Сложение совместных событий. Вероятность. Теоремы сложения и умножения вероятностей

В случаях, когда интересующее событие является суммой других событий, для нахождения его вероятности используется формула сложения.

Формула сложения имеет две основные разновидности – для совместных и для несовместных событий. Обосновать эти формулы можно, используя диаграммы Венна (рис. 21). Напомним, что на этих диаграммах вероятности событий численно равны площадям соответствующих этим событиям зон.

Для двух несовместных событий :

Р(А+В) = Р(А) + Р(В). (8, а)

Для N несовместных событий , вероятность их суммы равна сумме вероятностей этих событий:

= .(8б)

Из формулы сложения несовместных событий имеются два важных следствия.

Следствие 1. Для событий, образующих полную группу, сумма их вероятностей равна единице:

= 1.

Это объясняется следующим. Для событий, образующих полную группу, в левой части выражения (8б) находится вероятность того, что произойдёт одно из событий А i , но так как полная группа исчерпывает весь перечень возможных событий, то одно из таких событий произойдёт обязательно. Таким образом, в левой части записана вероятность события, которое обязательно произойдёт – достоверного события. Вероятность его равна единице.

Следствие 2. Сумма вероятностей двух противоположных событий равна единице :

Р(А) + Р(Ā) = 1.

Это следствие вытекает из предыдущего, так как противоположные события всегда образуют полную группу.

Пример 15

В ероятность работоспособного состояния технического устройства равна 0,8. Найти вероятность отказа этого устройства за тот же период наблюдений.

Решение.

Важное замечание . В теории надёжности принято вероятность работоспособного состояния обозначать буквой р , а вероятность отказа - буквой q. В дальнейшем будем использовать эти обозначения. Как та, так и другая вероятности являются функциями времени. Так, для больших периодов времени вероятность работоспособного состояния любого объекта приближается к нулю. Вероятность отказа любого объекта близка к нулю для малых периодов времени. В тех случаях, когда период наблюдения в задачах не указан, подразумевается, что он одинаков для всех рассматриваемых объектов.

Нахождение устройства в состояниях работоспособности и отказа – противоположные события. Пользуясь следствием 2, получим вероятность отказа устройства:

q = 1 – р = 1 – 0,8 = 0,2.

Для двух совместных событий формула сложения вероятностей имеет вид:

Р(А+В) = Р(А) + Р(В) – Р(АВ ), (9)

что иллюстрирует диаграмма Венна (рис. 22).

Действительно, чтобы найти всю заштрихованную площадь (она соответствует сумме событий А + В), нужно из суммы площадей фигур А и В вычесть площадь общей зоны (она соответствует произведению событий АВ), так как иначе она будет учтена дважды.


Для трех совместных событий формула сложения вероятностей усложняется:

Р(А+В+С)=Р(А) + Р(В) + Р(С) – Р(АВ) – Р(АС) – Р(ВС) + Р(АВС). (10)

На диаграмме Венна (рис. 23) искомая вероятность численно равна общей площади зоны, образованной событиями А, В и С (для упрощения рисунка единичный квадрат на нем не показан).

После того, как из суммы площадей зон А, В и С вычтены площади зон АВ, АС и СВ получилось, что площадь зоны АВС была просуммирована трижды и трижды вычтена. Поэтому для учета этой площади она должна быть добавлена в окончательное выражение.

При увеличении числа слагаемых формула сложения становится всё более и более громоздкой, но принцип её построения остаётся прежним: сначала суммируются вероятности событий взятых по одиночке, затем вычитаются вероятности всех по парных комбинаций событий, прибавляются вероятности событий взятых тройками, вычитаются вероятности комбинаций событий взятых четверками и т.д.

В итоге следует подчеркнуть: формула сложения вероятностей совместных событий при количестве слагаемых от трех и более громоздка и неудобна к применению, использование ее при решении задач нецелесообразно .

Пример 16

Для ниже приведенной схемы электроснабжения (рис. 24) определить вероятность отказа системы в целом Q С по вероятностям отказа q i отдельных элементов (генератора, трансформаторов и линии).


Состояния отказа отдельных элементов системы электроснабжения, так же как и состояния работоспособности, всегда являются попарно совместными событиями , так как нет никаких принципиальных препятствий к тому, чтобы одновременно производился ремонт, например, линии и трансформатора. Отказ системы наступает при отказе любого её элемента: или генератора, или 1-го трансформатора, или линии, или 2-го трансформатора, или при отказе любой пары, любой тройки или всех четырёх элементов. Следовательно, искомое событие – отказ системы является суммой отказов отдельных элементов. Для решения задачи может быть использована формула сложения совместных событий:

Q с = q г + q т1 + q л + q т2 – q г q т1 – q г q л – q г q т2 – q т1 q л – q т1 q т2 – q л q т2 + q г q т1 q л + q г q л q т2 + q г q т1 q т2 + q т1 q т2 q л – q г q т1 q л q т2.

Это решение ещё раз убеждает в громоздкости формулы сложения для совместных событий. В дальнейшем будет рассмотрен другой более рациональный способ решения данной задачи.

Полученное выше решение может быть упрощено с учётом того, что вероятности отказов отдельных элементов системы электроснабжения для применяемого обычно в расчётах надежности периода в один год достаточно малы (порядка 10 -2). Поэтому все слагаемые кроме первых четырех можно отбросить, что практически не повлияет на численный результат. Тогда можно записать:

Q с q г + q т1 + q л + q т2 .

Однако к подобным упрощениям надо относится осторожно, внимательно изучая их последствия, так как часто отбрасываемые слагаемые могут оказаться соизмеримыми с первыми.

Пример 17

Определить вероятность работоспособного состояния системы Р С , состоящей из трех резервирующих друг друга элементов.

Решение . Резервирующие друг друга элементы на логической схеме анализа надёжности изображаются соединенными параллельно (рис. 25):

Резервированная система работоспособна, когда работоспособен или 1-й, или 2-й, или 3-й элемент, или работоспособна любая пара, или все три элемента совместно. Следовательно, работоспособное состояние системы есть сумма работоспособных состояний отдельных элементов. По формуле сложения для совместных событий Р с = Р 1 + Р 2 + Р 3 – Р 1 Р 2 – Р 1 Р 3 – Р 2 Р 3 + Р 1 Р 2 Р 3 . , где Р 1 , Р 2 и Р 3 – вероятности работоспособного состояния элементов 1, 2 и 3 соответственно.

В данном случае упрощать решение, отбрасывая по парные произведения нельзя, поскольку такое приближение даст значительную погрешность (эти произведения обычно числено близки к первым трём слагаемым). Как и в примере 16, эта задача имеет другое более компактное решение.

Пример 18

Для двухцепной линии электропередачи (рис. 26) известна вероятность отказа каждой цепи: q 1 = q 2 = 0,001. Определить вероятности того, что линия будет иметь стопроцентную пропускную способность – Р(R 100), пятидесяти процентную пропускную способность - Р(R 50), и вероятность того, что система откажет – Q.

Линия имеет стопроцентную пропускную способность, когда работоспособна и 1-я и 2-я цепь:

Р(100%) = р 1 р 2 = (1 – q 1)(1 – q 2) =

= (1 – 0,001)(1 – 0,001) = 0,998001.

Линия отказывает, когда отказывает и 1-я и 2-я цепь:

Р(0%) = q 1 q 2 =0,001∙0,001 = 10 -6 .

Линия имеет пятидесяти процентную пропускную способность, когда работоспособна 1-я цепь и отказала 2-я, или когда работоспособна 2-я цепь и отказала 1-я:

Р(50%)= р 1 q 2 + р 2 q 1 = 2∙0,999∙10 -3 = 0,001998.

В последнем выражении использована формула сложения для несовместных событий, каковыми они и являются.

События, рассмотренные в этой задаче, составляют полную группу, поэтому сумма их вероятностей составляет единицу.

Учреждение образования «Белорусская государственная

сельскохозяйственная академия»

Кафедра высшей математики

СЛОЖЕНИЕ И УМНОЖЕНИЕ ВЕРОЯТНОСТЕЙ. ПОВТОРНЫЕ НЕЗАВИСИМЫЕ ИСПЫТАНИЯ

Лекция для студентов землеустроительного факультета

заочной формы обучения

Горки, 2012

Сложение и умножение вероятностей. Повторные

независимые испытания

    Сложение вероятностей

Суммой двух совместных событий А и В называется событие С , состоящее в наступлении хотя бы одного из событий А или В . Аналогично суммой нескольких совместных событий называется событие, состоящее в наступлении хотя бы одного из этих событий.

Суммой двух несовместных событий А и В называется событие С , состоящее в наступлении или события А , или события В . Аналогично суммой нескольких несовместных событий называется событие, состоящее в наступлении какого-либо одного из этих событий.

Справедлива теорема сложения вероятностей несовместных событий: вероятность суммы двух несовместных событий равна сумме вероятностей этих событий , т.е. . Эту теорему можно распространить на любое конечное число несовместных событий.

Из данной теоремы следует:

сумма вероятностей событий, образующих полную группу, равна единице;

сумма вероятностей противоположных событий равна единице, т.е.
.

Пример 1 . В ящике находятся 2 белых, 3 красных и 5 синих шара. Шары перемешивают и наугад извлекают один. Какова вероятность того, что шар окажется цветным?

Решение . Обозначим события:

A ={извлечён цветной шар};

B ={извлечён белый шар};

C ={извлечён красный шар};

D ={извлечён синий шар}.

Тогда A = C + D . Так как события C , D несовместны, то воспользуемся теоремой сложения вероятностей несовместных событий: .

Пример 2 . В урне находятся 4 белых шара и 6 – чёрных. Из урны наугад вынимают 3 шара. Какова вероятность того, что все они одного цвета?

Решение . Обозначим события:

A ={вынуты шары одного цвета};

B ={вынуты шары белого цвета};

C ={вынуты шары чёрного цвета}.

Так как A = B + C и события В и С несовместны, то по теореме сложения вероятностей несовместных событий
. Вероятность событияВ равна
, где
4,

. Подставим k и n в формулу и получим
Аналогично найдём вероятность событияС :
, где
,
, т.е.
. Тогда
.

Пример 3 . Из колоды в 36 карт наугад вынимают 4 карты. Найти вероятность того, что среди них окажется не менее трёх тузов.

Решение . Обозначим события:

A ={среди вынутых карт не менее трёх тузов};

B ={среди вынутых карт три туза};

C ={среди вынутых карт четыре туза}.

Так как A = B + C , а события В и С несовместны, то
. Найдём вероятности событийВ и С :


,
. Следовательно, вероятность того, что среди вынутых карт не менее трёх тузов, равна

0.0022.

    Умножение вероятностей

Произведением двух событий А и В называется событие С , состоящее в совместном наступлении этих событий:
. Это определение распространяется на любое конечное число событий.

Два события называются независимыми , если вероятность наступления одного из них не зависит от того, произошло другое событие или нет. События ,, … ,называютсянезависимыми в совокупности , если вероятность наступления каждого из них не зависит от того, произошли или не произошли другие события.

Пример 4 . Два стрелка стреляют по цели. Обозначим события:

A ={первый стрелок попал в цель};

B ={второй стрелок попал в цель}.

Очевидно, что вероятность попадания в цель первым стрелком не зависит от того, попал или не попал второй стрелок, и наоборот. Следовательно, события А и В независимы.

Справедлива теорема умножения вероятностей независимых событий: вероятность произведения двух независимых событий равна произведению вероятностей этих событий : .

Эта теорема справедлива и для n независимых в совокупности событий: .

Пример 5 . Два стрелка стреляют по одной цели. Вероятность попадания первого стрелка равна 0.9, а второго – 0.7. Оба стрелка одновременно делают по одному выстрелу. Определить вероятность того, что будут иметь место два попадания в цель.

Решение . Обозначим события:

A

B

C ={оба стрелка попадут в цель}.

Так как
, а событияА и В независимы, то
, т.е..

События А и В называются зависимыми , если вероятность наступления одного из них зависит от того, произошло другое событие или нет. Вероятность наступления события А при условии, что событие В уже наступило, называется условной вероятностью и обозначается
или
.

Пример 6 . В урне находятся 4 белых и 7 чёрных шаров. Из урны извлекаются шары. Обозначим события:

A ={извлечён белый шар} ;

B ={извлечён чёрный шар}.

Перед началом извлечения шаров из урны
. Из урны извлекли один шар и он оказался чёрным. Тогда вероятность событияА после наступления события В будет уже другой, равной . Это означает, что вероятность событияА зависит от события В , т.е. эти события будут зависимыми.

Справедлива теорема умножения вероятностей зависимых событий: вероятность произведения двух зависимых событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную в предположении, что первое событие уже наступило , т.е. или.

Пример 7 . В урне находятся 4 белых шара и 8 красных. Из неё наугад последовательно извлекают два шара. Найти вероятность того, что оба шара будут чёрными.

Решение . Обозначим события:

A ={первым извлечён чёрный шар};

B ={вторым извлечён чёрный шар}.

События А и В зависимы, так как
, а
. Тогда
.

Пример 8 . Три стрелка стреляют по цели независимо друг от друга. Вероятность попадания в цель для первого стрелка равна 0.5, для второго – 0.6 и для третьего – 0.8. Найти вероятность того, что произойдут два попадания в цель, если каждый стрелок сделает по одному выстрелу.

Решение . Обозначим события:

A ={произойдут два попадания в цель};

B ={первый стрелок попадёт в цель};

C ={второй стрелок попадёт в цель};

D ={третий стрелок попадёт в цель};

={первый стрелок не попадёт в цель};

={второй стрелок не попадёт в цель};

={третий стрелок не попадёт в цель}.

По условию примера
,
,
,

,
,
. Так как, то используя теорему сложения вероятностей несовместных событий и теорему умножения вероятностей независимых событий, получим:

Пусть события
образуют полную группу событий некоторого испытания, а событииА может наступить только с одним из этих событий. Если известны вероятности и условные вероятностисобытияА , то вероятность события А вычисляется по формуле:

или
. Эта формула называетсяформулой полной вероятности , а события
гипотезами .

Пример 9 . На сборочный конвейер поступает 700 деталей с первого станка и 300 деталей со второго. Первый станок даёт 0.5% брака, а второй – 0.7%. Найти вероятность того, что взятая деталь будет бракованной.

Решение . Обозначим события:

A ={взятая деталь будет бракованной};

={деталь изготовлена на первом станке};

={деталь изготовлена на втором станке}.

Вероятность того, что деталь изготовлена на первом станке, равна
. Для второго станка
. По условию вероятность получения бракованной детали, изготовленной на первом станке, равна
. Для второго станка эта вероятность равна
. Тогда вероятность того, что взятая деталь будет бракованной, вычисляется по формуле полной вероятности

Если известно, что в результате испытания наступило некоторое событие А , то вероятность того, что это событие наступило с гипотезой
, равна
, где
- полная вероятность событияА . Эта формула называется формулой Байеса и позволяет вычислять вероятности событий
после того, как стало известно, что событиеА уже наступило.

Пример 10 . Однотипные детали к автомобилям производятся на двух заводах и поступают в магазин. Первый завод производит 80% общего количества деталей, а второй – 20%. Продукция первого завода содержит 90% стандартных деталей, а второго – 95%. Покупатель купил одну деталь и она оказалась стандартной. Найти вероятность того, что эта деталь изготовлена на втором заводе.

Решение . Обозначим события:

A ={куплена стандартная деталь};

={деталь изготовлена на первом заводе};

={деталь изготовлена на втором заводе}.

По условию примера
,
,
и
. Вычислим полную вероятность событияА : 0.91. Вероятность того, что деталь изготовлена на втором заводе, вычислим по формуле Байеса:

.

Задания для самостоятельной работы

    Вероятность попадания в цель для первого стрелка равна 0.8, для второго – 0.7 и для третьего – 0.9. Стрелки произвели по одному выстрелу. Найти вероятность того, что имеет место не менее двух попаданий в цель.

    В ремонтную мастерскую поступило 15 тракторов. Известно, что 6 из них нуждаются в замене двигателя, а остальные – в замене отдельных узлов. Случайным образом отбираются три трактора. Найти вероятность того, что замена двигателя необходима не более, чем двум отобранным тракторам.

    На железобетонном заводе изготавливают панели, 80% из которых – высшего качества. Найти вероятность того, что из трёх наугад выбранных панелей не менее двух будут высшего сорта.

    Три рабочих собирают подшипники. Вероятность того, что подшипник, собранный первым рабочим, высшего качества, равна 0.7, вторым – 0.8 и третьим – 0.6. Для контроля наугад взято по одному подшипнику из собранных каждым рабочим. Найти вероятность того, что не менее двух из них будут высшего качества.

    Вероятность выигрыша по лотерейному билету первого выпуска равна 0.2, второго – 0.3 и третьего – 0.25. Имеются по одному билету каждого выпуска. Найти вероятность того, что выиграет не менее двух билетов.

    Бухгалтер выполняет расчёты, пользуясь тремя справочниками. Вероятность того, что интересующие его данные находятся в первом справочнике, равна 0.6, во втором – 0.7 ив третьем – 0.8. Найти вероятность того, что интересующие бухгалтера данные содержатся не более, чем в двух справочниках.

    Три автомата изготавливают детали. Первый автомат изготавливает деталь высшего качества с вероятностью 0.9, второй – с вероятностью 0.7 и третий – с вероятностью 0.6. Наугад берут по одной детали с каждого автомата. Найти вероятность того, что среди них не менее двух высшего качества.

    На двух станках обрабатываются однотипные детали. Вероятность изготовления нестандартной детали для первого станка равна 0.03, в для второго – 0.02. Обработанные детали складываются в одном месте. Среди них 67% с первого станка, а остальные – со второго. Наугад взятая деталь оказалась стандартной. Найти вероятность того, что она изготовлена на первом станке.

    В мастерскую поступили две коробки однотипных конденсаторов. В первой коробке было 20 конденсаторов, из которых 2 неисправных. Во второй коробки 10 конденсаторов, из которых 3 неисправных. Конденсаторы были переложены в один ящик. Найти вероятность того, что наугад взятый из ящика конденсатор окажется исправным.

    На трёх станках изготавливают однотипные детали, которые поступают на общий конвейер. Среди всех деталей 20% с первого автомата, 30% - со второго и 505 – с третьего. Вероятность изготовления стандартной детали на первом станке равна 0.8, на втором – 0.6 и на третьем – 0.7. Взятая деталь оказалась стандартной. Найти вероятность того, эта деталь изготовлена на третьем станке.

    Комплектовщик получает для сборки 40% деталей с завода А , а остальные – с завода В . Вероятность того, что деталь с завода А – высшего качества, равна 0.8, а с завода В – 0.9. Комплектовщик наугад взял одну деталь и она оказалась не высшего качества. Найти вероятность того, что эта деталь с завода В .

    Для участия в студенческих спортивных соревнованиях выделено 10 студентов из первой группы и 8 – из второй. Вероятность того, что студент из первой группы попадёт в сборную академии, равна 0.8, а со второй – 0.7. Наугад выбранный студент попал в сборную. Найти вероятность того, что он из первой группы.

    Формула Бернулли

Испытания называются независимыми , если при каждом из них событие А наступает с одной и той же вероятностью
, не зависящей от того, появилось или не появилось это событие в других испытаниях. Вероятность противоположного событияв этом случае равна
.

Пример 11 . Бросается игральный кубик n раз. Обозначим событие A ={выпадение трёх очков}. Вероятность наступления события А в каждом испытании равна и не зависит от того, произошло или не произошло это событие в других испытаниях. Поэтому эти испытания являются независимыми. Вероятность противоположного события
{не выпадение трёх очков} равна
.

Вероятность того, что в n независимых испытаниях, в каждом из которых вероятность наступления события А равна p , событие наступит ровно k раз (безразлично в какой последовательности), вычисляется по формуле
, где
. Эта формула называетсяформулой Бернулли и удобна она в том случае, если число испытаний n не слишком велико.

Пример 12 . Доля плодов, заражённых болезнью в скрытой форме, составляет 25%. Случайным образом отбирается 6 плодов. Найти вероятность того, что среди выбранных окажется: а) ровно 3 заражённых плода; б) не более двух заражённых плодов.

Решение . По условию примера .

а) По формуле Бернулли вероятность того, что среди шести отобранных плодов заражёнными окажутся ровно три, равна




0.132.

б) Обозначим событие A ={заражённых будет не более двух плодов}. Тогда . По формуле Бернулли:

0.297.

Следовательно,
0.178+0.356+0.297=0.831.

    Теоремы Лапласа и Пуассона

По формуле Бернулли находится вероятность того, что событие А наступит k раз в n независимых испытаниях и в каждом испытании вероятность события А постоянна. При больших значениях n вычисления по формуле Бернулли становятся трудоёмкими. В этом случае для вычисления вероятности события А целесообразнее использовать другую формулу.

Локальная теорема Лапласа . Пусть вероятность p наступления события А в каждом испытании постоянна и отлична от нуля и единицы. Тогда вероятность того, что событие А наступит ровно k раз при достаточно большом числе n испытаний, вычисляется по формуле

, где
, а значения функции
приведены в таблице.

Основными свойствами функции
являются:

Функция
определена и непрерывна в интервале
.

Функция
положительна, т.е.
>0.

Функция
чётная, т.е.
.

Так как функция
чётная, то в таблице приведены её значения только для положительных значенийх .

Пример 13 . Всхожесть семян пшеницы составляет 80%. Для опыта отбирается 100 семян. Найти вероятность того, что из отобранных семян взойдут ровно 90.

Решение . По условию примера n =100, k =90, p =0.8, q =1-0.8=0.2. Тогда
. По таблице найдём значение функции
:
. Вероятность того, что из отобранных семян взойдут ровно 90, равна
0.0044.

При решении практических задач возникает необходимость найти вероятность наступления события А при n независимых испытаниях не менее раз и не болеераз. Такая задача решается с помощьюинтегральной теоремы Лапласа : Пусть вероятность p наступления события А в каждом из n независимых испытаний постоянна и отлична от нуля и единицы. Тогда вероятность того, что событие наступит не менее раз и не болеераз при достаточно большом числе испытаний, вычисляется по формуле

Где
,
.

Функция
называетсяфункцией Лапласа и не выражается через элементарные функции. Значения этой функции приведены в специальных таблицах.

Основными свойствами функции
являются:


.

Функция
возрастает в интервале
.


при
.

Функция
нечётная, т.е.
.

Пример 14 . Предприятие выпускает продукцию, из которой 13% не высшего качества. Определить вероятность того, что в непроверенной партии из 150 единиц продукции высшего качества будет не менее 125 и не более 135.

Решение . Обозначим . Вычислим
,

Изучение теории вероятности начинается с решения задач на сложение и умножение вероятностей. Стоит сразу упомянуть, что студент при освоении данной области знаний может столкнуться с проблемой: если физические или химические процессы можно представить визуально и понять эмпирически, то уровень математической абстракции очень высок, и понимание здесь приходит только с опытом.

Однако игра стоит свеч, ведь формулы - как рассматриваемые в данной статье, так и более сложные - используются сегодня повсеместно и вполне могут пригодиться в работе.

Происхождение

Как ни странно, толчком к развитию данного раздела математики стали… азартные игры. Действительно, игра в кости, бросание монетки, покер, рулетка - это типичные примеры, в которых используются сложение и умножение вероятностей. На примере задач в любом учебнике это можно увидеть наглядно. Людям было интересно узнать, как увеличить свои шансы на победу, и, надо сказать, некоторые в этом преуспели.

Например, уже в XXI веке один человек, чьего имени раскрывать мы не будем, использовал эти накопленные веками знания, чтобы буквально «обчистить» казино, выиграв в рулетку несколько десятков миллионов долларов.

Впрочем, несмотря на повышенный интерес к предмету, только к XX веку была разработана теоретическая база, делающая «теорвер» полноценной Сегодня же практически в любой науке можно встретить расчёты, использующие вероятностные методы.

Применимость

Важным моментом при использовании формул сложения и умножения вероятностей, условной вероятности является выполнимость центральной предельной теоремы. В противном случае хоть это и может и не осознаваться студентом, все вычисления, какими бы правдоподобными они ни казались, будут некорректны.

Да, у высокомотивированного учащегося возникает соблазн использовать новые знания при каждом удобном случае. Но в данном случае следует несколько притормозить и строго очертить рамки применимости.

Теория вероятности имеет дело со случайными событиями, которые в эмпирическом плане представляют собой результаты экспериментов: мы можем бросать кубик с шестью гранями, вытаскивать карту из колоды, предсказывать количество бракованных деталей в партии. Однако в некоторых вопросах использовать формулы из этого раздела математики категорически нельзя. Особенности рассмотрения вероятностей события, теорем сложения и умножения событий мы обсудим в конце статьи, а пока обратимся к примерам.

Основные понятия

Под случайным событием подразумевается некоторый процесс или результат, который может проявиться, а может и не проявиться в результате эксперимента. Например, мы подбрасываем бутерброд - он может упасть маслом вверх или маслом вниз. Любой из двух исходов будет являться случайным, и мы заранее не знаем, какой из них будет иметь место.

При изучении сложения и умножения вероятностей нам понадобятся ещё два понятия.

Совместными называются такие события, появление одного из которых не исключает появления другого. Скажем, два человека одновременно стреляют по мишени. Если один из них произведет успешный никак не отразится на возможности второго попасть в «яблочко» или промахнуться.

Несовместными будут такие события, появление которых одновременно является невозможным. Например, вытаскивая из коробки только один шарик, нельзя достать сразу и синий, и красный.

Обозначение

Понятие вероятности обозначается латинской заглавной буквой P. Далее в скобках следуют аргументы, обозначающие некоторые события.

В формулах теоремы сложения, условной вероятности, теоремы умножения вы увидите в скобках выражения, например: A+B, AB или A|B. Рассчитываться они будут различными способами, к ним мы сейчас и обратимся.

Сложение

Рассмотрим случаи, в которых используются формулы сложения и умножения вероятностей.

Для несовместных событий актуальна самая простая формула сложения: вероятность любого из случайных исходов будет равна сумме вероятностей каждого из этих исходов.

Предположим, что есть коробка с 2 синими, 3 красными и 5 жёлтыми шариками. Итого в коробке имеется 10 предметов. Какова доля истинности утверждения, что мы вытащим синий или красный шар? Она будет равна 2/10 + 3/10, т. е. пятьдесят процентов.

В случае же несовместных событий формула усложняется, поскольку добавляется дополнительное слагаемое. Вернемся к нему через один абзац, после рассмотрения ещё одной формулы.

Умножение

Сложение и умножение вероятностей независимых событий используются в разных случаях. Если по условию эксперимента нас устраивает любой из двух возможных исходов, мы посчитаем сумму; если же мы хотим получить два некоторых исхода друг за другом, мы прибегнем к использованию другой формулы.

Возвращаясь к примеру из предыдущего раздела, мы хотим вытащить сначала синий шарик, а затем - красный. Первое число нам известно - это 2/10. Что происходит дальше? Шаров остается 9, красных среди них всё столько же - три штуки. Согласно расчётам получится 3/9 или 1/3. Но что теперь делать с двумя числами? Правильный ответ - перемножать, чтобы получилось 2/30.

Совместные события

Теперь можно вновь обратиться к формуле суммы для совместных событий. Для чего мы отвлекались от темы? Чтобы узнать, как перемножаются вероятности. Сейчас нам это знание пригодится.

Мы уже знаем, какими будут первые два слагаемых (такие же, как и в рассмотренной ранее формуле сложения), теперь же потребуется вычесть произведение вероятностей, которое мы только что научились рассчитывать. Для наглядности напишем формулу: P(A+B) = P(A) + P(B) - P(AB). Получается, что в одном выражении используется и сложение, и умножение вероятностей.

Допустим, мы должны решить любую из двух задач, чтобы получить зачёт. Первую мы можем решить с вероятностью 0,3, а вторую - 0,6. Решение: 0,3 + 0,6 - 0,18 = 0,72. Заметьте, просто просуммировать числа здесь будет недостаточно.

Условная вероятность

Наконец, существует понятие условной вероятности, аргументы которой обозначаются в скобках и разделяются вертикальной чертой. Запись P(A|B) читается следующим образом: «вероятность события A при условии события B».

Посмотрим пример: друг дает вам некоторый прибор, пусть это будет телефон. Он может быть сломан (20 %) или исправен (80 %). Любой попавший в руки прибор вы в состоянии починить с вероятностью 0,4 либо не в состоянии этого сделать (0,6). Наконец, если прибор находится в рабочем состоянии, вы можете дозвониться до нужного человека с вероятностью 0,7.

Легко заметить, как в данном случае проявляется условная вероятность: вы не сможете дозвониться до человека, если телефон сломан, а если он исправен, вам не требуется его чинить. Таким образом, чтобы получить какие-либо результаты на «втором уровне», нужно узнать, какое событие выполнилось на первом.

Расчёты

Рассмотрим примеры решения задач на сложение и умножение вероятностей, воспользовавшись данными из предыдущего абзаца.

Для начала найдем вероятность того, что вы почините отданный вам аппарат. Для этого, во-первых, он должен быть неисправен, а во-вторых, вы должны справиться с починкой. Это типичная задача с использованием умножения: получаем 0,2*0,4 = 0,08.

Какова вероятность, что вы сразу дозвонитесь до нужного человека? Проще простого: 0,8*0,7 = 0,56. В этом случае вы обнаружили, что телефон исправен и успешно совершили звонок.

Наконец, рассмотрим такой вариант: вы получили сломанный телефон, починили его, после чего набрали номер, и человек на противоположном конце взял трубку. Здесь уже требуется перемножение трёх составляющих: 0,2*0,4*0,7 = 0,056.

А что делать, если у вас сразу два нерабочих телефона? С какой вероятностью вы почините хотя бы один из них? на сложение и умножение вероятностей, поскольку используются совместные события. Решение: 0,4 + 0,4 - 0,4*0,4 = 0,8 - 0,16 = 0,64. Таким образом, если вам в руки попадёт два сломанных аппарата, вы справитесь с починкой в 64% случаев.

Внимательное использование

Как говорилось в начале статьи, использование теории вероятности должно быть обдуманным и осознанным.

Чем больше серия экспериментов, тем ближе подходит теоретически предсказываемое значение к полученному на практике. Например, мы бросаем монетку. Теоретически, зная о существовании формул сложения и умножения вероятностей, мы можем предсказать, сколько раз выпадет «орёл» и «решка», если мы проведем эксперимент 10 раз. Мы провели эксперимент, и по стечению обстоятельств соотношение выпавших сторон составило 3 к 7. Но если провести серию из 100, 1000 и более попыток, окажется, что график распределения всё ближе подбирается к теоретическому: 44 к 56, 482 к 518 и так далее.

А теперь представьте, что данный эксперимент проводится не с монеткой, а с производством какого-нибудь новейшего химического вещества, вероятности получения которого мы не знаем. Мы провели бы 10 экспериментов и, не получив успешного результата, могли бы обобщить: «вещество получить невозможно». Но кто знает, проведи мы одиннадцатую попытку - достигли бы мы цели или нет?

Таким образом, если вы обращаетесь к неизведанному, к неисследованной области, теория вероятности может оказаться неприменима. Каждая последующая попытка в этом случае может оказаться успешной и обобщения типа «X не существует» или «X является невозможным» будут преждевременны.

Заключительное слово

Итак, мы рассмотрели два вида сложения, умножение и условные вероятности. При дальнейшем изучении данной области необходимо научиться различать ситуации, когда используется каждая конкретная формула. Кроме того, нужно представлять, применимы ли вообще вероятностные методы при решении вашей задачи.

Если вы будете практиковаться, то через некоторое время начнете осуществлять все требуемые операции исключительно в уме. Для тех, кто увлекается карточными играми, этот навык можно считать крайне ценным - вы значительно увеличите свои шансы на победу, всего лишь рассчитывая вероятность выпадения той или иной карты или масти. Впрочем, полученным знаниям вы без труда найдете применение и в других сферах деятельности.

Важные замечания!
1. Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь:
2. Прежде чем на начнешь читать статью, обрати внимание на наш навигатор по самым полезным ресурса для

Что такое вероятность?

Столкнувшись с этим термином первый раз, я бы не понял, что это такое. Поэтому попытаюсь объяснить доступно.

Вероятность - это шанс того, что произойдет нужное нам событие.

Например, ты решил зайти к знакомому, помнишь подъезд и даже этаж на котором он живет. А вот номер и расположение квартиры забыл. И вот стоишь ты на лестничной клетке, а перед тобой двери на выбор.

Каков шанс (вероятность) того, что если ты позвонишь в первую дверь, тебе откроет твой друг? Всего квартиры, а друг живет только за одной из них. С равным шансом мы можем выбрать любую дверь.

Но каков этот шанс?

Дверей, нужная дверь. Вероятность угадать, позвонив в первую дверь: . То есть один раз из трех ты точно угадаешь.

Мы хотим узнать, позвонив раз, как часто мы будем угадывать дверь? Давай рассмотри все варианты:

  1. Ты позвонил в дверь
  2. Ты позвонил в дверь
  3. Ты позвонил в дверь

А теперь рассмотрим все варианты, где может находиться друг:

а. За 1ой дверью
б. За 2ой дверью
в. За 3ей дверью

Сопоставим все варианты в виде таблицы. Галочкой обозначены варианты, когда твой выбор совпадает с местоположением друга, крестиком - когда не совпадает.

Как видишь всего возможно вариантов местоположения друга и твоего выбора, в какую дверь звонить.

А благоприятных исходов всего . То есть раза из ты угадаешь, позвонив в дверь раз, т.е. .

Это и есть вероятность - отношение благоприятного исхода (когда твой выбор совпал с местоположение друга) к количеству возможных событий.

Определение - это и есть формула. Вероятность принято обозначать p, поэтому:

Такую формулу писать не очень удобно, поэтому примем за - количество благоприятных исходов, а за - общее количество исходов.

Вероятность можно записывать в процентах, для этого нужно умножить получившийся результат на:

Наверное, тебе бросилось в глаза слово «исходы». Поскольку математики называют различные действия (у нас такое действие - это звонок в дверь) экспериментами, то результатом таких экспериментов принято называть исход.

Ну а исходы бывают благоприятные и неблагоприятные.

Давай вернемся к нашему примеру. Допустим, мы позвонили в одну из дверей, но нам открыл незнакомый человек. Мы не угадали. Какова вероятность, что если позвоним в одну из оставшихся дверей, нам откроет наш друг?

Если ты подумал, что, то это ошибка. Давай разбираться.

У нас осталось две двери. Таким образом, у нас есть возможные шаги:

1) Позвонить в 1-ую дверь
2) Позвонить во 2-ую дверь

Друг, при всем этом, точно находится за одной из них (ведь за той, в которую мы звонили, его не оказалось):

а) Друг за 1-ой дверью
б) Друг за 2-ой дверью

Давай снова нарисуем таблицу:

Как видишь, всего есть варианта, из которых - благоприятны. То есть вероятность равна.

А почему не?

Рассмотренная нами ситуация - пример зависимых событий. Первое событие - это первый звонок в дверь, второе событие - это второй звонок в дверь.

А зависимыми они называются потому что влияют на следующие действия. Ведь если бы после первого звонка в дверь нам открыл друг, то какова была бы вероятность того, что он находится за одной из двух других? Правильно, .

Но если есть зависимые события, то должны быть и независимые ? Верно, бывают.

Хрестоматийный пример - бросание монетки.

  1. Бросаем монетку раз. Какова вероятность того, что выпадет, например, орел? Правильно - , ведь вариантов всего (либо орел, либо решка, пренебрежем вероятностью монетки встать на ребро), а устраивает нас только.
  2. Но выпала решка. Ладно, бросаем еще раз. Какова сейчас вероятность выпадения орла? Ничего не изменилось, все так же. Сколько вариантов? Два. А сколько нас устраивает? Один.

И пусть хоть тысячу раз подряд будет выпадать решка. Вероятность выпадения орла на раз будет все также. Вариантов всегда, а благоприятных - .

Отличить зависимые события от независимых легко:

  1. Если эксперимент проводится раз (раз бросают монетку, 1 раз звонят в дверь и т.д.), то события всегда независимые.
  2. Если эксперимент проводится несколько раз (монетку бросают раз, в дверь звонят несколько раз), то первое событие всегда независимое. А дальше, если количество благоприятных или количество всех исходов меняется, то события зависимые, а если нет - независимые.

Давай немного потренируемся определять вероятность.

Пример 1.

Монетку бросают два раза. Какова вероятность того, что два раза подряд выпадет орел?

Решение:

Рассмотрим все возможные варианты:

  1. Орел-орел
  2. Орел-решка
  3. Решка-орел
  4. Решка-решка

Как видишь, всего варианта. Из них нас устраивает только. То есть вероятность:

Если в условии просят просто найти вероятность, то ответ нужно давать в виде десятичной дроби. Если было бы указано, что ответ нужно дать в процентах, тогда мы умножили бы на.

Ответ:

Пример 2.

В коробке конфет все конфеты упакованы в одинаковую обертку. Однако из конфет - с орехами, с коньяком, с вишней, с карамелью и с нугой.

Какова вероятность, взяв одну конфету, достать конфету с орехами. Ответ дайте в процентах.

Решение:

Сколько всего возможных исходов? .

То есть, взяв одну конфету, она будет одной из, имеющихся в коробке.

А сколько благоприятных исходов?

Потому что в коробке только конфет с орехами.

Ответ:

Пример 3.

В коробке шаров. из них белые, - черные.

  1. Какова вероятность вытащить белый шар?
  2. Мы добавили в коробку еще черных шаров. Какова теперь вероятность вытащить белый шар?

Решение:

а) В коробке всего шаров. Из них белых.

Вероятность равна:

б) Теперь шаров в коробке стало. А белых осталось столько же - .

Ответ:

Полная вероятность

Вероятность всех возможных событий равна ().

Допустим, в ящике красных и зеленых шаров. Какова вероятность вытащить красный шар? Зеленый шар? Красный или зеленый шар?

Вероятность вытащить красный шар

Зеленый шар:

Красный или зеленый шар:

Как видишь, сумма всех возможных событий равна (). Понимание этого момента поможет тебе решить многие задачи.

Пример 4.

В ящике лежит фломастеров: зеленых, красных, синих, желтых, черный.

Какова вероятность вытащить НЕ красный фломастер?

Решение:

Давай посчитаем количество благоприятных исходов.

НЕ красный фломастер, это значит зеленый, синий, желтый или черный.

Вероятность того, что событие не произойдет, равна минус вероятность того, что событие произойдет.

Правило умножения вероятностей независимых событий

Что такое независимые события ты уже знаешь.

А если нужно найти вероятность того, что два (или больше) независимых события произойдут подряд?

Допустим мы хотим знать, какова вероятность того, что бросая монетку раза, мы два раза увидим орла?

Мы уже считали - .

А если бросаем монетку раза? Какова вероятность увидеть орла раза подряд?

Всего возможных вариантов:

  1. Орел-орел-орел
  2. Орел-орел-решка
  3. Орел-решка-орел
  4. Орел-решка-решка
  5. Решка-орел-орел
  6. Решка-орел-решка
  7. Решка-решка-орел
  8. Решка-решка-решка

Не знаю как ты, но я раза ошибся, составляя этот список. Ух! А подходит нам только вариант (первый).

Для 5 бросков можешь составить список возможных исходов сам. Но математики не столь трудолюбивы, как ты.

Поэтому они сначала заметили, а потом доказали, что вероятность определенной последовательности независимых событий каждый раз уменьшается на вероятность одного события.

Другими словами,

Рассмотрим на примере все той же, злосчастной, монетки.

Вероятность выпадения орла в испытании? . Теперь мы бросаем монетку раз.

Какова вероятность выпадения раз подряд орла?

Это правило работает не только, если нас просят найти вероятность того, что произойдет одно и то же событие несколько раз подряд.

Если бы мы хотели найти последовательность РЕШКА-ОРЕЛ-РЕШКА, при бросках подряд, мы поступили бы также.

Вероятность выпадения решка - , орла - .

Вероятность выпадения последовательности РЕШКА-ОРЕЛ-РЕШКА-РЕШКА:

Можешь проверить сам, составив таблицу.

Правило сложения вероятностей несовместных событий.

Так стоп! Новое определение.

Давай разбираться. Возьмем нашу изношенную монетку и бросим её раза.
Возможные варианты:

  1. Орел-орел-орел
  2. Орел-орел-решка
  3. Орел-решка-орел
  4. Орел-решка-решка
  5. Решка-орел-орел
  6. Решка-орел-решка
  7. Решка-решка-орел
  8. Решка-решка-решка

Так вот несовместные события, это определенная, заданная последовательность событий. - это несовместные события.

Если мы хотим определить, какова вероятность двух (или больше) несовместных событий то мы складываем вероятности этих событий.

Нужно понять, что выпадение орла или решки - это два независимых события.

Если мы хотим определить, какова вероятность выпадения последовательности) (или любой другой), то мы пользуемся правилом умножения вероятностей.
Какова вероятность выпадения при первом броске орла, а при втором и третьем решки?

Но если мы хотим узнать, какова вероятность выпадения одной из нескольких последовательностей, например, когда орел выпадет ровно раз, т.е. варианты и, то мы должны сложить вероятности этих последовательностей.

Всего вариантов, нам подходит.

То же самое мы можем получить, сложив вероятности появления каждой последовательности:

Таким образом, мы складываем вероятности, когда хотим определить вероятность некоторых, несовместных, последовательностей событий.

Есть отличное правило, помогающее не запутаться, когда умножать, а когда складывать:

Возвратимся к примеру, когда мы подбросили монетку раза, и хотим узнать вероятность увидеть орла раз.
Что должно произойти?

Должны выпасть:
(орел И решка И решка) ИЛИ (решка И орел И решка) ИЛИ (решка И решка И орел).
Вот и получается:

Давай рассмотрим несколько примеров.

Пример 5.

В коробке лежит карандашей. красных, зеленых, оранжевых и желтых и черных. Какова вероятность вытащить красный или зеленый карандаши?

Решение:

Пример 6.

Игральную кость бросают дважды, какова вероятность того, что в сумме выпадет 8 очков?

Решение.

Как мы можем получить очков?

(и) или (и) или (и) или (и) или (и).

Вероятность выпадения одной (любой) грани - .

Считаем вероятность:

Тренировка.

Думаю, теперь тебе стало понятно, когда нужно как считать вероятности, когда их складывать, а когда умножать. Не так ли? Давай немного потренируемся.

Задачи:

Возьмем карточную колоду, в которой карты, из них пик, червей, 13 треф и 13 бубен. От до туза каждой масти.

  1. Какова вероятность вытащить трефы подряд (первую вытащенную карту мы кладем обратно в колоду и перемешиваем)?
  2. Какова вероятность вытащить черную карту (пики или трефы)?
  3. Какова вероятность вытащить картинку (вальта, даму, короля или туза)?
  4. Какова вероятность вытащить две картинки подряд (первую вытащенную карту мы убираем из колоды)?
  5. Какова вероятность, взяв две карты, собрать комбинацию - (валет, дама или король) и туз Последовательность, в которой будут вытащены карты, не имеет значения.

Ответы:

Если ты смог сам решить все задачи, то ты большой молодец! Теперь задачи на теорию вероятностей в ЕГЭ ты будешь щелкать как орешки!

ТЕОРИЯ ВЕРОЯТНОСТЕЙ. СРЕДНИЙ УРОВЕНЬ

Рассмотрим пример. Допустим, мы бросаем игральную кость. Что это за кость такая, знаешь? Так называют кубик с цифрами на гранях. Сколько граней, столько и цифр: от до скольки? До.

Итак, мы бросаем кость и хотим, чтобы выпало или. И нам выпадает.

В теории вероятностей говорят, что произошло благоприятное событие (не путай с благополучным).

Если бы выпало, событие тоже было бы благоприятным. Итого может произойти всего два благоприятных события.

А сколько неблагоприятных? Раз всего возможных событий, значит, неблагоприятных из них события (это если выпадет или).

Определение:

Вероятностью называется отношение количества благоприятных событий к количеству всех возможных событий . То есть вероятность показывает, какая доля из всех возможных событий приходится на благоприятные.

Обозначают вероятность латинской буквой (видимо, от английского слова probability - вероятность).

Принято измерять вероятность в процентах (см. тему , ) . Для этого значение вероятности нужно умножать на. В примере с игральной костью вероятность.

А в процентах: .

Примеры (реши сам):

  1. С какой вероятностью при бросании монетки выпадет орел? А с какой вероятностью выпадет решка?
  2. С какой вероятностью при бросании игральной кости выпадет четное число? А с какой - нечетное?
  3. В ящике простых, синих и красных карандашей. Наугад тянем один карандаш. Какова вероятность вытащить простой?

Решения:

  1. Сколько всего вариантов? Орел и решка - всего два. А сколько из них благоприятных? Только один - орел. Значит, вероятность

    С решкой то же самое: .

  2. Всего вариантов: (сколько сторон у кубика, столько и различных вариантов). Благоприятных из них: (это все четные числа:).
    Вероятность. С нечетными, естественно, то же самое.
  3. Всего: . Благоприятных: . Вероятность: .

Полная вероятность

Все карандаши в ящике зеленые. Какова вероятность вытащить красный карандаш? Шансов нет: вероятность (ведь благоприятных событий -).

Такое событие называется невозможным .

А какова вероятность вытащить зеленый карандаш? Благоприятных событий ровно столько же, сколько событий всего (все события - благоприятные). Значит, вероятность равна или.

Такое событие называется достоверным .

Если в ящике зеленых и красных карандашей, какова вероятность вытащить зеленый или красный? Опять же. Заметим такую вещь: вероятность вытащить зеленый равна, а красный - .

В сумме эти вероятности равны ровно. То есть, сумма вероятностей всех возможных событий равна или.

Пример:

В коробке карандашей, среди них синих, красных, зеленых, простых, желтый, а остальные - оранжевые. Какова вероятность не вытащить зеленый?

Решение:

Помним, что все вероятности в сумме дают. А вероятность вытащить зеленый равна. Значит, вероятность не вытащить зеленый равна.

Запомни этот прием: вероятность того, что событие не произойдет равна минус вероятность того, что событие произойдет.

Независимые события и правило умножения

Ты кидаешь монетку раза, и хочешь, чтобы оба раза выпал орел. Какова вероятность этого?

Давай переберем все возможные варианты и определим, сколько их:

Орел-Орел, Решка-Орел, Орел-Решка, Решка-Решка. Какие еще?

Всего варианта. Из них нам подходит только один: Орел-Орел. Итого, вероятность равна.

Хорошо. А теперь кидаем монетку раза. Посчитай сам. Получилось? (ответ).

Ты мог заметить, что с добавлением каждого следующего броска вероятность уменьшается в раза. Общее правило называется правилом умножения :

Вероятности независимых событий переменожаются.

Что такое независимые события? Все логично: это те, которые не зависят друг от друга. Например, когда мы бросаем монетку несколько раз, каждый раз производится новый бросок, результат которого не зависит от всех предыдущих бросков. С таким же успехом мы можем бросать одновременно две разные монетки.

Еще примеры:

  1. Игральную кость бросают дважды. Какова вероятность, что оба раза выпадет?
  2. Монетку бросают раза. Какова вероятность, что в первый раз выпадет орел, а потом два раза решка?
  3. Игрок бросает две кости. Какова вероятность, что сумма чисел на них будет равна?

Ответы:

  1. События независимы, значит, работает правило умножения: .
  2. Вероятность орла равна. Вероятность решки - тоже. Перемножаем:
  3. 12 может получиться только, если выпадут две -ки: .

Несовместные события и правило сложения

Несовместными называются события, которые дополняют друг друга до полной вероятности. Из названия видно, что они не могут произойти одновременно. Например, если бросаем монетку, может выпасть либо орел, либо решка.

Пример.

В коробке карандашей, среди них синих, красных, зеленых, простых, желтый, а остальные - оранжевые. Какова вероятность вытащить зеленый или красный?

Решение .

Вероятность вытащить зеленый карандаш равна. Красный - .

Благоприятных событий всего: зеленых + красных. Значит, вероятность вытащить зеленый или красный равна.

Эту же вероятность можно представить в таком виде: .

Это и есть правило сложения: вероятности несовместных событий складываются.

Задачи смешанного типа

Пример.

Монетку бросают два раза. Какова вероятность того, что результат бросков будет разный?

Решение .

Имеется в виду, что если первым выпал орел, второй должна быть решка, и наоборот. Получается, что здесь две пары независимых событий, и эти пары друг с другом несовместны. Как бы не запутаться, где умножать, а где складывать.

Есть простое правило для таких ситуаций. Попробуй описать, что должно произойти, соединяя события союзами «И» или «ИЛИ». Например, в данном случае:

Должны выпасть (орел и решка) или (решка и орел).

Там где стоит союз «и», будет умножение, а там где «или» - сложение:

Попробуй сам:

  1. С какой вероятностью при двух бросаниях монетки оба раза выпадет одно и та же сторона?
  2. Игральную кость бросают дважды. Какова вероятность, что в сумме выпадет очков?

Решения:

Еще пример:

Бросаем монетку раза. Какова вероятность, что хотя-бы один раз выпадет орел?

Решение:

ТЕОРИЯ ВЕРОЯТНОСТЕЙ. КОРОТКО О ГЛАВНОМ

Вероятность - это отношение количества благоприятных событий к количеству всех возможных событий.

Независимые события

Два события независимы если при наступлении одного вероятность наступления другого не изменяется.

Полная вероятность

Вероятность всех возможных событий равна ().

Вероятность того, что событие не произойдет, равна минус вероятность того, что событие произойдет.

Правило умножения вероятностей независимых событий

Вероятность определенной последовательности независимых событий, равна произведению вероятностей каждого из событий

Несовместные события

Несовместными называются события, которые никак не могут произойти одновременно в результате эксперимента. Ряд несовместных событий образуют полную группу событий.

Вероятности несовместных событий складываются.

Описав что должно произойти, используя союзы «И» или «ИЛИ», вместо «И» ставим знак умножения, а вместо «ИЛИ» — сложения.

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время .

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой доступ ко всем скрытым задачам в этой статье -
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - Купить учебник - 499 руб

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Доступ ко всем скрытым задачам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!

Непосредственный подсчет случаев, благоприятствующих данному событию, может оказаться затруднительным. Поэтому для определения вероятности события бывает выгодно представить данное событие в виде комбинации некоторых других, более простых событий. При этом, однако, надо знать правила, которым подчиняются вероятности при комбинации событий. Именно к этим правилам и относятся упомянутые в названии параграфа теоремы.

Первая из них относится к подсчету вероятности того, что осуществится хотя бы одно из нескольких событий.

Теорема сложения.

Пусть А и В - два несовместных события. Тогда вероятность того, что осуществится хотя бы одно из этих двух событий, равна сумме их вероятностей:

Доказательство. Пусть - полная группа попарно несовместных событий. Если то среди этих элементарных событий имеется ровно событий, благоприятствующих А, и ровно событий, благоприятствующих В. Так как события А и В несовместны, то никакое из событий не может благоприятствовать обоим этим событиям. Событию (А или В), состоящему в том, что наступает хотя бы одно из этих двух событий, благоприятствует, очевидно, как каждое из событий благоприятствующих А, так и каждое из событий

Благоприятствующих В. Поэтому общее число событий, благоприятствующих событию (А или В), равно сумме откуда следует:

что и требовалось доказать

Нетрудно видеть, что теорема сложения, сформулированная выше для случая двух событий, легко переносится на случай любого конечного числа их. Именно если попарно несовместные события, то

Для случая трех событий, например, можно написать

Важным следствием теоремы сложения является утверждение: если события попарно несовместны и единственно возможны, то

Действительно, событие или или или по предположению достоверно и его вероятность, как было указано в § 1, равна единице. В частности, если означают два взаимно противоположных события, то

Проиллюстрируем теорему сложения примерами.

Пример 1. При стрельбе по мишени вероятность сделать отличный выстрел равна 0,3, а вероятность сделать выстрел на оценку «хорошо» равна 0,4. Какова вероятность получить за сделанный выстрел оценку не ниже «хорошо»?

Решение. Если событие А означает получение оценки «отлично», а событие В - получение оценки «хорошо», то

Пример 2. В урне, содержащей шаров белого, красного и черного цвета, находятся белых шаров и I красных. Какова вероятность вынуть шар не черного цвета?

Решение. Если событие А состоит в появлении белого, а событие В - красного шара, то появление шара не черного цвета

означает появление либо белого, либо красного шара. Так как по определению вероятности

то по теореме сложения вероятность появления шара не черного цвета равна;

Эту задачу можно решить и так. Пусть событие С состоит в появлении черного шара. Число черных шаров равно так что Р (С) Появление шара не черного цвета является противоположным событием С, поэтому на основании указанного выше следствия из теоремы сложения имеем:

как и раньше.

Пример 3. В денежно-вещевой лотерее на серию в 1000 билетов приходится 120 денежных и 80 вещевых выигрышей. Какова вероятность какого-либо выигрыша на один лотерейный билет?

Решение. Если обозначить через А событие, состоящее в выпадении денежного выигрыша и через В - вещевого, то из определения вероятности следует

Интересующее нас событие представляет (А или В), поэтому из теоремы сложения вытекает

Таким образом, вероятность какого-либо выигрыша равна 0,2.

Прежде чем перейти к следующей теореме, необходимо ознакомиться с новым важным понятием - понятием условной вероятности. Для этой цели мы начнем с рассмотрения следующего примера.

Пусть на складе имеется 400 электрических лампочек, изготовленных на двух различных заводах, причем на первом изготовлено 75% всех лампочек, а на втором - 25%. Допустим, что среди лампочек, изготовленных первым заводом, 83% удовлетворяют условиям определенного стандарта, а для продукции второго завода этот процент равен 63. Определим вероятность того, что случайно взятая со склада лампочка окажется удовлетворяющей условиям стандарта.

Заметим, что общее число имеющихся стандартных лампочек состоит из лампочек, изготовленных первым

заводом, и 63 лампочек, изготовленных вторым заводом, то есть равно 312. Так как выбор любой лампочки следует считать равновозможным, то мы имеем 312 благоприятствующих случаев из 400, так что

где событие В состоит в том, что выбранная нами лампочка стандартна.

При этом подсчете не делалось никаких предположений о том, к продукции какого завода принадлежит выбранная нами лампочка. Если же какие-либо предположения такого рода сделать, то очевидно, что интересующая нас вероятность может измениться. Так, например, если известно, что выбранная лампочка изготовлена на первом заводе (событие А), то вероятность того, что она стандартна, будет уже не 0,78, а 0,83.

Такого рода вероятность, то есть вероятность события В при условии, что имеет место событие А, называют условной вероятностью события В при условии наступления события А и обозначают

Если мы в предыдущем примере обозначим через А событие, состоящее в том, что выбранная лампочка изготовлена на первом заводе, то мы можем написать

Теперь мы можем сформулировать важную теорему, относящуюся к подсчету вероятности совмещения событий.

Теорема умножения.

Вероятность совмещения событий А и В равна произведению вероятности одного из событий на условную вероятность другого в предположении, что первое имело место:

При этом под совмещением событий А и В понимается наступление каждого из них, то есть наступление как события А, так и события В.

Доказательство. Рассмотрим полную группу из равновозможных попарно несовместных событий каждое из которых может быть благоприятствующим или неблагоприятствующим как для события А, так и для события В.

Разобьем все эти события на четыре различные группы следующим образом. К первой группе отнесем те из событий которые благоприятствуют и событию А, и событию В; ко второй и третьей группам отнесем такие события которые благоприятствуют одному из двух интересующих нас событий и не благоприятствуют другому, например ко второй группе - те, которые благоприятствуют А, но не благоприятствуют В, а к третьей - те, которые благоприятствуют В, но не благоприятствуют А; наконец, к

четвертой группе отнесем те из событий которые не благоприятствуют ни А, ни В.

Так как нумерация событий не играет роли, то можно предположить, что это разбиение на четыре группы выглядит так:

I группа:

II группа:

III группа:

IV группа:

Таким образом, среди равновозможных и попарно несовместных событий имеется событий, благоприятствующих и событию А, и событию В, I событий, благоприятствующих событию А, но не благоприятствующих событию событий, благоприятствующих В, но не благоприятствующих А, и, наконец, событий, не благоприятствующих ни А, ни В.

Заметим, между прочим, что какая-либо из рассмотренных нами четырех групп (и даже не одна) может не содержать ни одного события. В этом случае соответствующее число, означающее количество событий в такой группе, будет равно нулю.

Произведенная нами разбивка на группы позволяет сразу написать

ибо совмещению событий А и В благоприятствуют события первой группы и только они. Общее число событий, благоприятствующих А, равно общему числу событий в первой и второй группах, а благоприятствующих В - общему числу событий в первой и третьей группах.

Подсчитаем теперь вероятность то есть вероятность события В при условии, что событие А имело место. Теперь события, входящие в третью и четвертую группы, отпадают, так как их появление противоречило бы наступлению события А, и число возможных случаев оказывается равным уже не . Из них событию В благоприятствуют лишь события первой группы, так что мы получаем:

Для доказательства теоремы достаточно теперь написать очевидное тождество:

и заменить в нем все три дроби вычисленными выше вероятностями. Мы придем к утверждавшемуся в теореме равенству:

Ясно, что написанное нами выше тождество имеет смысл лишь при что справедливо всегда, если только А не есть невозможное событие.

Так как события А и В равноправны, то, поменяв их местами, получим другую форму теоремы умножения:

Впрочем, это равенство можно получить тем же путем, что и предыдущее, если заметить, что воспользоваться тождеством

Сравнивая правые части двух выражений для вероятности Р(А и В), получим полезное равенство:

Рассмотрим теперь примеры, иллюстрирующие теорему умножения.

Пример 4. В продукции некоторого предприятия признаются годными (событие А) 96% изделий. К первому сорту (событие В) оказываются принадлежащими 75 изделий из каждой сотни годных. Определить вероятность того, что произвольно взятое изделие будет годным и принадлежит к первому сорту.

Решение. Искомая вероятность есть вероятность совмещения событий А и В. По условию имеем: . Поэтому теорема умножения дает

Пример 5. Вероятность попадания в цель при отдельном выстреле (событие А) равна 0,2. Какова вероятность поразить цель, если 2% взрывателей дают отказы (т. е. в 2% случаев выстрела не

Решение. Пусть событие В состоит в том, что выстрел произойдет, а В означает противоположное событие. Тогда по условию и согласно следствию из теоремы сложения . Далее, по условию .

Поражение цели означает совмещение событий А и В (выстрел произойдет и даст попадание), поэтому по теореме умножения

Важный частный случай теоремы умножения можно получить, если воспользоваться понятием независимости событий.

Два события называются независимыми, если вероятность одного из них не изменяется в результате того, наступило или не наступило другое.

Примерами независимых событий являются выпадение различного числа очков при повторном бросании игральной кости или той или иной стороны монет при повторном бросании монеты, так как очевидно, что вероятность выпадения герба при втором бросании равна независимо от того, выпал или не выпал герб в первом.

Аналогично, вероятность вынуть во второй раз белый шар из урны с белыми и черными шарами, если вынутый первым шар предварительно возвращен, не зависит от того, белый или черный шар был вынут в первый раз. Поэтому результаты первого и второго вынимания независимы между собой. Наоборот, если шар, вынутый первым, не возвращается в урну, то результат второго вынимания зависит от первого, ибо состав шаров, находящихся в урне после первого вынимания, меняется в зависимости от его исхода. Здесь мы имеем пример зависимых событий.

Пользуясь обозначениями, принятыми для условных вероятностей, можно записать условие независимости событий А и В в виде

Воспользовавшись этими равенствами, мы можем привести теорему умножения для независимых событий к следующей форме.

Если события А и В независимы, то вероятность их совмещения равна произведению вероятностей этих событий:

Действительно, достаточно в первоначальном выражении теоремы умножения положить , что вытекает из независимости событий, и мы получим требуемое равенство.

Рассмотрим теперь несколько событий: Будем называть их независимыми в совокупности, если вероятность появления любого из них не зависит от того, произошли ли какие-либо другие рассматриваемые события или нет

В случае событий, независимых в совокупности, теорема умножения может быть распространена на любое конечное число их, благодаря чему ее можно сформулировать так:

Вероятность совмещения событий независимых в совокупности, равна произведению вероятностей этих событий:

Пример 6. Рабочий обслуживает три автоматических станка, к каждому из которых нужно подойти для устранения неисправности, если станок остановится. Вероятность того, что первый станок не остановится в течение часа, равна 0,9. Та же вероятность для второго станка равна 0,8 и для третьего - 0,7. Определить вероятность того, что в течение часа рабочему не потребуется подойти ни к одному из обслуживаемых им станков.

Пример 7. Вероятность сбить самолет винтовочным выстрелом Какова вероятность уничтожения неприятельского самолета при одновременной стрельбе из 250 винтовок?

Решение. Вероятность того, что при одиночном выстреле самолет не будет сбит, по теореме сложения равна Тогда можно подсчитать с помощью теоремы умножения вероятность того, что самолет не будет сбит при 250 выстрелах, как вероятность совмещения событий. Она равна После этого мы можем снова воспользоваться теоремой сложения и найти вероятность того, что самолет будетсбит, как вероятность противоположного события

Отсюда видно, что, хотя вероятность сбить самолет одиночным винтовочным выстрелом ничтожно мала, тем не менее при стрельбе из 250 винтовок вероятность сбить самолет оказывается уже весьма ощутимой. Она существенно возрастает, если число винтовок увеличить. Так, при стрельбе из 500 винтовок вероятность сбить самолет, как легко подсчитать, равна при стрельбе из 1000 винтовок - даже .

Доказанная выше теорема умножения позволяет несколько расширить теорему сложения, распространив ее на случай совместимых событий. Ясно, что если события А и В совместимы, то вероятность наступления хотя бы одного из них не равна сумме их вероятностей. Например, если событие А означает выпадение четного

числа очков при бросании игральной кости, а событие В - выпадение числа очков, кратного трем, то событию (А или В) благоприятствует выпадение 2, 3, 4 и 6 очков, то есть

С другой стороны, то есть . Таким образом, в этом случае

Отсюда видно, что в случае совместимых событий теорема сложения вероятностей должна быть изменена. Как мы сейчас увидим, ее можно сформулировать таким образом, чтобы она была справедлива и для совместимых, и для несовместных событий, так что ранее рассмотренная теорема сложения окажется частным случаем новой.

Событий, которые А не благоприятствуют.

Все элементарные события, которые благоприятствуют событию (А или В), должны благоприятствовать либо только А, либо только В, либо и А и В. Таким образом, общее число таких событий равно

а вероятность

что и требовалось доказать.

Применяя формулу (9) к рассмотренному выше примеру выпадения числа очков при бросании игральной кости, получим:

что совпадает с результатом непосредственного подсчета.

Очевидно, что формула (1) является частным случаем (9). Действительно, если события А и В несовместны, то и вероятность совмещения

Примере. В электрическую цепь включены последовательно два предохранителя. Вероятность выхода из строя первого предохранителя равна 0,6, а второго 0,2. Определим вероятность прекращения питания в результате выхода из строя хотя бы одного из этих предохранителей.

Решение. Так как события А и В, состоящие в выходе из строя первого и второго из предохранителей, совместимы, то искомая вероятность определится по формуле (9):

Упражнения

Похожие публикации