятности, многими процессами. Облака плотности вероятности являются приближением (но лучшим, чем модель Бора), в котором расположение электрона задается функцией вероятности, волновыми функциями, соответствующими собственным значениям, таким образом, что вероятность является квадратом модуля комплексной амплитуды, или квантового состояния ядерного притяжения. Естественно, что эти вероятности будут зависеть от квантового состояния в "момент" измерения. Следовательно, неопределенность вносится в измеренное значение. Есть, однако, некоторые состояния, которые связаны с определенными значениями конкретной физической величины. Они называются собственными состояниями (eigenstates) физической величины ("eigen" можно перевести с немецкого как "присущий" или "свойственный").

Естественно и интуитивно понятно, что все в повседневной жизни (все физические величины) имеют собственные значения. Кажется, что всё имеет определенное положение, определенный момент, определенную энергию, и определенное время события. Однако квантовая механика не указывает точных значений положения и импульса частицы (поскольку это сопряженные пары) или ее энергии и времени (поскольку они тоже сопряженные пары); точнее, она предоставляет только диапазон вероятностей, с которыми эта частица может иметь заданный импульс и вероятность импульса. Поэтому целесообразно различать состояния, имеющие неопределенные значения, и состояния, имеющие определенные значения (собственные состояния). Как правило, мы не интересуемся системой, в которой частица не имеет собственного значения физической величины. Однако, при измерении физической величины, волновая функция мгновенно принимает собственное значение (или "обобщенное" собственное значение) этой величины. Этот процесс называют коллапсом волновой функции, спорный и много обсуждаемый процесс, в котором происходит расширение изучаемой системы добавлением в неё измерительного устройства. Если знать соответствующую волновую функцию непосредственно перед измерением, то можно вычислить вероятность того, что волновая функция перейдёт в каждое из возможных собственных состояний. Например, свободная частица в предыдущем примере, как правило, имеют волновую функцию, которая представляет собой волновой пакет, сосредоточенный вокруг некоторого среднего положения x0 (не имеющий собственных состояний положения и импульса). Когда происходит измерение положения частицы, то невозможно с уверенностью предсказать результат. Вполне вероятно, но не точно, что оно будет вблизи х0, где амплитуда волновой функции велика. После выполнения измерения, получив какой-то результат х, волновая функция коллапсирует в собственную функцию оператора положения с центром в х.

Уравнение Шредингера в квантовой механике

Временная эволюция квантового состояния описывается уравнением Шредингера, в котором гамильтониан (оператор, соответствующий полной энергии системы) порождает временную эволюцию. Временная эволюция волновых функций является детерминированной в том смысле, что - с учетом того, какой волновая функция была в начальный момент времени - можно сделать четкое предсказание того, какой будет волновая функция в любое время в дальнейшем.

С другой стороны, во время измерения, изменение исходной волновой функции в другую, более позднюю волновую функцию не будет являться детерминированным, а будет непредсказуемым (т. е. случайным). Эмуляцию временной эволюции можно увидеть здесь.

Волновые функции изменяются с течением времени. Уравнение Шредингера описывает изменение волновых функций во времени, и играет роль, аналогичную роли второго закона Ньютона в классической механике. Уравнение Шредингера, применяемое к вышеупомянутому примеру свободной частицы, предсказывает, что центр волнового пакета будет перемещаться по пространству с постоянной скоростью (как классическая частица в отсутствие сил, действующих на него). Тем не менее, волновой пакет также будет расплываться с течением времени, что означает, что позиция становится более неопределенной со временем. Это также имеет эффект превращения собственной функции положения (которую можно рассматривать как бесконечно острый пик волнового пакета) в расширенный волновой пакет, который больше не представляет (определенного) собственного значения положения.

Некоторые волновые функции порождают распределения вероятностей, которые являются постоянными или независимыми от времени - например, когда в стационарном состоянии с постоянной энергией время исчезает из модуля квадрата волновой функции. Многие системы, которые рассматриваются как динамические в классической механике, описываются в квантовой механике такими "статическими" волновыми функциями. Например, один электрон в невозбужденном атоме представляется классически как частица, движущаяся по круговой траектории вокруг атомного ядра, в то время как в квантовой механике он описывается статической, сферически симметричной волновой функцией, окружающей ядро ​​(рис. 1) (отметим, однако, что только самые низкие состояния орбитального момента импульса, обозначенные как s, являются сферически симметричными).

Уравнение Шредингера действует на всю амплитуду вероятности, а не только на ее абсолютное значение. В то время как в абсолютное значение амплитуды вероятности заложена информация о вероятностях, в ее фазу заложена информация о взаимовлиянии между квантовыми состояниями. Это порождает "волнообразное" поведение квантовых состояний. Как выясняется, аналитические решения уравнения Шредингера возможны только для очень небольшого числа гамильтонианов относительно простых моделей, таких как квантовый гармонический осциллятор, частица в ящике, ион молекулы водорода и атом водорода - это важнейшие представители таких моделей. Даже атом гелия, который содержит всего на один электрон больше, чем в атом водород, не поддался ни одной попытке чисто аналитического решения.

Однако существует несколько методов получения приближенных решений. В важном методе, известном как теория возмущений, используется аналитический результат, полученный для простой квантово-механической модели, и на его основе генерируется результат для более сложной модели, которая отличается от более простой модели (например) добавлением энергии слабого потенциального поля. Другим подходом является метод "квазиклассического приближения", который применяется к системам, для которых квантовая механика применяется только к слабым (малым) отклонениям от классического поведения. Затем эти отклонения можно вычислить на основе классического движения. Этот подход особенно важен при изучении квантового хаоса.

Математически эквивалентные формулировки квантовой механики

Существуют многочисленные математически эквивалентные формулировки квантовой механики. Одной из старейших и наиболее часто используемых формулировок является "теория преобразований", предложенная Полем Дираком, которая объединяет и обобщает две самые ранние формулировки квантовой механики - матричную механику (созданную Вернером Гейзенбергом) и волновую механику (созданную Эрвином Шредингером).

С учетом того, что Вернер Гейзенберг был удостоен Нобелевской премии по физике в 1932 году за создание квантовой механики, роль Макса Борна в развитии КМ была упущена из виду до вручения ему Нобелевской премии в 1954 году. Эта роль упоминается в биографии Борна 2005 года, в которой рассказывается о его роли в матричной формулировке квантовой механики, а также использовании амплитуд вероятности. В 1940 году сам Гейзенберг признает в юбилейном сборнике в честь Макса Планка, что узнал о матрицах от Борна. В матричной формулировке, мгновенное состояние квантовой системы определяет вероятности её измеримых свойств или физических величин. Примеры величин включают в себя энергию, положение, импульс и орбитальный момент. Физические величины могут быть либо непрерывными (например, положение частицы) или дискретными (например, энергия электрона, связанного с атомом водорода). Фейнмановские интегралы по траекториям - альтернативная формулировка квантовой механики, в которой квантовомеханическая амплитуда рассматривается как сумма по всем возможным классическим и неклассическим траекториям между начальным и конечным состояниями. Это квантово-механический аналог принципа наименьшего действия в классической механике.

Законы квантовой механики

Законы квантовой механики имеют основополагающее значение. Утверждается, что пространство состояний системы является гильбертовым, и физические величины этой системы являются эрмитовыми операторами, действующими в этом пространстве, хотя не говорится, какие именно эти гильбертовы пространства или какие именно эти операторы. Они могут быть выбраны соответствующим образом, чтобы получить количественную характеристику квантовой системы. Важным ориентиром для принятия этих решений является принцип соответствия, который гласит, что предсказания квантовой механики сводятся к классической механике, когда система переходит в область высоких энергий или, что то же самое, в область больших квантовых чисел, то есть в то время как отдельная частица обладает определенной степенью случайности, в системах, содержащих миллионы частиц, преобладают усредненные значения и, при устремлении к высокоэнергетическому пределу, статистическая вероятность случайного поведения стремится к нулю. Другими словами, классическая механика является просто квантовой механикой больших систем. Этот "высокоэнергетический" предел известен как классический или предел соответствия. Таким образом, решение можно даже начать с устоявшейся классической модели той или иной системы, и затем попытаться угадать базовую квантовую модель, которая породила бы такую классическую модель при переходу к пределу соответствия.

Когда квантовая механика была изначально сформулирована, она применялась к моделям, пределом соответствия которых была нерелятивистская классическая механика. Например, известная модель квантового гармонического осциллятора использует явно нерелятивистское выражение для кинетической энергии осциллятора и, таким образом, является квантовой версией классического гармонического осциллятора.

Взаимодействие с другими научными теориями

Ранние попытки объединить квантовую механику со специальной теорией относительности предусматривали замену уравнения Шредингера ковариантными уравнениеми, такими как уравнение Клейна-Гордона или уравнение Дирака. Хотя эти теории были успешными в объяснении многих экспериментальных результатов, они имели определенные неудовлетворительные качества, вытекающие из того, что в них не учитывалось релятивистское рождение и уничтожением частиц. Полностью релятивистская квантовая теория требовала развития квантовой теории поля, в которой применяется квантование поля (а не фиксированного набора частиц). Первая полноценная квантовая теория поля - квантовая электродинамика, обеспечивает полное квантовое описание электромагнитного взаимодействия. Полный аппарат квантовой теории поля часто не требуется для описания электродинамических систем. Более простой подход, применяемый с момента создания квантовой механики, заключается в том, чтобы рассматривать заряженные частицы как квантово-механические объекты, на которые действует классическое электромагнитное поле. Например, элементарная квантовая модель атома водорода описывает электрическое поле атома водорода, используя классическое выражение для кулоновского потенциала:

E2/(4πε0r)

Такой "квазиклассический" подход не работает, если квантовые флуктуации электромагнитного поля играют важную роль, например, при излучении фотонов заряженными частицами.

Также были разработаны квантовые теории поля для сильных и слабых ядерных сил. Квантовая теория поля для сильных ядерных взаимодействий называется квантовой хромодинамикой и описывает взаимодействие субядерных частиц, таких как кварки и глюоны. Слабые ядерные и электромагнитные силы были объединены в их квантованных формах в единую квантовую теорию поля (известная как теория электрослабого взаимодействия), физиками Абдусом Саламом, Шелдоном Глэшоу и Стивеном Вайнбергом. За эту работу все трое получили Нобелевскую премию по физике в 1979 году.

Трудно оказалось построить квантовые модели для четвертой оставшейся фундаментальной силы - гравитации. Выполнены полуклассические приближения, которые привели к предсказаниям, таким как излучение Хокинга. Тем не менее, формулировке полной теории квантовой гравитации мешают очевидные несовместимости между общей теорией относительности (которая является наиболее точной теорией гравитации, известной в настоящее время) и некоторыми из основных положений квантовой теории. Разрешение этих несовместимостей является направлением активных исследований и теорий, таких как теория струн - одна из возможных кандидатур на будущую теорию квантовой гравитации.

Классическая механика была также расширена в комплексную область, при этом комплексная классическая механика стала проявлять себя подобно квантовой механике.

Cвязь квантовой механики с классической механикой

Предсказания квантовой механики были подтверждены экспериментально с очень высокой степенью точности. Согласно принципу соответствия между классической и квантовой механиками, все объекты подчиняются законам квантовой механики, а классическая механика является лишь приближением для больших систем объектов (или статистической квантовой механикой для большого набора частиц). Таким образом, законы классической механики вытекают из законов квантовой механики как статистическое среднее при устремлении к очень большому предельному значению числа элементов системы или значений квантовых чисел. Однако в хаотических системах отсутствуют хорошие квантовые числа, и квантовый хаос изучает связь между классическим и квантовым описаниями этих систем.

Квантовая когерентность является существенным различием между классической и квантовой теориями, иллюстрируемая парадоксом Эйнштейна–Подольского–Розена (EPR) , она стала выпадом против известной философской интерпретации квантовой механики посредством обращения к локальному реализму. Квантовая интерференция предполагает сложение амплитуд вероятности, в то время как классические"волны" подразумевают сложение интенсивностей. Для микроскопических тел, протяженность системы значительно меньше, чем длина когерентности, что приводит к запутанности на далеких расстояниях и другим нелокальным явлениям, характерным для квантовых систем. Квантовая когерентность обычно не проявляется в макроскопических масштабах, хотя исключение из этого правила может возникать при крайне низких температурах (т. е. при приближении к абсолютному нулю), при которых квантовое поведение может проявляться в макроскопическом масштабе. Это находится в соответствии со следующими наблюдениями:

Многие макроскопические свойства классической системы являются прямым следствием квантового поведения его частей. Например, устойчивость основной части материи (состоящей из атомов и молекул, которые под действием одних лишь электрических сил быстро бы разрушались), жесткость твердых тел, а также механические, термические, химические, оптические и магнитные свойства материи являются результатом взаимодействия электрических зарядов в соответствии с правилами квантовой механики.

В то время как кажущееся "экзотическим" поведение материи, постулируемое квантовой механикой и теорией относительности, становится более очевидным при работе с частицами очень малого размера или при перемещении со скоростями, приближающимися к скорости света, законы классической, часто называемой "ньютоновской", физики остаются точными при прогнозировании поведения подавляющего числа "больших" объектов (порядка размера крупных молекул или ещё больших) и при скоростях гораздо меньших, чем скорость света.

В чем заключается отличие квантовой механики от классической?

Классическая и квантовая механика сильно отличаются тем, что они используют очень разные кинематические описания.

По устоявшемуся мнению Нильса Бора, для изучения квантово-механических явлений требуются эксперименты, с полным описанием всех устройств системы, подготовительного, промежуточного и конечного измерений. Описания представляются в макроскопических терминах, выраженных на обычном языке, дополненных понятиями классической механики. Начальные условия и конечное состояние системы соответственно описывается положением в конфигурационном пространстве, например, в пространстве кординат, или некотором эквивалентном пространстве, таком как импульсное пространстве. Квантовая механика не допускает полностью точного описания, как с точки зрения положения, так и импульса, точного детерминированного и причинно-следственного предсказания конечного состояния исходя из начальных условий или "состояния" (в классическом смысле этого слова). В этом смысле, пропагандируемом Бором в его зрелых трудах, квантовое явление - это процесс перехода от начального к конечному состоянию, а не мгновенное "состояние" в классическом смысле этого слова. Таким образом, существуют два вида процессов в квантовой механике: стационарные и переходные. Для стационарных процессов, начальное и конечное положение одинаковы. Для переходных - они различны. Очевидно по определению, что, если задано только начальное условие, то процесс не определен. Учитывая начальные условия, предсказание конечного состояния возможно, но только на вероятностном уровне, поскольку уравнение Шредингера детерминировано для эволюции волновой функции, а волновая функция описывает систему только в вероятностном смысле.

Во многих экспериментах можно принимать начальное и конечное состояние системы за частицу. В некоторых случаях оказывается, что существует потенциально несколько пространственно различимых путей или траекторий, по которым частица может переходить от начального к конечному состоянию. Важной особенностью квантового кинематического описания является то, что оно не позволяет однозначно определить, каким из этих путей производится переход между состояниями. Определены только начальные и конечные условия, и, как указано в предыдущем абзаце, они определены только с такой точностью, насколько это разрешает описание пространственной конфигурацией или её эквивалентом. В каждом случае, для которого необходимо квантовое кинематическое описание, всегда есть веская причина такого ограничения кинематической точности. Причина заключается в том, что для экспериментального нахождения частицы в определенном положении она должна быть неподвижной; для экспериментального нахождения частицы с определенным импульсом она должна находиться в свободном движении; эти два требования логически несовместимы.

Изначально классическая кинематика не требуют экспериментального описания её явлений. Это позволяет полностью точно описать мгновенное состояние системы положением (точкой) в фазовом пространстве - декартовом произведении конфигурационного и импульсного пространств. Это описание просто предполагает, или представляет себе состояние как физическую сущность, не беспокоясь о ее экспериментальной измеримости. Такое описание начального состояния вместе с законами движения Ньютона позволяет точно сделать детерминированное и причинно-следственное предсказание конечного состояния вместе с определенной траекторией эволюции системы. Для этого может быть использована гамильтоновская динамика. Классическая кинематика также позволяет описать процесс, аналогично описанию начального и конечного состояния, используемому квантовой механикой. Лагранжева механика позволяет это сделать. Для процессов, в которых необходимо учитывать величину действия порядка нескольких планковских констант, классическая кинематика не годится; здесь требуется использовать квантовую механику.

Общая теория относительности

Даже при том, что определяющие постулаты теории общей относительности и квантовой теории Эйнштейна безоговорочно подкрепляются строгими и повторяющимися эмпирическими доказательствами, и хотя они не противоречат друг другу теоретически (по крайней мере, в отношении своих первичных утверждений), их оказалось крайне трудно интегрировать в одну последовательную, единую модель.

Гравитацией можно пренебречь во многих областях физики элементарных частиц, так что объединение между общей теорией относительности и квантовой механикой не является насущным вопросом в этих частных приложениях. Однако, отсутствие правильной теории квантовой гравитации является важным вопросом в физической космологии и поиске физиками элегантной "Теории всего" (TВ). Следовательно, решение всех несоответствий между обеими теориями является одной из основных целей для физики 20 и 21 века. Многие видные физики, в том числе Стивен Хокинг, трудился на протяжении многих лет в попытке открыть теорию, лежащую в основе всего. Эта ТВ будет объединять не только разные модели субатомной физики, но и выводить четыре фундаментальные силы природы - сильное взаимодействие, электромагнетизм, слабое взаимодействие и гравитацию - из одной силы или явления. В то время как Стивен Хокинг изначально верил в ТВ, но после рассмотрения теорема Геделя о неполноте, он пришел к выводу, что создание такой теории неосуществимо, и заявил об этом публично в своей лекции "Гёдель и конец физики" (2002).

Основные теории квантовой механики

Стремление объединить фундаментальные силы с помощью квантовой механики все еще продолжается. Квантовая электродинамика (или "квантовый электромагнетизм"), которая в настоящее время (по крайней мере, в пертурбативном режиме) является наиболее точной проверенной физической теорией в соперничестве с общей теорией относительности, успешно объединяет слабые ядерные взаимодействия в электрослабое взаимодействие и в настоящее время ведется работа по объединению электрослабого и сильного взаимодействия в электросильное взаимодействие. Текущие прогнозы утверждают, что в районе 1014 ГэВ три вышеупомянутых силы сливаются в единое унифицированное поле. Помимо этой "грандиозной унификации", предполагается, что гравитацию можно объединить с другими тремя калибровочными симметриями, что, как ожидается, произойдёт на уровне примерно 1019 ГэВ. Однако - и в то время как специальная теория относительности бережно включена в квантовую электродинамику - расширенная общая теория относительности, в настоящее время лучшая теория, описывающая силы гравитации, не в полной мере включена в квантовую теорию. Один из тех, кто разрабатывает согласованную теорию всего, - Эдвард Виттен, - физик-теоретик, сформулировал М-теорию, которая представляет собой попытку изложить суперсимметрию на основе теории суперструн. М-теория предполагает, что наше видимое 4-мерное пространство - это на самом деле 11 - мерный пространственно-временной континуум, содержащий десять пространственных измерений и одно временное измерение, хотя 7 пространственных измерений при низких энергиях полностью "уплотнены" (или бесконечно изогнуты) и не легко поддаются измерению или исследованию.

Другая популярная теория петлевой квантовой гравитации (Loop quantum gravity (LQG)) - теория, впервые предложенная Карло Ровелли, которая описывает квантовые свойства гравитации. Она также является теорией квантового пространства и квантового времени, так как в общей теории относительности геометрические свойства пространства-времени являются проявлением гравитации. LQG - это попытка объединить и адаптировать стандартную квантовую механику и стандартную общую теорию относительности. Основным результатом теории является физическая картина, в которой пространство является зернистым. Зернистость является прямым следствием квантования. Она имеет тот же характер зернистости фотонов в квантовой теории электромагнетизме или дискретных уровней энергии атомов. Но здесь само пространство является дискретным. Точнее, пространство можно рассматривать как чрезвычайно тонкую ткань или сеть, "сотканную" из конечных петель. Эти петлевые сети называются спиновые сети. Эволюция спиновой сети во времени называется спиновой пеной. Прогнозируемый размер данной структуры является длиной Планка, что составляет приблизительно 1,616 × 10-35 м. Согласно теории, нет никакого смысла в более короткой длине, чем эта. Следовательно, LQG предсказывает, что не только материя, но и само пространство, имеет атомарную структуру.

Философские аспекты квантовой механики

С момента своего создания, многие парадоксальные аспекты и результаты квантовой механики вызвали бурные философские диспуты и множество интерпретаций. Даже фундаментальным вопросам, таким как основные правила Макса Борна относительно амплитуды вероятности и распределения вероятности, потребовались десятилетия, чтобы они могли быть оценены обществом и многими ведущими учеными. Ричард Фейнман однажды сказал: "Думаю, я могу смело утверждать, что никто не понимает квантовую механику. По словам Стивена Вайнберга, "сейчас, на мой взгляд, не существует абсолютно удовлетворительной интерпретации квантовой механики.

Копенгагенская интерпретация - во многом благодаря Нильсу Бору и Вернеру Гейзенбергу - на протяжении 75 лет после её провозглашения остается наиболее приемлемой среди физиков. Согласно этой интерпретации вероятностный характер квантовой механики не является временной особенностью, которая в конечном итоге будет заменена детерминированной теорией, а должна рассматриваться как окончательный отказ от классической идеи "причинно-следственной связи". Кроме того считается, что в ней любые четко определенные применения квантово-механического формализма всегда должны делать ссылку на схему эксперимента из-за сопряженного характера доказательств, полученных в различных экспериментальных ситуациях.

Альберт Эйнштейн, будучи одним из основателей квантовой теории, сам не принял некоторые из более философских или метафизических интерпретаций квантовой механики, таких как отказ от детерминизма и причинно-следственной связи. Его самый цитируемый знаменитый ответ на такой подход звучит так: "Бог не играет в кости". Он отверг концепцию о том, что состояние физической системы зависит от экспериментальной измерительной установки. Он считал, что явления природы происходят по своим законам, независимо от того, происходит ли за ними наблюдение и каким образом. В этой связи его поддерживает принятое в настоящее время определение квантового состояния, которое остается инвариантным при произвольном выборе конфигурационного пространства для его представления, то есть способа наблюдения. Он также счел, что в основе квантовой механики должна лежать теория, которая тщательно и непосредственно выражает правило, отвергающее принцип дальнодействия; другими словами, он настаивал на принципе локальности. Он рассматривал, но теоретически обоснованно отклонил частное представление о скрытых переменных, чтобы избежать неопределенности или отсутствия причинно-следственных связей в квантово-механических измерениях. Он считал, что квантовая механика была в то время действующей, но не окончательной и не незыблемой теорией квантовых явлений. Он считал, что её будущая замена потребует глубоких концептуальных достижений, и что это произойдет не так быстро и легко. Дискуссии Бора-Эйнштейна дают яркую критику копенгагенской интерпретации с гносеологической точки зрения.

Джон Белл показал, что этот парадокс "EPR" приводил к экспериментально проверяемым различиям между квантовой механикой и теориями, которые опираются на добавление скрытых переменных. Проведены эксперименты, подтверждающие точность квантовой механики, тем самым демонстрируя, что квантовая механика не может быть улучшена путем добавления скрытых переменных. Первоначальные эксперименты Алена Аспекта в 1982 году и многие последующие эксперименты с тех пор окончательно подтвердили квантовую запутанность.

Запутанность, как показали белловские эксперименты, не нарушает причинно-следственных связей, поскольку никакой передачи информации не происходит. Квантовая запутанность формирует основу квантовой криптографии, которая предлагается для использования в высокобезопасных коммерческих приложениях в банковской и государственной сферах.

Многомировая интерпретация Эверетта, сформулированная в 1956 году, полагает, что все возможности, описываемые квантовой теорией, одновременно возникают в мультиверсе, состоящем, главным образом, из независимых параллельных вселенных. Это не достигается введением некоторой "новой аксиомы" в квантовую механику, а наоборот, достигается удалением аксиомы распада волнового пакета. Все возможные последовательные состояния измеряемой системы и измерительного устройства (включая наблюдателя) присутствуют в реальной физической - а не только в формальной математической, как в других интерпретациях - квантовой суперпозиции. Такая суперпозиция последовательных комбинаций состояний различных систем называется запутанным состоянием. В то время как мультиверс является детерминированным, мы воспринимаем недетерминированное поведение, случайного характера, поскольку можем наблюдать только ту вселенную (т. е. вклад совместимого состояния в вышеупомянутую суперпозицию), в которой мы, как наблюдатели, обитаем. Интерпретация Эверетта идеально согласуется с экспериментами Джона Белла и делает их интуитивно понятными. Однако, согласно теории квантовой декогеренции, эти "параллельные вселенные" никогда не будут доступны нам. Недоступность можно понимать следующим образом: как только измерение будет сделано, измеряемая система запутывается как с физиком, измерявшим её, так и с огромным количеством других частиц, некоторые из которых являются фотонами, улетающими со скоростью света к другому концу вселенной. Чтобы доказать, что волновая функция не распалась, необходимо вернуть все эти частицы обратно и измерить их снова вместе с системой, которая изначально была измерена. Это не только совершенно непрактично, но даже если теоретически можно было бы это сделать, то пришлось бы уничтожить любые доказательства того, что первоначальное измерение имело место (в том числе и память физика). В свете этих белловских экспериментов Крамер в 1986 году сформулировал свою транзакционную интерпретацию. В конце 1990-х годов появилась реляционная квантовая механика как современная производная копенгагенской интерпретации.

Квантовая механика имела огромный успех в объяснении многих особенностей нашей Вселенной. Квантовая механика часто является единственным доступным инструментом, способным выявить индивидуальное поведение субатомных частиц, составляющих все формы материи (электроны, протоны, нейтроны, фотоны и др.). Квантовая механика сильно повлияла на теорию струн - претендента на теорию всего (а Theory of Everything).

Квантовая механика также критически важна для понимания того, как индивидуальные атомы создают ковалентные связи для формирования молекул. Применение квантовой механики в химии называется квантовой химией. Релятивистская квантовая механика может, в принципе, математически описать большую часть химии. Квантовая механика также может дать количественное представление о процессах ионного и ковалентного связывания, явным образом показывая, какие молекулы к другим молекулам энергетически подходят и при каких величинах энергии. Кроме того, большинство расчетов в современной вычислительной химии опираются на квантовую механику.

Во многих отраслях современные технологии работают в масштабах, где квантовые эффекты значительно проявляются.

Квантовая физика в электронике

Многие современные электронные устройства разработаны с использованием квантовой механики. Например, лазер, транзистор (и таким образом микрочип), электронный микроскоп и магнитно-резонансная томография (МРТ). Изучение полупроводников привело к изобретению диода и транзистора, которые являются незаменимыми компонентами современных электронных систем, компьютерных и телекоммуникационных устройств. Ещё одно приложение - это светоизлучающий диод, который представляет собой высокоэффективный источник света.

Многие электронные устройства работают под действием квантового туннелирования. Оно даже присутствует в простом выключателе. Переключатель не сработал бы, если бы электроны не могли квантово тунеллировать через слой окисла на металлических контактных поверхностях. Чипы флэш-памяти, основной детали USB-накопителей, используют квантовое туннелирование, чтобы стирать информацию в своих ячейках. Некоторые устройства с отрицательным дифференциальным сопротивлением, такие как резонансный туннельный диод, также используют квантовый туннельный эффект. В отличие от классических диодов, ток в нём протекает под действием резонансного туннелирования через два потенциальных барьера. Его режим работы с отрицательным сопротивлением может быть объяснён только квантовой механикой: при приближении энергии состояния связанных носителей к уровню Ферми, туннельный ток возрастает. При отдалении от уровня Ферми, ток уменьшается. Квантовая механика имеет жизненно важное значение для понимания и разработки таких типов электронных устройств.

Квантовая криптография

Исследователи в настоящее время ищут надежные методы непосредственного манипулирования квантовыми состояниями. Предпринимаются усилия по полноценному развитию квантовой криптографии, которая теоретически позволит гарантировать безопасную передачу информации.

Квантовые вычисления

Более отдаленной целью является разработка квантовых компьютеров, которые, как ожидается, будут выполнять определенные вычислительные задачи экспоненциально быстрее классических компьютеров. Вместо классических битов, квантовые компьютеры используют кубиты, которые могут находиться в суперпозиции состояний. Другой активной темой исследования является квантовая телепортация, которая имеет дело с методами передачи квантовой информации на произвольные расстояния.

Квантовые эффекты

В то время как квантовая механика в первую очередь применяется к атомным системам с меньшим количеством вещества и энергии, некоторые системы демонстрируют квантово-механические эффекты в больших масштабах. Сверхтекучесть - способность движения потока жидкости без трения при температуре вблизи абсолютного нуля, является одним известным примером таких эффектов. Тесным образом связанно с этим явлением и явление сверхпроводимости - поток электронного газа (электрический ток), движущийся без сопротивления в проводящем материале при достаточно низких температурах. Дробный квантовый эффект Холла является топологическим упорядоченным состоянием, которое соответствует моделям квантового запутывания, действующего на большие расстояния. Состояния с различным топологическим порядком (или различной конфигурацией дальнедиапазонного запутывания) не могут вносить изменения в состояния друг в друга без фазовых превращений.

Квантовая теория

Квантовая теория также содержит точные описания многих ранее необъяснимых явлений, таких как излучение абсолютно черного тела и стабильность орбитальных электронов в атомах. Она также дала представление о работе многих различных биологических систем, в том числе обонятельных рецепторов и белковых структур. Недавнее исследование фотосинтеза показало, что квантовые корреляции играют важную роль в этом фундаментальном процессе, протекающем в растениях и многих других организмах. Тем не менее, классическая физика часто может обеспечить хорошие приближения к результатам, полученным квантовой физикой, как правило, в условиях большого количества частиц или больших квантовых чисел. Поскольку классические формулы гораздо проще и легче вычислять, чем квантовые формулы, использование классических аппроксимаций предпочтительнее, когда система достаточно велика, чтобы сделать эффекты квантовой механики незначительными.

Движение свободной частицы

Для примера, рассмотрим свободную частицу. В квантовой механике наблюдается корпускулярно–волновой дуализм, так что свойства частицы могут быть описаны как свойства волны. Таким образом, квантовое состояние может быть представлено в виде волны произвольной формы и простирающейся в пространстве в виде волновой функции. Положение и импульс частицы являются физическими величинами. Принцип неопределенности утверждает, что положение и импульс не могут одновременно быть точно измерены. Тем не менее, можно измерить положение (без измерения импульса) движущейся свободной частицы, создав собственное состояние положения с волновой функцией (дельта-функция Дирака), которая имеет очень большое значение в определенном положении х, и ноль в остальных положениях. Если выполнить измерение положения при такой волновой функции, то в результате х будет получен с вероятностью 100% (то есть, с полной уверенностью, или с полной точностью). Это называется собственное значение (состояние) положения или, указанного в математических терминах, собственное значение обобщенной координаты (eigendistribution). Если частица находится в собственном состоянии положения, то ее импульс абсолютно не определяем. С другой стороны, если частица находится в собственном состоянии импульса, то её положение совершенно неизвестно. В собственном состоянии импульса, собственная функция которого имеет форму плоской волны, можно показать, что длина волны равна h/p, где h - постоянная Планка, а р - импульс собственного состояния.

Прямоугольный потенциальный барьер

Это модель квантового туннельного эффекта, который играет важную роль в производстве современных технологических устройств, таких как флэш-память и сканирующий туннельный микроскоп. Квантовое туннелирование является центральным физическим процессом, протекающим в сверхрешетках.

Частица в одномерном потенциальном ящике

Частица в одномерном потенциальном ящике является самым простым математическим примером, в котором пространственные ограничения приводят к квантованию уровней энергии. Ящик определяется как наличие нулевой потенциальной энергии везде внутри определенной области и бесконечной потенциальной энергии всюду за пределами этой области.

Конечная потенциальная яма

Конечная потенциальная яма является обобщением задачи бесконечной потенциальной ямы, имеющей конечную глубину.

Задача конечной потенциальной ямы является математически более сложной, чем задача частицы в бесконечном потенциальном ящике, так как волновая функция не обращается в нуль на стенках ямы. Вместо этого, волновая функция должна удовлетворять более сложным математическим граничным условиям, так как она отлична от нуля в области за пределами потенциальной ямы.

А. ШИШЛОВА. по материалам журналов "Успехи физических наук" и "Scientific american".

Квантово-механическое описание физических явлений микромира считается единственно верным и наиболее полно отвечающим реальности. Объекты макромира подчиняются законам другой, классической механики. Граница между макро- и микромиром размыта, а это вызывает целый ряд парадоксов и противоречий. Попытки их ликвидировать приводят к появлению других взглядов на квантовую механику и физику микромира. Видимо, наилучшим образом выразить их удалось американскому теоретику Дэвиду Джозефу Бому (1917-1992).

1. Мысленный эксперимент по измерению компонент спина (собственного количества движения) электрона с помощью некоего устройства - "черного ящика".

2. Последовательное измерение двух компонент спина. Измеряется "горизонтальный" спин электрона (слева), потом "вертикальный" спин (справа), потом снова "горизонтальный" (внизу).

3А. Электроны с "правым" спином после прохождения через "вертикальный" ящик движутся в двух направлениях: вверх и вниз.

3Б. В том же эксперименте на пути одного из двух пучков поставим некую поглощающую поверхность. Далее в измерениях участвует лишь половина электронов, и на выходе половина их имеет "левый" спин, а половина - "правый".

4. Состояние любого объекта микромира описывает так называемая волновая функция.

5. Мысленный эксперимент Эрвина Шредингера.

6. Эксперимент, предложенный Д. Бомом и Я. Аароновым в 1959 году, должен был показать, что магнитное поле, недоступное для частицы, влияет на ее состояние.

Чтобы понять, какие трудности испытывает современная квантовая механика, нужно вспомнить, чем она отличается от классической, ньютоновской механики. Ньютон создал общую картину мира, в которой механика выступала как универсальный закон движения материальных точек или частиц - маленьких комочков материи. Из этих частиц можно было построить любые объекты. Казалось, что механика Ньютона способна теоретически объяснить все природные явления. Однако в конце прошлого века выяснилось, что классическая механика неспособна объяснить законы теплового излучения нагретых тел. Этот, казалось бы, частный вопрос привел к необходимости пересмотреть физические теории и потребовал новых идей.

В 1900 году появилась работа немецкого физика Макса Планка, в которой эти новые идеи и появились. Планк предположил, что излучение происходит порциями, квантами. Такое представление противоречило классическим воззрениям, но прекрасно объясняло результаты экспериментов (в 1918 году эта работа была удостоена Нобелевской премии по физике). Спустя пять лет Альберт Эйнштейн показал, что не только излучение, но и поглощение энергии должно происходить дискретно, порциями, и сумел объяснить особенности фотоэффекта (Нобелевская премия 1921 года). Световой квант - фотон, по Эйнштейну, имея волновые свойства, одновременно во многом напоминает частицу (корпускулу). В отличие от волны, например, он либо поглощается целиком, либо не поглощается вовсе. Так возник принцип корпускулярно-волнового дуализма электромагнитного излучения.

В 1924 году французский физик Луи де Бройль выдвинул достаточно "безумную" идею, предположив, что все без исключения частицы - электроны, протоны и целые атомы обладают волновыми свойствами. Год спустя Эйнштейн отозвался об этой работе: "Хотя кажется, что ее писал сумасшедший, написана она солидно", а в 1929 году де Бройль получил за нее Нобелевскую премию...

На первый взгляд, повседневный опыт гипотезу де Бройля отвергает: в окружающих нас предметах ничего "волнового" как будто нет. Расчеты, однако, показывают, что длина дебройлевской волны электрона, ускоренно го до энергии 100 электрон-вольт, равна 10 -8 сантиметра. Эту волну нетрудно обнаружить экспериментально, пропустив поток электронов сквозь кристалл. На кристаллической решетке произойдет дифракция их волн и возникнет характерная полосатая картинка. А у пылинки массой 0,001 грамма при той же скорости длина волны де Бройля будет в 10 24 раз меньше, и обнаружить ее никакими средствами нельзя.

Волны де Бройля непохожи на механические волны - распространяющиеся в пространстве колебания материи. Они характеризуют вероятность обнаружить частицу в данной точке пространства. Любая частица оказывается как бы "размазанной" в пространстве, и существует отличная от нуля вероятность обнаружить ее где угодно. Классическим примером вероятностного описания объектов микромира служит опыт по дифракции электронов на двух щелях. Прошедший через щель электрон регистрируется на фотопластинке или на экране в виде пятнышка. Каждый электрон может пройти либо через правую щель, либо через левую совершенно случайным образом. Когда пятнышек становится очень много, на экране возникает дифракционная картина. Почернение экрана оказывается пропорциональным вероятности появления электрона в данном месте.

Идеи де Бройля углубил и развил австрийский физик Эрвин Шредингер. В 1926 году он вывел систему уравнений - волновых функций, описывающих поведение квантовых объектов во времени в зависимости от их энергии (Нобелевская премия 1933 года). Из уравнений следует, что любое воздействие на частицу меняет ее состояние. А поскольку процесс измерения параметров частицы неизбежно связан с воздействием, возникает вопрос: что же регистрирует измерительный прибор, вносящий непредсказуемые возмущения в состояние измеряемого объекта?

Таким образом, исследование элементарных частиц позволило установить, по крайней мере, три чрезвычайно удивительных факта, касающихся общей физической картины мира.

Во-первых, оказалось, что процессами, происходящими в природе, управляет чистый случай. Во-вторых, далеко не всегда существует принципиальная возможность указать точное положение материального объекта в пространстве. И, в-третьих, что, пожалуй, наиболее странно, поведение таких физических объектов, как "измерительный прибор", или "наблюдатель", не описывается фундаментальными законами, справедливыми для прочих физических систем.

Впервые к таким выводам пришли сами основоположники квантовой теории - Нильс Бор, Вернер Гейзенберг, Вольфганг Паули. Позднее данная точка зрения, получившая название Копенгагенской интерпретации квантовой механики, была принята в теоретической физике в качестве официальной, что и нашло свое отражение во всех стандартных учебниках.

Вполне возможно, однако, что подобные заключения были сделаны слишком поспешно. В 1952 году американский физик-теоретик Дэвид Д. Бом создал глубоко проработанную квантовую теорию, отличную от общепринятой, которая так же хорошо объясняет все известные ныне особенности поведения субатомных частиц. Она представляет собой единый набор физических законов, позволяющий избежать какой-либо случайности в описании поведения физических объектов, а также неопределенности их положения в пространстве. Несмотря на это, бомовская теория до самого последнего времени почти полностью игнорировалась.

Чтобы лучше представить себе всю сложность описания квантовых явлений, проведем несколько мысленных экспериментов по измерению спина (собственного момента количества движения) электрона. Мысленных потому, что создать измерительный прибор, позволяющий точно измерять обе компоненты спина, пока что не удалось никому. Столь же безуспешными оказываются попытки предсказать, какие именно электроны поменяют свой спин в ходе описанного эксперимента, а какие нет.

Эти эксперименты включают в себя измерение двух компонент спина, которые условно будем называть "вертикальным" и "горизонтальным" спинами. Каждая из компонент в свою очередь может принимать одно из значений, которые мы также условно назовем "верхним" и "нижним", "правым" и "левым" спинами соответственно. Измерение основано на пространственном разделении частиц с разными спинами. Приборы, осуществляющие разделение, можно представить себе как некие "черные ящики" двух типов - "горизонтальный" и "вертикальный" (рис. 1). Известно, что разные компоненты спина свободной частицы совершенно независимы (физики говорят - не коррелируют между собой). Однако в ходе измерения одной компоненты значение другой может измениться, причем совершенно неконтролируемым образом (2).

Пытаясь объяснить полученные результаты, традиционная квантовая теория пришла к выводу, что необходимо полностью отказаться от детерминистского, то есть полностью определяющего состояние

объекта, описания явлений микромира. Поведение электронов подчиняется принципу неопределенности, согласно которому компоненты спина не могут быть точно измерены одновременно.

Продолжим наши мысленные эксперименты. Будем теперь не только расщеплять пучки электронов, но и заставим их отражаться от неких поверхностей, пересекаться и снова соединяться в один пучок в специальном "черном ящике" (3).

Результаты этих экспериментов противоречат обычной логике. Действительно, рассмотрим поведение какого-либо электрона в случае, когда поглощающая стенка отсутствует (3 А). Куда он будет двигаться? Допустим, что вниз. Тогда, если первоначально электрон имел "правый" спин, он так и останется правым до конца эксперимента. Однако, применив к этому электрону результаты другого эксперимента (3 Б), мы увидим, что его "горизонтальный" спин на выходе должен быть в половине случаев "правым", а в половине - "левым". Явное противоречие. Мог ли электрон пойти вверх? Нет, по той же самой причине. Быть может, он двигался не вниз, не вверх, а как-то по-другому? Но, перекрыв верхний и нижний маршруты поглощающими стенками, мы на выходе не получим вообще ничего. Остается предположить, что электрон может двигаться сразу по двум направлениям. Тогда, имея возможность фиксировать его положение в разные моменты времени, в половине случаев мы находили бы его на пути вверх, а в половине - на пути вниз. Ситуация достаточно парадоксальная: материальная частица не может ни раздваиваться, ни "прыгать" с одной траектории на другую.

Что говорит в данном случае традиционная квантовая теория? Она просто объявляет все рассмотренные ситуации невозможными, а саму постановку вопроса об определенном направлении движения электрона (и соответственно о направлении его спина) - некорректной. Проявление квантовой природы электрона в том и заключается, что ответа на данный вопрос в принципе не существует. Состояние электрона представляет собой суперпозицию, то есть сумму двух состояний, каждое из которых имеет определенное значение "вертикального" спина. Понятие о суперпозиции - один из основополагающих принципов квантовой механики, с помощью которого вот уже более семидесяти лет удается успешно объяснять и предсказывать поведение всех известных квантовых систем.

Для математического описания состояний квантовых объектов используется волновая функция, которая в случае одной частицы просто определяет ее координаты. Квадрат волновой функции равен вероятности обнаружить частицу в данной точке пространства. Таким образом, если частица находится в некой области А, ее волновая функция равна нулю всюду, за исключением этой области. Аналогично частица, локализованная в области Б, имеет волновую функцию, отличную от нуля только в Б. Если же состояние частицы оказывается суперпозицией пребывания ее в А и Б, то волновая функция, описывающая такое состояние, отлична от нуля в обеих областях пространства и равна нулю всюду вне их. Однако, если мы поставим эксперимент по определению положения такой частицы, каждое измерение будет давать нам только одно значение: в половине случаев мы обнаружим частицу в области А, а в половине - в Б (4). Это означает, что при взаимодействии частицы с окружением, когда фиксируется только одно из состояний частицы, ее волновая функция как бы коллапсирует, "схлопывается" в точку.

Одно из основных утверждений квантовой механики заключается в том, что физические объекты полностью описываются их волновыми функциями. Таким образом, весь смысл законов физики сводится к предсказанию изменений волновых функций во времени. Эти законы делятся на две категории в зависимости от того, предоставлена ли система самой себе или же она находится под непосредственным наблюдением и в ней производятся измерения.

В первом случае мы имеем дело с линейными дифференциальными "уравнениями движения", уравнениями детерминистскими, которые полностью описывают состояние микрочастиц. Следовательно, зная волновую функцию частицы в какой-то момент времени, можно точно предсказать поведение частицы в любой последующий момент. Однако при попытке предсказать результаты измерений каких-либо свойств той же частицы нам придется иметь дело уже с совершенно другими законами - чисто вероятностными.

Возникает естественный вопрос: как отличить условия применимости той или другой группы законов? Создатели квантовой механики указывают на необходимость четкого разделения всех физических процессов на "измерения" и "собственно физические процессы", то есть на "наблюдателей" и "наблюдаемых", или, по философской терминологии, на субъект и объект. Однако отличие между этими категориями носит не принципиальный, а чисто относительный характер. Тем самым, по мнению многих физиков и философов, квантовая теория в такой интерпретации становится неоднозначной, теряет свою объективность и фундаментальность. "Проблема измерения" стала основным камнем преткновения в квантовой механике. Ситуация несколько напоминает знаменитую апорию Зенона "Куча". Одно зерно - явно не куча, а тысяча (или, если угодно, миллион) - куча. Два зерна - тоже не куча, а 999 (или 999999) - куча. Эта цепочка рассуждений приводит к некоему количеству зерен, при котором понятия "куча - не куча" станут неопределенными. Они будут зависеть от субъективной оценки наблюдателя, то есть от способа измерений, хотя бы и на глаз.

Все окружающие нас макроскопические тела предполагаются точечными (или протяженными) объектами с фиксированными координатами, которые подчиняются законам классической механики. Но это означает, что классическое описание можно продолжить вплоть до самых малых частиц. С другой стороны, идя со стороны микромира, следует включать в волновое описание объекты все большего размера вплоть до Вселенной в целом. Граница между макро- и микромиром не определена, и попытки ее обозначить приводят к парадоксу. Наиболее четко указывает на него так называемая "задача о кошке Шредингера" - мысленный эксперимент, предложенный Эрвином Шредингером в 1935 году (5).

В закрытом ящике сидит кошка. Там же находятся флакон с ядом, источник излучения и счетчик заряженных частиц, подсоединенный к устройству, разбивающему флакон в момент регистрации частицы. Если яд разольется, кошка погибнет. Зарегистрировал счетчик частицу или нет, мы не можем знать в принципе: законы квантовой механики подчиняются законам вероятности. И с этой точки зрения, пока счетчик не произвел измерения, он находится в суперпозиции двух состояний - "регистрация - нерегистрация". Но тогда в этот момент и кошка оказывается в суперпозиции состояний жизни и смерти.

В действительности, конечно, реального парадокса здесь быть не может. Регистрация частицы - процесс необратимый. Он сопровождается коллапсом волновой функции, вслед за чем срабатывает механизм, разбивающий флакон. Однако ортодоксальная квантовая механика не рассматривает необратимых явлений. Парадокс, возникающий в полном согласии с ее законами, наглядно показывает, что между квантовым микромиром и классическим макромиром имеется некая промежуточная область, в которой квантовая механика не работает.

Итак, несмотря на несомненные успехи квантовой механики в объяснении экспериментальных фактов, в настоящий момент она едва ли может претендовать на полноту и универсальность описания физических явлений. Одной из наиболее смелых альтернатив квантовой механики и стала теория, предложенная Дэвидом Бомом.

Задавшись целью построить теорию, свободную от принципа неопределенности, Бом предложил считать микрочастицу материальной точкой, способной занимать точное положение в пространстве. Ее волновая функция получает статус не характеристики вероятности, а вполне реального физического объекта, некоего квантовомеханического поля, оказывающего мгновенное силовое воздействие. В свете этой интерпретации, например, "парадокс Эйнштейна-Подольского-Розена" (см. "Наука и жизнь" № 5, 1998 г.) перестает быть парадоксом. Все законы, управляющие физическими процессами, становятся строго детерминистскими и имеют вид линейных дифференциальных уравнений. Одна группа уравнений описывает изменение волновых функций во времени, другая - их воздействие на соответствующие частицы. Законы применимы ко всем физическим объектам без исключения - и к "наблюдателям", и к "наблюдаемым".

Таким образом, если в какой-то момент известны положение всех частиц во Вселенной и полная волновая функция каждой, то в принципе можно точно рассчитать положение частиц и их волновые функции в любой последующий момент времени. Следовательно, ни о какой случайности в физических процессах не может быть и речи. Другое дело, что мы никогда не сможем обладать всей информацией, необходимой для точных вычислений, да и сами расчеты оказываются непреодолимо сложными. Принципиальное незнание многих параметров системы приводит к тому, что на практике мы всегда оперируем некими усредненными величинами. Именно это "незнание", по мнению Бома, заставляет нас прибегать к вероятностным законам при описании явлений в микромире (подобная ситуация возникает и в классической статистической механике, например в термодинамике, которая имеет дело с огромным количеством молекул). Теория Бома предусматривает определенные правила усреднения неизвестных параметров и вычисления вероятностей.

Вернемся к экспериментам с электронами, изображенным на рис. 3 А и Б. Теория Бома дает им следующее объяснение. Направление движения электрона на выходе из "вертикального ящика" полностью определяется исходными условиями - начальным положением электрона и его волновой функцией. В то время как электрон движется либо вверх, либо вниз, его волновая функция, как это следует из дифференциальных уравнений движения, расщепится и станет распространяться сразу в двух направлениях. Таким образом, одна часть волновой функции окажется "пустой", то есть будет распространяться отдельно от электрона. Отразившись от стенок, обе части волновой функции воссоединятся в "черном ящике", и при этом электрон получит информацию о том участке пути, где его не было. Содержание этой информации, например о препятствии на пути "пустой" волновой функции, может оказать существенное воздействие на свойства электрона. Это и снимает логическое противоречие между результатами экспериментов, изображенных на рисунке. Необходимо отметить одно любопытное свойство "пустых" волновых функций: будучи реальными, они тем не менее никак не влияют на посторонние объекты и не могут быть зарегистрированы измерительными приборами. А на "свой" электрон "пустая" волновая функция оказывает силовое воздействие независимо от расстояния, причем воздействие это передается мгновенно.

Попытки "исправить" квантовую механику или объяснить возникающие в ней противоречия предпринимали многие исследователи. Построить детерминистскую теорию микромира, например, пытался де Бройль, который был согласен с Эйнштейном, что "Бог не играет в кости". А видный отечественный теоретик Д. И. Блохинцев считал, что особенности квантовой механики проистекают из-за невозможности изолировать частицу от окружающего мира. При любой температуре выше абсолютного нуля тела излучают и поглощают электромаг нитные волны. С позиций квантовой механики это означает, что их положение непрерывно "измеряется", вызывая коллапс волновых функций. "С этой точки зрения никаких изолированных, предоставленных самим себе "свободных" частиц не существует, - писал Блохинцев. - Возможно, что в этой связи частиц и cреды и скрывается природа той невозможности изолировать частицу, которая проявляется в аппарате квантовой механики".

И все-таки - почему же интепретация квантовой механики, предложенная Бомом, до сих пор не получила должного признания в научном мире? И как объяснить почти повсеместное господство традиционной теории, несмотря на все ее парадоксы и "темные места"?

Долгое время новую теорию не хотели рассматривать всерьез на основании того, что в предсказании исхода конкретных экспериментов она полностью совпадает с квантовой механикой, не приводя к существен но новым результатам. Вернер Гейзенберг, например, считал, что "для любого опыта его (Бома) результаты совпадают с копенгагенской интерпретацией. Отсюда первое следствие: интерпретацию Бома нельзя опровергнуть экспериментом..." Некоторые считают теорию ошибочной, так как в ней преимущественная роль отводится положению частицы в пространстве. По их мнению, это противоречит физической реальности, ибо явления в квантовом мире принципиально не могут быть описаны детерминистскими законами. Существует немало и других, не менее спорных аргументов против теории Бома, которые сами требуют серьезных доказательств. Во всяком случае, ее пока что действительно никому не удалось полностью опровергнуть. Более того - работу над ее совершенствованием продолжают многие, в том числе отечественные, исследователи.

Наверняка Вы много раз слышали о необъяснимых тайнах квантовой физики и квантовой механики . Её законы завораживают мистикой, и даже сами физики признаются, что до конца не понимают их. С одной стороны, любопытно понять эти законы, но с другой стороны, нет времени читать многотомные и сложные книги по физике. Я очень понимаю Вас, потому что тоже люблю познание и поиск истины, но времени на все книги катастрофически не хватает. Вы не одиноки, очень многие любознательные люди набирают в поисковой строке: «квантовая физика для чайников, квантовая механика для чайников, квантовая физика для начинающих, квантовая механика для начинающих, основы квантовой физики, основы квантовой механики, квантовая физика для детей, что такое квантовая механика». Именно для Вас эта публикация .

Вам станут понятны основные понятия и парадоксы квантовой физики. Из статьи Вы узнаете:

  • Что такое квантовая физика и квантовая механика?
  • Что такое интерференция?
  • Что такое квантовая запутанность (или Квантовая телепортация для чайников)? (см. статью )
  • Что такое мысленный эксперимент «Кот Шредингера»? (см. статью )

Квантовая механика — это часть квантовой физики.

Почему же так сложно понять эти науки? Ответ прост: квантовая физика и квантовая механика (часть квантовой физики) изучают законы микромира. И законы эти абсолютно отличаются от законов нашего макромира. Поэтому нам трудно представить то, что происходит с электронами и фотонами в микромире.

Пример отличия законов макро- и микромиров : в нашем макромире, если Вы положите шар в одну из 2-х коробок, то в одной из них будет пусто, а в другой - шар. Но в микромире (если вместо шара - атом), атом может находиться одновременно в двух коробках. Это многократно подтверждено экспериментально. Не правда ли, трудно это вместить в голове? Но с фактами не поспоришь.

Ещё один пример. Вы сфотографировали быстро мчащуюся красную спортивную машину и на фото увидели размытую горизонтальную полосу, как будто-машина в момент фото находилась с нескольких точках пространства. Несмотря на то, что Вы видите на фото, Вы всё равно уверены, что машина в ту секунду, когда Вы ёё фотографировали находилась в одном конкретном месте в пространстве . В микро же мире всё не так. Электрон, который вращается вокруг ядра атома, на самом деле не вращается, а находится одновременно во всех точках сферы вокруг ядра атома. Наподобие намотанного неплотно клубка пушистой шерсти. Это понятие в физике называется «электронным облаком» .

Небольшой экскурс в историю. Впервые о квантовом мире учёные задумались, когда в 1900 году немецкий физик Макс Планк попытался выяснить, почему при нагревании металлы меняют цвет. Именно он ввёл понятие кванта. До этого учёные думали, что свет распространяется непрерывно. Первым, кто серьёзно воспринял открытие Планка, был никому тогда неизвестный Альберт Энштейн. Он понял, что свет – это не только волна. Иногда он ведёт себя, как частица. Энштейн получил Нобелевскую премию за своё открытие, что свет излучается порциями, квантами. Квант света называется фотоном (фотон, Википедия ) .

Для того, чтобы легче было понять законы квантовой физики и механики (Википедия) , надо в некотором смысле абстрагироваться от привычных нам законов классической физики. И представить, что Вы занырнули, как Алиса, в кроличью нору, в Страну чудес.

А вот и мультик для детей и взрослых. Рассказывает о фундаментальном эксперименте квантовой механики с 2-мя щелями и наблюдателем. Длится всего 5 минут. Посмотрите его перед тем, как мы углубимся в основные вопросы и понятия квантовой физики.

Квантовая физика для чайников видео . В мультике обратите внимание на «глаз» наблюдателя. Он стал серьёзной загадкой для учёных-физиков.

Что такое интерференция?

В начале мультика было показано на примере жидкости, как ведут себя волны – на экране за пластиной со щелями появляются чередующиеся тёмные и светлые вертикальные полосы. А в случае, когда в пластину «стреляют» дискретными частицами (например, камушками), то они пролетают сквозь 2 щели и попадают на экран прямо напротив щелей. И «рисуют» на экране только 2 вертикальные полосы.

Интерференция света – это «волновое» поведение света, когда на экране отображается много чередующихся ярких и тёмных вертикальных полос. Еще эти вертикальные полосы называются интерференционной картиной .

В нашем макромире мы часто наблюдаем, что свет ведёт себя, как волна. Если поставить руку напротив свечи, то на стене будет не чёткая тень от руки, а с расплывающимися контурами.

Итак, не так уж всё и сложно! Нам сейчас вполне понятно, что свет имеет волновую природу и если 2 щели освещать светом, то на экране за ними мы увидим интерференционную картину. Теперь рассмотрим 2-й эксперимент. Это знаменитый эксперимент Штерна-Герлаха (который провели в 20-х годах прошлого века).

В установку, описанную в мультике, не светом светили, а «стреляли» электронами (как отдельными частицами). Тогда, в начале прошлого века, физики всего мира считали, что электроны – это элементарные частицы материи и должны иметь не волновую природу, а такую же, как камушки. Ведь электроны – это элементарные частицы материи, правильно? То есть, если ими «бросать» в 2 щели, как камушками, то на экране за прорезями мы должны увидеть 2 вертикальные полоски.

Но… Результат был ошеломляющий. Учёные увидели интерференционную картину – много вертикальных полосок. То есть электроны, как и свет тоже могут иметь волновую природу, могут интерферировать. А с другой стороны стало понятно, что свет не только волна, но немного и частица — фотон (из исторической справки в начале статьи мы узнали, что за это открытие Энштейн получил Нобелевскую премию).

Может помните, в школе нам рассказывали на физике про «корпускулярно-волновой дуализм» ? Он означает, что когда речь идет об очень маленьких частицах (атомах, электронах) микромира, то они одновременно и волны, и частицы

Это сегодня мы с Вами такие умные и понимаем, что 2 выше описанных эксперимента – стрельба электронами и освещение щелей светом – суть одно и тоже. Потому что мы стреляем по прорезям квантовыми частицами. Сейчас мы знаем, что и свет, и электроны имеют квантовую природу, являются и волнами, и частицами одновременно. А в начале 20-го века результаты этого эксперимента были сенсацией.

Внимание! Теперь перейдём к более тонкому вопросу.

Мы светим на наши щели потоком фотонов (электронов) – и видим за щелями на экране интерференционную картину (вертикальные полоски). Это ясно. Но нам интересно увидеть, как пролетает каждый из электронов в прорези.

Предположительно, один электрон летит в левую прорезь, другой – в правую. Но тогда должны на экране появиться 2 вертикальные полоски прямо напротив прорезей. Почему же получается интерференционная картина? Может электроны как-то взаимодействуют между собой уже на экране после пролёта через щели. И в результате получается такая волновая картина. Как нам за этим проследить?

Будем бросать электроны не пучком, а по одному. Бросим, подождём, бросим следующий. Теперь, когда электрон летит один, он уже не сможет взаимодействовать на экране с другими электронами. Будем регистрировать на экране каждый электрон после броска. Один-два конечно не «нарисуют» нам понятной картины. Но когда по одному отправим в прорези их много, то заметим…о ужас – они опять «нарисовали» интерференционную волновую картину!

Начинаем медленно сходить с ума. Ведь мы ожидали, что будет 2 вертикальные полоски напротив щелей! Получается, что когда мы бросали фотоны по одному, каждый из них проходил, как бы через 2 щели одновременно и интерферировал сам с собой. Фантастика! Вернёмся к пояснению этого феномена в следующем разделе.

Что такое спин и суперпозиция?

Мы теперь знаем, что такое интерференция. Это волновое поведение микро частиц – фотонов, электронов, других микро частиц (давайте для простоты с этого момента называть их фотонами).

В результате эксперимента, когда мы бросали в 2 щели по 1 фотону, мы поняли, что он пролетает как будто через две щели одновременно. Иначе как объяснить интерференционную картину на экране?

Но как представить картину, что фотон пролетает сквозь две щели одновременно? Есть 2 варианта.

  • 1-й вариант: фотон, как волна (как вода) «проплывает» сквозь 2 щели одновременно
  • 2-й вариант: фотон, как частица, летит одновременно по 2-м траекториям (даже не по двум, а по всем сразу)

В принципе, эти утверждения равносильны. Мы пришли к «интегралу по траекториям». Это формулировка квантовой механики от Ричарда Фейнмана.

Кстати, именно Ричарду Фейнману принадлежит известное выражение, что уверенно можно утверждать, что квантовую механику не понимает никто

Но это его выражение работало в начале века. Но мы то теперь умные и знаем, что фотон может вести себя и как частица, и как волна. Что он может каким-то непонятным для нас способом пролетать одновременно через 2 щели. Поэтому нам легко будет понять следующее важное утверждение квантовой механики:

Строго говоря, квантовая механика говорит нам, что такое поведение фотона – правило, а не исключение. Любая квантовая частица находится, как правило, в нескольких состояниях или в нескольких точках пространства одновременно .

Объекты макромира могут находится только в одном определенном месте и в одном определенном состоянии. Но квантовая частица существует по своим законам. И ей и дела нет до того, что мы их не понимаем. На этом — точка.

Нам остаётся просто признать, как аксиому, что «суперпозиция» квантового объекта означает то, что он может находится на 2-х или более траекториях одновременно, в 2-х или более точках одновременно

То же относится и к другому параметру фотона – спину (его собственному угловому моменту). Спин — это вектор. Квантовый объект можно представить как микроскопический магнитик. Мы привыкли, что вектор магнита (спин) либо направлен вверх, либо вниз. Но электрон или фотон опять говорят нам: «Ребята, нам плевать, к чему Вы привыкли, мы можем быть в обоих состояниях спина сразу (вектор вверх, вектор вниз), точно так же, как мы можем находиться на 2-х траекториях одновременно или в 2-х точках одновременно!».

Что такое «измерение» или «коллапс волновой функции»?

Нам осталось немного — понять ещё, что такое «измерение» и что такое «коллапс волновой функции».

Волновая функция — это описание состояния квантового объекта (нашего фотона или электрона).

Предположим, у нас есть электрон, он летит себе в неопределённом состоянии, спин его направлен и вверх, и вниз одновременно . Нам надо измерить его состояние.

Измерим при помощи магнитного поля: электроны, у которых спин был направлен по направлению поля, отклонятся в одну сторону, а электроны, у которых спин направлен против поля — в другую. Ещё фотоны можно направлять в поляризационный фильтр. Если спин (поляризация) фотона +1 – он проходит через фильтр, а если -1, то нет.

Стоп! Вот тут у Вас неизбежно возникнет вопрос: до измерения ведь у электрона не было какого-то конкретного направления спина, так? Он ведь был во всех состояниях одновременно?

В этом-то и заключается фишка и сенсация квантовой механики . Пока Вы не измеряете состояние квантового объекта, он может вращаться в любую сторону (иметь любое направление вектора собственного углового момента – спина). Но в момент, когда Вы измерили его состояние, он как будто принимает решение, какой вектор спина ему принять.

Вот такой крутой этот квантовый объект – сам принимает решение о своём состоянии. И мы не можем заранее предсказать, какое решение он примет, когда влетит в магнитное поле, в котором мы его измеряем. Вероятность того, что он решит иметь вектор спина «вверх» или «вниз» – 50 на 50%. Но как только он решил – он находится в определённом состоянии с конкретным направлением спина. Причиной его решения является наше «измерение»!

Это и называется «коллапсом волновой функции» . Волновая функция до измерения была неопределённой, т.е. вектор спина электрона находился одновременно во всех направлениях, после измерения электрон зафиксировал определённое направление вектора своего спина.

Внимание! Отличный для понимания пример-ассоциация из нашего макромира:

Раскрутите на столе монетку, как юлу. Пока монетка крутиться, у нёё нет конкретного значения — орёл или решка. Но как только Вы решите «измерить» это значение и прихлопните монету рукой, вот тут-то и получите конкретное состояние монеты – орёл или решка. А теперь представьте, что это монета принимает решение, какое значение Вам «показать» – орёл или решка. Примерно также ведёт себя и электрон.

А теперь вспомните эксперимент, показанный в конце мультика. Когда фотоны пропускали через щели, они вели себя, как волна и показывали на экране интерференционную картину. А когда учёные захотели зафиксировать (измерить) момент пролёта фотонов через щель и поставили за экраном «наблюдателя», фотоны стали вести себя, не как волны, а как частицы. И «нарисовали» на экране 2 вертикальные полосы. Т.е. в момент измерения или наблюдения квантовые объекты сами выбирают, в каком состоянии им быть.

Фантастика! Не правда ли?

Но это ещё не всё. Наконец-то мы добрались до самого интересного.

Но… мне кажется, что получится перегруз информации, поэтому 2 эти понятия мы рассмотрим в отдельных постах:

  • Что такое ?
  • Что такое мысленный эксперимент .

А сейчас, хотите, чтобы информация разложилась по полочкам? Посмотрите документальный фильм, подготовленный Канадским институтом теоретической физики. В нём за 20 минут очень кратко и в хронологическом порядке Вам поведают о всех открытиях квантовой физики, начиная с открытия Планка в 1900 году. А затем расскажут, какие практические разработки выполняются сейчас на базе знаний по квантовой физике: от точнейших атомных часов до суперскоростных вычислений квантового компьютера. Очень рекомендую посмотреть этот фильм.

До встречи!

Желаю всем вдохновения для всех задуманных планов и проектов!

P.S.2 Пишите Ваши вопросы и мысли в комментариях. Пишите, какие ещё вопросы по квантовой физике Вам интересны?

P.S.3 Подписывайтесь на блог - форма для подписки под статьёй.

Слово «квант» происходит от латинского quantum («сколько, как много») и английского quantum («количество, порция, квант»). «Механикой» издавна принято называть науку о движении материи. Соответственно, термин «квантовая механика» означает науку о движении материи порциями (или, выражаясь современным научным языком науку о движении квантующейся материи). Термин «квант» ввел в обиход немецкий физик Макс Планк (см. Постоянная Планка) для описания взаимодействия света с атомами.

Квантовая механика часто противоречит нашим понятиям о здравом смысле. А всё потому, что здравый смысл подсказывает нам вещи, которые берутся из повседневного опыта, а в своем повседневном опыте нам приходится иметь дело только с крупными объектами и явлениями макромира, а на атомарном и субатомном уровне материальные частицы ведут себя совсем иначе. Принцип неопределенности Гейзенберга как раз и очерчивает смысл этих различий. В макромире мы можем достоверно и однозначно определить местонахождение (пространственные координаты) любого объекта (например, этой книги). Не важно, используем ли мы линейку, радар, сонар, фотометрию или любой другой метод измерения, результаты замеров будут объективными и не зависящими от положения книги (конечно, при условии вашей аккуратности в процессе замера). То есть некоторая неопределенность и неточность возможны — но лишь в силу ограниченных возможностей измерительных приборов и погрешностей наблюдения. Чтобы получить более точные и достоверные результаты, нам достаточно взять более точный измерительный прибор и постараться воспользоваться им без ошибок.

Теперь если вместо координат книги нам нужно измерить координаты микрочастицы, например электрона, то мы уже не можем пренебречь взаимодействиями между измерительным прибором и объектом измерения. Сила воздействия линейки или другого измерительного прибора на книгу пренебрежимо мала и не сказывается на результатах измерений, но чтобы измерить пространственные координаты электрона, нам нужно запустить в его направлении фотон, другой электрон или другую элементарную частицу сопоставимых с измеряемым электроном энергий и замерить ее отклонение. Но при этом сам электрон, являющийся объектом измерения, в результате взаимодействия с этой частицей изменит свое положение в пространстве. Таким образом, сам акт замера приводит к изменению положения измеряемого объекта, и неточность измерения обусловливается самим фактом проведения измерения, а не степенью точности используемого измерительного прибора. Вот с какой ситуацией мы вынуждены мириться в микромире. Измерение невозможно без взаимодействия, а взаимодействие — без воздействия на измеряемый объект и, как следствие, искажения результатов измерения.

О результатах этого взаимодействия можно утверждать лишь одно:

неопределенность пространственных координат × неопределенность скорости частицы > h /m ,

или, говоря математическим языком:

Δx × Δv > h /m

где Δx и Δv — неопределенность пространственного положения и скорости частицы соответственно, h — постоянная Планка , а m — масса частицы.

Соответственно, неопределенность возникает при определении пространственных координат не только электрона, но и любой субатомной частицы, да и не только координат, но и других свойств частиц — таких как скорость. Аналогичным образом определяется и погрешность измерения любой такой пары взаимно увязанных характеристик частиц (пример другой пары — энергия, излучаемая электроном, и отрезок времени, за который она испускается). То есть если нам, например, удалось с высокой точностью измерили пространственное положение электрона, значит мы в этот же момент времени имеем лишь самое смутное представление о его скорости, и наоборот. Естественно, при реальных измерениях до этих двух крайностей не доходит, и ситуация всегда находится где-то посередине. То есть если нам удалось, например, измерить положение электрона с точностью до 10 -6 м, значит мы одновременно можем измерить его скорость, в лучшем случае, с точностью до 650 м/с.

Из-за принципа неопределенности описание объектов квантового микромира носит иной характер, нежели привычное описание объектов ньютоновского макромира. Вместо пространственных координат и скорости, которыми мы привыкли описывать механическое движение, например шара по бильярдному столу, в квантовой механике объекты описываются так называемой волновой функцией. Гребень «волны» соответствует максимальной вероятности нахождения частицы в пространстве в момент измерения. Движение такой волны описывается уравнением Шрёдингера , которое и говорит нам о том, как изменяется со временем состояние квантовой системы.

Картина квантовых событий в микромире, рисуемая уравнением Шрёдингера, такова, что частицы уподобляются отдельным приливным волнам, распространяющимся по поверхности океана-пространства. Со временем гребень волны (соответствующий пику вероятности нахождения частицы, например электрона, в пространстве) перемещается в пространстве в соответствии с волновой функцией, являющейся решением этого дифференциального уравнения. Соответственно, то, что нам традиционно представляется частицей, на квантовом уровне проявляет ряд характеристик, свойственных волнам.

Согласование волновых и корпускулярных свойств объектов микромира (см. Соотношение де Бройля) стало возможным после того, как физики условились считать объекты квантового мира не частицами и не волнами, а чем-то промежуточным и обладающим как волновыми, так и корпускулярными свойствами; в ньютоновской механике аналогов таким объектам нет. Хотя и при таком решении парадоксов в квантовой механике всё равно хватает (см. Теорема Белла), лучшей модели для описания процессов, происходящих в микромире, никто до сих пор не предложил.

Квантовая механика
Δ x ⋅ Δ p x ⩾ ℏ 2 {\displaystyle \Delta x\cdot \Delta p_{x}\geqslant {\frac {\hbar }{2}}}
Введение
Математические основы
См. также: Портал:Физика

Ква́нтовая меха́ника - раздел теоретической физики , описывающий физические явления, в которых действие сравнимо по величине с постоянной Планка . Предсказания квантовой механики могут существенно отличаться от предсказаний классической механики . Поскольку постоянная Планка является чрезвычайно малой величиной по сравнению с действием объектов при макроскопическом движении, квантовые эффекты в основном проявляются в микроскопических масштабах. Если физическое действие системы намного больше постоянной Планка, квантовая механика органически переходит в классическую механику. В свою очередь, квантовая механика является нерелятивистским приближением (то есть приближением малых энергий по сравнению с энергией покоя массивных частиц системы) квантовой теории поля .

Классическая механика, хорошо описывающая системы макроскопических масштабов, не способна описать все явления на уровне молекул , атомов , электронов и фотонов . Квантовая механика адекватно описывает основные свойства и поведение атомов, ионов , молекул, конденсированных сред и других систем с электронно-ядерным строением. Квантовая механика также способна описывать: поведение электронов, фотонов, а также других элементарных частиц , однако более точное релятивистски инвариантное описание превращений элементарных частиц строится в рамках квантовой теории поля. Эксперименты подтверждают результаты, полученные с помощью квантовой механики.

Основными понятиями квантовой кинематики являются понятия наблюдаемой и состояния .

Основные уравнения квантовой динамики - уравнение Шрёдингера , уравнение фон Неймана , уравнение Линдблада , уравнение Гейзенберга и уравнение Паули .

Уравнения квантовой механики тесно связаны со многими разделами математики, среди которых: теория операторов , теория вероятностей , функциональный анализ , операторные алгебры , теория групп .

История

На заседании Немецкого физического общества Макс Планк зачитал свою историческую статью «К теории распределения энергии излучения в нормальном спектре» , в которой он ввёл универсальную постоянную h {\displaystyle h} . Именно дату этого события, 14 декабря 1900 года, часто считают днем рождения квантовой теории.

Для объяснения структуры атома Нильс Бор предложил в 1913 году существование стационарных состояний электрона, в которых энергия может принимать лишь дискретные значения. Этот подход, развитый Арнольдом Зоммерфельдом и другими физиками, часто называют старой квантовой теорией (1900-1924 г.). Отличительной чертой старой квантовой теории является сочетание классической теории с противоречащими ей дополнительными предположениями.

  • Чистые состояния системы описываются ненулевыми векторами комплексного сепарабельного гильбертова пространства H {\displaystyle H} , причем векторы | ψ 1 ⟩ {\displaystyle |\psi _{1}\rangle } и | ψ 2 ⟩ {\displaystyle |\psi _{2}\rangle } описывают одно и то же состояние тогда и только тогда , когда | ψ 2 ⟩ = c | ψ 1 ⟩ {\displaystyle |\psi _{2}\rangle =c|\psi _{1}\rangle } , где c {\displaystyle c} - произвольное комплексное число.
  • Каждой наблюдаемой можно однозначно сопоставить линейный самосопряжённый оператор. При измерении наблюдаемой A ^ {\displaystyle {\hat {A}}} , при чистом состоянии системы | ψ ⟩ {\displaystyle |\psi \rangle } в среднем получается значение, равное
⟨ A ⟩ = ⟨ ψ | A ^ ψ ⟩ ⟨ ψ | ψ ⟩ = ⟨ ψ A ^ | ψ ⟩ ⟨ ψ | ψ ⟩ {\displaystyle \langle A\rangle ={\frac {\langle \psi |{\hat {A}}\psi \rangle }{\langle \psi |\psi \rangle }}={\frac {\langle \psi {\hat {A}}|\psi \rangle }{\langle \psi |\psi \rangle }}}

где через ⟨ ψ | ϕ ⟩ {\displaystyle \langle \psi |\phi \rangle } обозначается скалярное произведение векторов | ψ ⟩ {\displaystyle |\psi \rangle } и | ϕ ⟩ {\displaystyle |\phi \rangle } .

  • Эволюция чистого состояния гамильтоновой системы определяется уравнением Шрёдингера
i ℏ ∂ ∂ t | ψ ⟩ = H ^ | ψ ⟩ {\displaystyle i\hbar {\frac {\partial }{\partial t}}|\psi \rangle ={\hat {H}}|\psi \rangle }

где H ^ {\displaystyle {\hat {H}}} - гамильтониан .

Основные следствия этих положений:

  • При измерении любой квантовой наблюдаемой, возможно получение только ряда фиксированных её значений, равных собственным значениям её оператора - наблюдаемой.
  • Наблюдаемые одновременно измеримы (не влияют на результаты измерений друг друга) тогда и только тогда, когда соответствующие им самосопряжённые операторы перестановочны .

Эти положения позволяют создать математический аппарат, пригодный для описания широкого спектра задач в квантовой механике гамильтоновых систем, находящихся в чистых состояниях. Не все состояния квантово-механических систем, однако, являются чистыми. В общем случае состояние системы является смешанным и описывается матрицей плотности , для которой справедливо обобщение уравнения Шрёдингера - уравнение фон Неймана (для гамильтоновых систем). Дальнейшее обобщение квантовой механики на динамику открытых, негамильтоновых и диссипативных квантовых систем приводит к уравнению Линдблада .

Стационарное уравнение Шрёдингера

Пусть амплитуда вероятности нахождения частицы в точке М . Стационарное уравнение Шрёдингера позволяет её определить.
Функция ψ (r →) {\displaystyle \psi ({\vec {r}})} удовлетворяет уравнению:

− ℏ 2 2 m ∇ 2 ψ + U (r →) ψ = E ψ {\displaystyle -{{\hbar }^{2} \over 2m}{\nabla }^{\,2}\psi +U({\vec {r}})\psi =E\psi }

где ∇ 2 {\displaystyle {\nabla }^{\,2}} -оператор Лапласа , а U = U (r →) {\displaystyle U=U({\vec {r}})} - потенциальная энергия частицы как функция от .

Решение этого уравнения и есть основная задача квантовой механики. Примечательно то, что точное решение стационарного уравнения Шрёдингера может быть получено только для нескольких, сравнительно простых, систем. Среди таких систем можно выделить квантовый гармонический осциллятор и атом водорода . Для большинства реальных систем для получения решений могут быть использованы различные приближенные методы, такие как теория возмущений .

Решение стационарного уравнения

Пусть E и U две постоянные, независимые от r → {\displaystyle {\vec {r}}} .
Записав стационарное уравнение как:

∇ 2 ψ (r →) + 2 m ℏ 2 (E − U) ψ (r →) = 0 {\displaystyle {\nabla }^{\,2}\psi ({\vec {r}})+{2m \over {\hbar }^{2}}(E-U)\psi ({\vec {r}})=0}
  • Если E - U > 0 , то:
ψ (r →) = A e − i k → ⋅ r → + B e i k → ⋅ r → {\displaystyle \psi ({\vec {r}})=Ae^{-i{\vec {k}}\cdot {\vec {r}}}+Be^{i{\vec {k}}\cdot {\vec {r}}}} где: k = 2 m (E − U) ℏ {\displaystyle k={\frac {\sqrt {2m(E-U)}}{\hbar }}} - модуль волнового вектора ; A и B - две постоянные, определяющиеся граничными условиями .
  • Если E - U < 0 , то:
ψ (r →) = C e − k → ⋅ r → + D e k → ⋅ r → {\displaystyle \psi ({\vec {r}})=Ce^{-{\vec {k}}\cdot {\vec {r}}}+De^{{\vec {k}}\cdot {\vec {r}}}} где: k = 2 m (U − E) ℏ {\displaystyle k={\frac {\sqrt {2m(U-E)}}{\hbar }}} - модуль волнового вектора ; C и D - две постоянные, также определяющиеся граничными условиями .

Принцип неопределённости Гейзенберга

Соотношение неопределённости возникает между любыми квантовыми наблюдаемыми, определяемыми некоммутирующими операторами.

Неопределенность между координатой и импульсом

Пусть - среднеквадратическое отклонение координаты частицы M {\displaystyle M} , движущейся вдоль оси x {\displaystyle x} , и - среднеквадратическое отклонение её импульса . Величины Δ x {\displaystyle \Delta x} и Δ p {\displaystyle \Delta p} связаны следующим неравенством:

Δ x Δ p ⩾ ℏ 2 {\displaystyle \Delta x\Delta p\geqslant {\frac {\hbar }{2}}}

где h {\displaystyle h} - постоянная Планка, а ℏ = h 2 π . {\displaystyle \hbar ={\frac {h}{2\pi }}.}

Согласно соотношению неопределённостей, невозможно абсолютно точно определить одновременно координаты и импульс частицы. С повышением точности измерения координаты, максимальная точность измерения импульса уменьшается и наоборот. Те параметры, для которых такое утверждение справедливо, называются канонически сопряженными .

Это центрирование на измерении, идущее от Н.Бора, очень популярно. Однако соотношение неопределенности выводится теоретически из постулатов Шрёдингера и Борна и касается не измерения, а состояний объекта: оно утверждает, что для любого возможного состояния выполняются соответствующие соотношения неопределенности. Естественно, что оно будет выполняться и для измерений. Т.е. вместо "с повышением точности измерения координаты максимальная точность измерения импульса уменьшается" следует говорить: "в состояниях, где неопределенность координаты меньше, неопределенность импульса больше".

Неопределенность между энергией и временем

Пусть Δ E {\displaystyle \Delta E} - среднеквадратическое отклонение при измерении энергии некоторого состояния квантовой системы, и Δ t {\displaystyle \Delta t} - время жизни этого состояния. Тогда выполняется следующее неравенство,

Δ E Δ t ⩾ ℏ 2 . {\displaystyle \Delta E\Delta t\geqslant {\frac {\hbar }{2}}.}

Иными словами, состояние, живущее короткое время, не может иметь хорошо определённую энергию.

При этом, хотя вид этих двух соотношений неопределенности похож, но их природа (физика) совершенно различны.

Похожие публикации