Схема действия на клетки мишени йодированных гормонов. Механизмы действия гидрофильных гормонов на клетки-мишени. Механизм действия тиреоидных гормонов на клетки-мишени

Лимфатические узлы – одни из важнейших органов лимфатической системы, играют роль фильтров, препятствуя попаданию в кровь различных микроорганизмов.

Расположение лимфоузлов задумано природой очень рационально, так что бы они служили преградой на пути бактерий, вирусов, злокачественных клеток. Лимфатическая система не замкнута в круг, как сердечнососудистая, жидкость (лимфа) движется по ней только в одном направлении. По лимфатическим капиллярам и сосудам она собирается и движется от периферии к центру,
сосуды собираются в крупные протоки, а затем впадают в центральные вены.

Лимфатические узлы расположены скоплениями вдоль кровеносных сосудов и их разветвлений, через которые фильтруется лимфа, а так же возле внутренних органов. Зная, где находятся лимфоузлы, каждый может оценить у себя их размеры и плотность. Наблюдение за состоянием своих лимфатических узлов, позволяет отметить даже их незначительные изменения, что в свою очередь способствует своевременной диагностике многих заболеваний.

По расположению лимфатические узлы можно разделить на две большие группы:

  • Внутренние
  • Внешние

Внутренние лимфатические узлы

Внутренние лимфатические узлы расположены группами и цепочками вдоль крупных сосудов, рядом с важнейшими органами человека

Висцеральные узлы

К ним собирается лимфа от органов в брюшной полости.

Выделяют:

  • Селезеночные узлы . Лежат у ворот селезенки, принимают лимфу от левой половины тела желудка и его дна.
  • Брыжеечные узлы – находятся непосредственно в брыжейке кишки, принимают лимфу соответственно от своего участка кишечника.
  • Желудочные – левые желудочные, правые и левые желудочно-сальниковые.
  • Печеночные – вдоль крупных печеночных сосудов.

Париетальные или пристеночные

Это забрюшинные узлы к которым относят парааортальные и паракавальные. Расположены вдоль аорты и нижней полой вены в виде скоплений разной величины, соединенных между собой лимфатическими сосудиками. Среди них выделено три скопления: левое, правое и промежуточное поясничные скопления.

Внешние лимфатические узлы

Внешние лимфатические узлы – это те, что находятся близко к поверхности тела, часто просто под кожей, иногда глубже, под мышцами. Характеризуются тем, что для их осмотра не надо прибегать к сложным диагностическим манипуляциям. Достаточно осмотреть и ощупать, что бы заподозрить ту или иную патологию.

Расположение лимфоузлов внешнего уровня необходимо знать всем, это поможет самостоятельно на ранних сроках выявить у себя изменения в них, что бы обратиться к врачу. К внешним, относятся те, что собирают лимфу от головы, шеи, рук и ног, молочной железы, частично органов грудной клетки, брюшной полости, малого таза.

Поверхностные лимфатические узлы это следующие большие группы:

  1. Лимфоузлы головы и шеи.
  2. Над-и подключичные узлы.
  3. Подмышечные лимфатические узлы.
  4. Локтевые
  5. Паховые

Наибольшее значение при диагностике имеют шейные, над-и подключичные, подмышечные и паховые лимфатические узлы. Где находятся лимфоузлы этих групп, будет рассмотрено ниже.

Лимфоузлы головы и шеи

Лимфоузлы на голове это несколько мелких скоплений:

  • Околоушные поверхностные и глубокие
  • Затылочные
  • Сосцевидные
  • и подбородочные
  • Лицевые

Ниже на рисунке можно рассмотреть лимфоузлы на голове и на лице, расположение которых важно знать для верной диагностики заболеваний и в косметологической практике. На знании, где находятся лимфоузлы, основываются многие лимфодренажные процедуры, в частности омолаживающий массаж «Асахи». Группа лицевых узлов расположена достаточно глубоко в клетчатке, воспаляется редко и диагностического значения в медицинской практике не имеет.

Лимфоузлы шеи делятся следующим образом:

  • Передние шейные
  1. поверхностные;
  2. глубокие.
  • Боковые шейные
  1. поверхностные;
  2. глубокие верхние и нижние.
  • Надключичные
  • Добавочные

Называется . Это является тревожным звоночком, который не стоит игнорировать.

Подмышечные лимфоузлы

Лимфоузлы на руках являются неотъемлемой частью обследования. Локтевые и подмышечные лимфатические узлы легко доступны.
Большое клиническое значение имеют , расположение которых обусловило отток в них не только лимфы от верхней конечности, но и от органов грудной клетки и молочной железы. Они располагаются в жировой клетчатке подмышечной впадины, делятся на 6 групп, что обусловлено их анатомическим расположением во впадине.

Для более точного понимания, где находятся подмышечные лимфоузлы, представлена схема их расположения.

Такая подробная схема с разделением узлов на группы важна в онкологической практике. На основании поражения узлов из конкретных групп основано послеоперационное определение стадийности рака молочной железы. В обычной клинической практике такое подробное разделение на группы не имеет большого значения, тем более глубоко расположенные узлы прощупать практически невозможно.

Локтевые лимфоузлы имеют меньшее значение, так являются коллекторами лишь от нижней части руки, локтевого сустава, увеличиваются только при системных заболеваниях лимфатической системы и непосредственной инфекции кисти или предплечья. Их увеличение легко заметно, а потому не требует сложных диагностических приемов.

Паховые лимфоузлы

Паховые лимфоузлы у женщин и мужчин располагаются одинаково, делятся на глубокие и поверхностные. Поверхностные легко прощупываются под кожей в паховой складке, между лобковой костью и ногой, даже в норме их можно нащупать в виде мелких подвижных горошин до 5 мм величиной.

Расположение лимфоузлов в паху задумано природой таким образом, чтобы собирать в них лимфу не только от нижней конечности, но и от органов малого таза (матки и яичники у женщин и простата у мужчин) и наружных половых органов.

Причины воспаления паховых лимфоузлов у мужчин и женщин могут иметь разную природу.

Ниже представлен рисунок, на котором изображены все группы лимфатических узлов малого таза и паховой области.

Кроме паховых, есть также лимфоузлы на ногах, принцип расположения которых не отличается от такого же на руках.

Так же это крупные суставы, в данном случае коленный. Узлы расположены в клетчатке подколенной ямки, увеличиваются в основном при инфекционных процессах ниже колена, гнойных ранах, рожистом воспалении.

Методика обследования лимфатических узлов

Для диагностики лимфаденопатии используют осмотр и пальпацию (ощупывание). Этим приемам доступны только поверхностные лимфоузлы, глубже расположенные необходимо исследовать с помощью метода ультразвуковой диагностики.

Обследование лимфатических узлов проводят обязательно с двух сторон одновременно, так как необходимо сравнение пораженного лимфоузла со здоровым. Отмечают количество увеличенных узлов в каждой обследуемой группе.

Кроме того определяют их плотность, болезненность, подвижность по отношению к коже, друг к другу. Также в диагностике воспаления имеет большое значение осмотр кожи над узлом, покраснение, повышенная местная температура могут говорить о гнойном процессе в узле.

Осмотр лимфоузлов головы

Пальпацию осуществляют сверху вниз, начиная с затылочных узлов на голове. Пальпация проводится подушечками полусогнутых пальцев. Ощупывание должно быть мягким и плавным без нажима, нужно как бы слегка перекатываться над узлами.

Сначала ощупывают затылочные лимфоузлы, расположение которых легко определить, поставив пальцы на мышцы шеи, в том месте, где они прикрепляются к голове. После пальпируют заушные или сосцевидные лимфоузлы, они располагаются сзади ушной раковины около сосцевидного отростка. Затем осматривают околоушные и поднижнечелюстные лимфоузлы.

Расположение подчелюстных узлов, их характеристики определяют согнутыми пальцами, которые заводят под нижнюю челюсть и как бы слегка придавливают узлы к кости. Подбородочные лимфоузлы обследуют тем же способом, только ближе к центральной линии, то есть под подбородком.

Осмотр лимфоузлов шеи

После осмотра лимфоузлов головы приступают к ощупыванию лимфатических узлов шеи. Пальпации доступны только поверхностные и надключичные лимфоузлы. Расположение кистей рук при пальпации шейных лимфоузлов следующее: полусогнутые пальцы мягко прижать к боковой поверхности шеи вдоль заднего, а затем переднего краев грудино-ключично-сосцевидной мышцы. Именно там располагаются поверхностные группы шейных лимфоузлов. Кисти при этом следует держать горизонтально.

Надключичные лимфоузлы располагаются над ключицами, между ножек грудино-ключично-сосцевидной мышца. Подушечки полусогнутых пальцев кладут на область над ключицей и слегка прижимают.

В норме надключичные узлы не пальпируются, однако при раке желудка может быть одиночный метастаз в левой надключичной области (метастаз Вирхова), кроме того увеличение левых надключичных узлов говорит о запущенной стадии рака яичников у женщин, мочевого пузыря, яичек и простаты у мужчин, иногда рака поджелудочной железы.

Увеличение правых надключичных лимфоузлов говорит об опухоли, располагающейся в грудной клетке. После надключичных, таким же образом пальпируют подключичные лимфоузлы.

Лимфатическая система – это дренажная система, которая очищает жидкость, окружающую клетки в нашем организме, удаляя примеси и отходы

Обычно люди хорошо осведомлены о функциях различных систем в организме, однако роль лимфатической системы многим не известна. Некоторые люди даже не знают о том, что в их организме существуют лимфатические узлы; другие знают о них, но совершенно не представляют об их жизненно важной роли.

Функции лимфатической системы

Лимфатический узел представляет собой небольшой, напоминающий по форме и размерам горошину. Их размеры могут значительно увеличиваться, если для борьбы с бактериями и вирусами нужно развить большую мощность. Если произошло , это значит, что они борются с инфекцией.

В обзоре о лимфатических узлах только 39% опрошенных лиц знали о некоторых их функциях. Лимфатические узлы фактически являются фильтрами лимфатической системы, которые отвечают за очищение лимфатической жидкости и лимфоцитов, удаление бактерий, вирусов и др. Узлы также отвечают за выработку и хранение лимфоцитов, клеток лимфатической системы, борющихся с инфекцией.

Лимфатические узлы можно найти где угодно, но они преобладают в тех участках организма, где наиболее часто встречаются бактерии.

Лимфатические узлы часто неправильно называют «железами» или «лимфатические железы». На самом деле они не выделяют ничего и поэтому не являются железами. Они действуют как фильтры во внутренней соединительной ткани, заполненной лимфоцитами, которые собирают и разрушают бактерии и вирусы.

Лимфатическая система выглядит как дерево. Она содержит много филиалов, называемых лимфатическими сосудами, которые действуют как каналы, содержащие бесцветную лимфатическую жидкость.

Миндалины человека – самая известная часть лимфатической системы – на самом деле являются лимфатическими органами, которые работают с иммунной системой, помогая ей предотвратить инфекции.

Несмотря на то, что наша лимфатическая система выполняет жизненно важную роль в поддержании общего состояния здоровья, она остается самой непонятой и пренебрегаемой системой в организме, за исключением разве что нашей печени!

Лимфатическая система представляет собой сложную сеть сосудов, пронизывающих все тело (за исключением центральной нервной системы). Лимфатическая система – это дренажная система, которая очищает жидкость, окружающую клетки в нашем организме, удаляя примеси и отходы, чтобы защитить нас от токсинов, которые могут нанести непоправимый вред организму.

В отличие от системы крови, лимфа является улицей с односторонним движением. Происходит слив и фильтрация лимфы из тканей и кишечника и возвращение ее в очищенном виде в кровь. Лимфатические жидкости состоят из воды, белков, соли, глюкозы, мочевины, лимфоцитов (белых клеток крови) и других веществ. Основные лимфатические компоненты включают костный мозг, лимфатические узлы, селезенку и вилочковую железу. Лимфатические узлы, как станции по химической обработке, стратегически расположены по всей лимфатической системе и особенно сосредоточены в области подмышек, живота и шеи. Лимфатические сосуды защищают организм от болезни, производя лимфоциты, а также за счет поглощения липидов (жиров) из желудочно-кишечного тракта и доставке их в кровь.

Плохая или перегруженная лимфатическая функция связана со многими условиями, но особенно с фибромиалгией, рассеянным склерозом, синдромом хронической усталости, мышечной болью, вздутием живота, плохим пищеварением, целлюлитом, жировыми отложениями, ожирением и лимфомой (раком).

Поскольку лимфатическая жидкость течет к возвращающейся в кровь жидкости из тканей организма, то избыток жидкости не имеет возможности вернуться в кровь, ткани отекают. Увеличение лимфатических узлов происходит потому, что лимфатические сосуды собирают эти излишки жидкости и несут их в венах через лимфатическую систему. Это воспаление нарушает здоровье, поскольку отходы, белки и другие молекулы непрерывно вытекают из крошечных кровеносных капилляров в окружающие ткани организма.

Без лимфатической системы мы не можем жить. Но все же большинство людей не знают о жизненно важной роли лимфатической системы в улучшение здоровья и улучшения иммунных реакций.

Кровеносная и лимфатическая – две сосудистые системы в организме

Лимфатическая система тесно связана с сердечно-сосудистой системой и иногда упоминается как вторичная система кровообращения организма. Лимфатическая система включает лимфатические сосуды (в четыре раза больше, чем кровеносных сосудов), лимфатические узлы, миндалины, селезенку и вилочковую железу. Лимфа – это содержащая белые клетки крови бесцветная жидкость, которая омывает ткани и стекает через лимфатическую систему.

Роль лимфатической системы в утилизации клеточных отходов

Образованные в результате клеточного метаболизма вещества попадают из клеток в лимфатическую жидкость для удаления. Другими словами, лимфатическая система избавляется от клеточных отходов. Кровь также выводит токсины из желудочно-кишечного тракта в лимфатическую систему через печень. Когда лимфатическая система становится перегруженной, ее фильтрационная и нейтрализующая функции резко снижаются, повышение уровня токсинов создает повышенный риск воспаления, снижается иммунный ответ, а в дальнейшем возможно развитие рака (лимфомы).

Отложение жиров в организме

Кроме того, когда токсины образуются быстрее, чем организм может их обрабатывать и выводить, то организм задерживает эти токсины отложением жира в интерстициальных пространствах в попытке защитить органы. Накопление токсинов приводит к воспалению и дальнейшим расстройствам (например, фибромиалгии). Таковы результаты токсического накопления в мягкой и соединительной тканях воспаления, а также чрезмерного накопления лимфатической жидкости. Это приводит к целому ряду нарушений иммунной системы. Поэтому лимфатические заторы нужно рассматривать в качестве основной причины боли и воспаления.

В отличие от системы крови, которая использует сердце как насос, лимфатическая система полагается на скелетные мышцы для накачки. Ниже приведены методы, которые помогают улучшить лимфоток и очистить лимфатическую систему, а также повысить в целом иммунный ответ.

1) Сухая чистка кожи является весьма эффективным методом очищения лимфатической системы. Сидячий образ жизни, отсутствие физических упражнений, а также использование антиперспирантов блокирует процесс потения. В результате этого токсины и метаболические отходы попадают в ловушку в организме (вместо того, чтобы высвобождаться с потом). Сухая чистка кожи стимулирует потовые железы и открывает поры, позволяя вашему организму дышать и повышать надлежащее функционирование органов, а также улучшить кровообращение в ниже расположенных органах и тканях организма. Кроме того, сухая чистка кожи уменьшает целлюлит и способствует снижению веса.

Используйте сухую щетку с натуральной щетиной. Массажируйте мягко по коже, начиная с конечностей к центру тела. Лучшие результаты достигаются при чистке дважды в день и до ванны или душа. Вы будете чувствовать бодрящее покалывание. В качестве бонуса – кожа станет более мягкой и эластичной, со здоровым блеском. Для стерилизации щетки положите ее в микроволновую печь на 3-4 минуты. Убедитесь, что щетка не содержит металл или пластик; она должна быть из дерева и натуральной щетины!

Сухую чистку кожи хорошо делать одновременно с очищением кишечника (при помощи пищевых волокон). По оценкам, кожа обладает способностью устранять более 370 г отходов в день, не считая избытка токсинов вследствие вялого толстого кишечника.

2) Лимфатический массаж делается так же, как сухая чистка кожи, только с нежными разминающими движениями, начиная с внешних точек и работая внутрь. В домашних условиях вы можете поднимать свои ноги в течение пяти минут каждый день, а также нежно массировать области лимфатических узлов. Лимфатический массаж должен делать профессиональный массажист.

3) Прыгайте на батуте! Аккуратно прыгайте в течение 3-6 минут без пальцев ног или ходите пешком – только на пятках. Наилучшие результаты достигаются, если эти упражнения выполнять 2-4 раза в день. Научитесь принципам глубокого дыхания, которое помогает выделять токсины и улучшает циркуляцию.

4) Избегайте пищевых консервантов и добавок. Помимо того, что эти вещества токсичные, они также вызывают отек и задержку жидкости. Будьте особенно осторожны, если продукты содержат глутамат натрия. Неврологи относят это вещество к группе нейротоксинов, поскольку оно оказывает дегенеративное и смертельное воздействие на мозг и нервную систему; приводит к чрезмерной стимуляции нейронов, в результате чего наступает гибель клеток. Избегайте все гидролизованное, натуральные ароматизаторы, коммерческие приправы, супы, специи, бульоны, желатин и алюминиевой посуды.

5) Продукты для очищения лимфатической системы. Выжмите сок ​​из 0,5 свежего лимона в чашку с теплой чистой водой и пейте каждое утро. Это средство способствует очищению крови и подщелачиванию организма.

Поддержка лимфатической системы является жизненно важной для хорошего здоровья и является естественным способом для оказания помощи в предотвращении боли, воспаления, кровообращения и иммунных нарушений. Здоровая лимфатическая система повышает общие иммунные реакции организма.

Стероидные гормоны являются относительно простыми органическими соединениями с небольшим молекулярным весом. О механизме их действия известно сейчас больше, чем о действии других гормонов. Скелет стероидных гормонов образован четырьмя углеводородными кольцами, и все разнообразие достигается за счет боковых групп – метальных, гидроксильных и др. Хотя сейчас известны десятки стероидных гормонов и их активных аналогов, общее число этих соединений, которые в принципе могут существовать, не превышает двухсот. Тем не менее в это число у позвоночных входят гормоны с совершенно различным действием – мужские половые гормоны (андростероны), женские половые гормоны (эстрогены), а также неполовые стероидные гормоны надпочечников – кортикостероиды.

Половые стероидные гормоны у позвоночных синтезируются в половых железах, и их синтез стимулируется гонадотропными гормонами гипофиза. У личинок насекомых стероидный гормон линьки – экдизон (экдистерон) синтезируется параторакальными железами.

Хорошей моделью действия женских половых стероидных гормонов (например, эстрадиола) служит синтез желточного белка ооцитов – вителлогенина в печени кур или овальбумина в яйцеводе цыплят. Для исследования начала синтеза вителлогенина часто используют петухов или самцов лягушек. У них в норме нет эстрогенов, вителлогенин не синтезируется и кодирующий его ген, очевидно, полностью не активен. Ho при введении эстрадиола синтез этого белка начинается и в печени самцов. Кроме генов вителлогенина, активируется также транскрипция рибосомных РНК и образование новых рибосом, в то время как активность других генов уменьшается. На новых мРНК и новых рибосомах интенсивно синтезируется вителлогенин и происходит его быстрый выход в кровяное русло. Однако, так как ооцитов у самцов нет, этот белок длительное время остается в плазме крови.

Введение эстрадиола молодым курочкам и даже цыплятам стимулирует дифференцировку клеток в их яйцеводах. Часть клеток эпителия яйцевода под влиянием эстрадиола дифференцируется в железистые клетки, в которых активируются гены овальбумина. Через несколько дней начинается синтез самого овальбумина.

В слюнных железах личинок дрозофилы или комара хирономуса (его личинки – это мотыль, живой корм для аквариумных рыб) действие стероидного гормона линьки – экдизона на активность генов можно видеть прямо под микроскопом. Политенные хромосомы значительно длиннее и толще обычных, и активные гены у них выглядят как утолщение хромосомы. Они называются пуфы. Уже через 5–10 мин после введения личинкам экдизона можно видеть появление нескольких новых пуфов (один – у хирономуса, два – у дрозофилы). Ho только через несколько часов у них возникает еще несколько десятков новых пуфов, появление которых характерно для личинки, вступившей в метаморфоз. Можно предполагать, что первые пуфы являются результатом прямого действия экдизона. Недавно при введении радиоактивного экдизона было показано, что он концентрируется в первых активирующихся пуфах. Более позднее включение остальных генов уже не требует прямого влияния экдизона и, вероятно, регулируется теми генами, которые активируются экдизоном в первые минуты. Механизм влияния «гена на ген» пора практически неизвестен, хотя такие влияния хорошо укладываются во многие схемы генной регуляции. Ингибиторы синтеза РНК подавляют включение второй очереди новых пуфов, но не препятствуют появлению первых пуфов.

Механизмы действия стероидных гормонов сейчас хорошо изучены. Эти гормоны проникают в клетки. В цитоплазме клеток‑мишеней находится специфический белок‑рецептор, который «опознает» тот гормон, к которому клетка компетентна, связывается с ним и образует гормон‑рецепторный комплекс. Такие комплексы мигрируют в ядро и связываются, как предполагают, с теми участками хромосом, где находятся гены, которые гормон в этих клетках активирует. Один и тот же стероидный гормон в разных видах клеток активирует разные гены, например эстрадиол активирует в печени гены вителлогенина, а в яйцеводе – гены овальбумина. Следовательно, эти клетки должны отличаться или своими рецепторами, или состоянием хромосом. Сейчас преобладает мнение, что рецепторы в разных видах клеток одинаковы. Если это так, то различными являются хромосомы. Предполагается, что в ядрах клеток‑мишеней на соответствующих генах находятся особые белки – акцепторы, с которыми может связываться гормон‑рецепторный комплекс и каким‑то (пока неясным) образом активировать данный ген.

Биохимия гормонов, В.250599


Организм человека существует как единое целое благодаря системе внутренних связей, которая обеспечивает передачу информации от одной клетки к другой в одной и той же ткани или между разными тканями. Без этой системы невозможно поддерживать гомеостаз. В передаче информации между клетками в многоклеточных живых организмах, принимают участие три системы: ЦЕНТРАЛЬНАЯ НЕРВНАЯ СИСТЕМА (ЦНС), ЭНДОКРИННАЯ СИСТЕМА (ЖЕЛЕЗЫ ВНУТРЕННЕЙ СЕКРЕЦИИ) и ИММУННАЯ СИСТЕМА.

Способы передачи информации во всех названных системах - химические. Посредниками при передаче информации могут быть СИГНАЛЬНЫЕ молекулы.

К таким сигнальным молекулам относятся четыре группы веществ: ЭНДОГЕННЫЕ БИОЛОГИЧЕСКИ АКТИВНЫЕ ВЕЩЕСТВА (медиаторы иммунного ответа, факторы роста и др.), НЕЙРОМЕДИАТОРЫ, АНТИТЕЛА (иммуноглобулины) и ГОРМОНЫ.

Б И О Х И М И Я Г О Р М О Н О В

ГОРМОНЫ - это биологически активные вещества, которые синтезируются в малых количествах в специализированнных клетках эндокринной системы и через циркулирующие жидкости (например, кровь) доставляются к клеткам-мишеням, где оказывают свое регулирующее действие.

Гормоны, как и другие сигнальные молекулы, обладают некоторыми общими свойствами.

^ ОБЩИЕ СВОЙСТВА ГОРМОНОВ.

1) выделяются из вырабатывающих их клеток во внеклеточное пространство;

2) не являются структурными компонентами клеток и не используются как источник энергии.

3) способны специфически взаимодействовать с клетками, имеющими рецепторы для данного гормона.

4) обладают очень высокой биологической активностью - эффективно действуют на клетки в очень низких концентрациях (около 10 -6 - 10 -11 моль/л).

^ МЕХАНИЗМЫ ДЕЙСТВИЯ ГОРМОНОВ.

Гормоны оказывают влияние на клетки-мишени.

КЛЕТКИ-МИШЕНИ - это клетки, которые специфически взаимодействуют с гормонами с помощью специальных белков-рецепторов. Эти белки-рецепторы располагаются на наружной мембране клетки, или в цитоплазме, или на ядерной мембране и на других органеллах клетки.

^ БИОХИМИЧЕСКИЕ МЕХАНИЗМЫ ПЕРЕДАЧИ СИГНАЛА ОТ ГОРМОНА В КЛЕТКУ-МИШЕНЬ.

Любой белок-рецептор состоит, минимум из двух доменов (участков), которые обеспечивают выполнение двух функций:

- "узнавание" гормона;

Преобразование и передачу полученного сигнала в клетку.

Каким образом белок-рецептор узнает ту молекулу гормона, с которой он может взаимодействовать?

Один из доменов белка-рецептора имеет в своем составе участок, комплементарный какой-то части сигнальной молекулы. Процесс связывания рецептора с сигнальной молекулой похож на процесс образования фермент-субстратного комплекса и может определяется величиной константы сродства.

Большинство рецепторов изучены недостаточно, потому что их выделение и очистка очень сложные, а содержание каждого вида рецепторов в клетках очень низкое. Но известно, что гормоны взаимодействуют со своими рецепторами физико-химическим путем. Между молекулой гормона и рецептором формируются электростатические и гидрофобные взаимодействия. При связывании рецептора с гормоном происходят конформационные изменения белка-рецептора и комплекс сигнальной молекулы с белком-рецептором активируется. В активном состоянии он может вызывать специфические внутриклеточные реакции в ответ на принятый сигнал. Если нарушен синтез или способность белков-рецепторов связываться с сигнальными молекулами, возникают заболевания - эндокринные нарушения. Есть три типа таких заболеваний:

1. Связанные с недостаточностью синтеза белков-рецепторов.

2. Связанные с изменением структуры рецептора - генетических дефекты.

3. Связанные с блокированием белков-рецепторов антителами.

^ МЕХАНИЗМЫ ДЕЙСТВИЯ ГОРМОНОВ НА КЛЕТКИ-МИШЕНИ.

В зависимости от строения гормона существуют два типа взаимодействия. Если молекула гормона липофильна, (например, стероидные гормоны), то она может проникать через липидный слой наружной мембраны клеток-мишеней. Если молекула имеет большие размеры или является полярной, то ее проникновение внутрь клетки невозможно. Поэтому для липофильных гормонов рецепторы находятся внутри клеток-мишеней, а для гидрофильных - рецепторы находятся в наружной мембране.

Для получения клеточного ответа на гормональный сигнал в случае гидрофильных молекул действует внутриклеточный механизм передачи сигнала. Это происходит с участием веществ, которых называют "ВТОРЫМИ ПОСРЕДНИКАМИ". Молекулы гормонов очень разнообразны по форме, а "вторые посредники" - нет.

Надёжность передачи сигнала обеспечивает очень высокое сродство гормона к своему белку-рецептору.

Что такое посредники, которые участвуют во внутриклеточной передаче гуморальных сигналов? Это циклические нуклеотиды (цАМФ и цГМФ), инозитолтрифосфат, кальций-связывающий белок - кальмодулин, ионы кальция, ферменты, участвующие в синтезе циклических нуклеотидов, а также протеинкиназы - ферменты фосфорилирования белков. Все эти вещества участвуют в регуляции активности отдельных ферментных систем в клетках-мишенях.

Разберем более подробно механизмы действия гормонов и внутриклеточных посредников. Существует два главных способа передачи сигнала в клетки-мишени от сигнальных молекул с мембранным механизмом действия:

^ 1. АДЕНИЛАТЦИКЛАЗНАЯ (ИЛИ ГУАНИЛАТЦИКЛАЗНАЯ) СИСТЕМЫ

2. ФОСФОИНОЗИТИДНЫЙ МЕХАНИЗМ

АДЕНИЛАТЦИКЛАЗНАЯ СИСТЕМА.

Основные компоненты: мембранный белок-рецептор, G-белок, фермент аденилатциклаза, гуанозинтрифосфат, протеинкиназы.

Кроме того, для нормального функционирования аденилатциклазной системы, требуется АТФ.

Схема аденилатциклазной системы представлена на рисунке:

Как видно из рисунка, белок-рецептор, G-белок, рядом с которым располагаются ГТФ и фермент (аденилатциклаза) встроены в мембрану клетки.

До момента действия гормона эти компоненты находятся в диссоциированнном состоянии, а после образования комплекса сигнальной молекулы с белком-рецептором происходят изменения конформации G-белка. В результате одна из субъединиц G-белка приобретает способность связываться с ГТФ.

Комплекс “G-белок-ГТФ” активирует аденилатциклазу. Аденилатциклаза начинает активно превращать молекулы АТФ в ц-АМФ.

Ц-АМФ обладает способностью активировать особые ферменты - протеинкиназы, которые катализируют реакции фосфорилирования различных белков с участием АТФ. При этом в состав белковых молекул включаются остатки фосфорной кислоты. Главным результатом этого процесса фосфорилирования является изменение активности фосфорилированного белка. В различных типах клеток фосфорилированию в результате активации аденилат-циклазной системы подвергаются белки с разной функциональной активностью. Например, это могут быть ферменты, ядерные белки, мембранные белки. В результате реакции фосфорилирования белки могут становятся функционально активными или неактивными.

Такие процессы будут приводить к изменениям скорости биохимических процессов в клетке-мишени.

Активация аденилатциклазной систтемы длится очень короткое время, потому что G-белок после связывания с аденилатциклазой начинает проявлять ГТФ-азную активность. После гидролиза ГТФ G-белок восстанавливает свою конформацию и перестает активировать аденилатциклазу. В результате прекращается реакция образования цАМФ.

Кроме участников аденилатциклазной системы в некоторых клетках-мишенях имеются белки-рецепторы, связанные с G-белками, которые приводят к торможению аденилатциклазы. При этом комплекс “GTP-G-белок” ингибирует аденилатциклазу.

Когда останавливается образование цАМФ, реакции фосфорилирования в клетке прекращаются не сразу: пока продолжают существовать молекулы цАМФ - будет продолжаться и процесс активации протеинкиназ. Для того, чтобы прекратить действие цАМФ, в клетках существует специальный фермент - фосфодиэстераза, который катализирует реакцию гидролиза 3",5"-цикло-АМФ до АМФ.

Некоторые вещества, обладающие ингибирующим действием на фосфодиэстеразу, (например, алкалоиды кофеин, теофиллин), способствуют сохранению и увеличению концентрации цикло-АМФ в клетке. Под действием этих веществ в организме продолжительность активации аденилатциклазной системы становится больше, то есть усиливается действие гормона.

Кроме аденилат-циклазной или гуанилатциклазной систем существует также механизм передачи информации внутри клетки-мишени с участием ионов кальция и инозитолтрифосфата.

Инозитолтрифосфат -это вещество, которое является производным сложного липида - инозитфосфатида. Оно образуется в результате действия специального фермента - фосфолипазы “С”, который активируется в результате конформационных изменений внутриклеточного домена мембранного белка-рецептора.

Этот фермент гидролизует фосфоэфирную связь в молекуле фосфатидил-инозитол-4,5-бисфосфата и в результате образуются диацилглицерин и инозитолтрифосфат.



Известно, что образование диацилглицерина и инозитолтрифосфата приводит к увеличению концентрации ионизированного кальция внутри клетки. Это приводит к активации многих кальций-зависимых белков внутри клетки, в том числе активируются различные протеинкиназы. И здесь, как и при активации аденилатциклазной системы, одной из стадий передачи сигнала внутри клетки является фосфорилирование белков, которое в приводит к физиологическому ответу клетки на действие гормона.

В работе фосфоинозитидного механизма передачи сигналов в клетке-мишени принимает участие специальный кальций-связывающий белок - кальмодулин. Это низкомолекулярный белок (17 кДа), на 30% состоящий из отрицательно заряженных аминокислот (Глу, Асп) и поэтому способный активно связывать Са +2 . Одна молекула кальмодулина имеет 4 кальций-связывающих участка. После взаимодействия с Са +2 происходят конформационные изменения молекулы кальмодулина и комплекс “Са +2 -кальмодулин” становится способным регулировать активность (аллостерически угнетать или активировать) многие ферменты - аденилатциклазу, фосфодиэстеразу, Са +2 ,Мg +2 -АТФазу и различные протеинкиназы.

В разных клетках при воздействии комплекса “Са +2 -кальмодулин” на изоферменты одного и того же фермента (например, на аденилатциклазу разного типа) в одних случаях наблюдается активация, а в других - ингибирование реакции образования цАМФ. Такие различные эффекты происходят потому, что аллостерические центры изоферментов могут включать в себя различные радикалы аминокислот и их реакция на действие комплекса Са +2 -кальмодулин будет отличаться.

Таким образом, в роли "вторых посредников" для передачи сигналов от гормонов в клетках-мишенях могут быть:

Циклические нуклеотиды (ц-АМФ и ц-ГМФ);

Ионы Са;

Комплекс “Са-кальмодулин”;

Диацилглицерин;

Инозитолтрифосфат

Механизмы передачи информации от гормонов внутри клеток-мишеней с помощью перечисленных посредников имеют общие черты:

1. одним из этапов передачи сигнала является фосфорилирование белков

2. прекращение активации происходит в результате специальных механизмов, инициируемых самими участниками процессов, - существуют механизмы отрицательной обратной связи.

Гормоны являются основными гуморальными регуляторами физиологических функций организма, и в настоящее время хорошо известны их свойства, процессы биосинтеза и механизмы действия.

Признаки, по которым гормоны отличаются от других сигнальных молекул:

1. Синтез гормонов происходит в особых клетках эндокринной системы. При этом синтез гормонов является основной функцией эндокринных клеток.

2. Гормоны секретируются в кровь, чаще в венозную, иногда в лимфу. Другие сигнальные молекулы могут достигать клеток-мишеней без секреции в циркулирующие жидкости.

3. Телекринный эффект (или дистантное действие) - гормоны действуют на клетки-мишени на больщом расстоянии от места синтеза.

Гормоны являются высокоспецифичными веществами по отношению к клеткам-мишеням и обладают очень высокой биологической активностью.

^ ХИМИЧЕСКАЯ СТРУКТУРА ГОРМОНОВ.

Строение гормонов бывает разным. В настоящее время описано и выделено около 160 различных гормонов из разных многоклеточных организмов. По химическому строению гормоны можно классифицировать по трем классам:

1. Белково-пептидные гормоны;

2. Производные аминокислот;

3. Стероидные гормоны.

К первому классу относятся гормоны гипоталамуса и гипофиза (в этих железах синтезируются пептиды и некоторые белки), а также гормоны поджелудочной и паращитовидной желез и один из гормонов щитовидной железы.

Ко второму классу относятся амины, которые синтезируются в мозговом слое надпочечников и в эпифизе, а также иод-содержащие гормоны щитовидной железы.

Третий класс - это стероидные гормоны, которые синтезируются в коре надпочечников и в половых железах. По количеству углеродных атомов стероиды отличаются друг от друга:

С 21 - гормоны коры надпочечников и прогестерон;

С 19 - мужские половые гормоны - андрогены и тестостерон;

С 18 - женские половые гормоны - эстрогены.

Общим для всех стероидов является наличие стеранового ядра, которое представлено на рисунке.

^ МЕХАНИЗМЫ ДЕЙСТВИЯ ЭНДОКРИННОЙ СИСТЕМЫ.

Эндокринная система - совокупность желез внутренней секреции и некоторых специализированных эндокринных клеток в составе тканей, для которых эндокринная функция не является единственной (например, поджелудочная железа обладает не только эндокринной, но и экзокринной функциями). Любой гормон является одним из ее участников и управляет определенными метаболическими реакциями. При этом внутри эндокринной системы существуют уровни регуляции - одни железы обладают способностью управлять другими.

^ ОБЩАЯ СХЕМА РЕАЛИЗАЦИИ ЭНДОКРИННЫХ ФУНКЦИЙ В ОРГАНИЗМЕ.


Данная схема включает в себя высшие уровни регуляции в эндокринной системе - гипоталамус и гипофиз, вырабатывающие гормоны, которые сами влияют на процессы синтеза и секреции гормонов других эндокринных клеток.

Из этой же схемы видно, что скорость синтеза и секреции гормонов может изменяться также под действием гормонов из других желез или в результате стимуляции негормональными метаболитами.

Мы видим также наличие отрицательных обратных связей (-) - торможение синтеза и(или) секреции после устранения первичного фактора, вызвавшего ускорение продукции гормона.

В результате содержание гормона в крови поддерживается на определенном уровне, который зависит от функционального состояния организма.

Кроме того, организм обычно создает небольшой резерв отдельных гормонов в крови (на представленной схеме этого не видно). Существование такого резерва возможно потому, что в крови многие гормоны находятся в связанном со специальными транспортными белками состоянии. Например, тироксин связан с тироксин-связывающим глобулином, а глюкокортикостероиды - с белком транскортином. Две формы таких гормонов - связанная с транспортными белками и свободная - находятся в крови в состоянии динамического равновесия.

Это значит, что при разрушении свободных форм таких гормонов будет происходить диссоциация связанной формы и концентрация гормона в крови будет поддерживаться на относительно постоянном уровне. Таким образом, комплекс какого-либо гормона с транспортным белком может рассматриваться как резерв этого гормона в организме.

Один из самых важных вопросов - это вопрос о том, какие изменения метаболических процессов наблюдаются под действием гормонов. Назовем этот раздел:

^ ЭФФЕКТЫ, КОТОРЫЕ НАБЛЮДАЮТСЯ В КЛЕТКАХ-МИШЕНЯХ ПОД ВЛИЯНИЕМ ГОРМОНОВ.

Очень важно, что гормоны не вызывают никаких новых метаболических реакций в клетке-мишени. Они лишь образуют комплекс с белком-рецептором. В результате передачи гормонального сигнала в клетке-мишени происходит включение или выключение клеточных реакций, обеспечивающих клеточный ответ.

При этом в клетке-мишени могут наблюдаются следующие основные эффекты:

1) Изменение скорости биосинтеза отдельных белков (в том числе белков-ферментов);

2) Изменение активности уже существующих ферментов (например, в результате фосфорилирования - как уже было показано на примере аденилатциклазной системы;

3) Изменение проницаемости мембран в клетках-мишенях для отдельных веществ или ионов (например, для Са +2).

Уже было сказано о механизмах узнавания гормонов - гормон взаимодействует с клеткой-мишенью только при наличии специального белка-рецептора, (строение рецепторов и их локализация в клетке уже разбирались). Добавим, что связывание гормона с рецептором зависит от физико-химических параметров среды - от рН и концентрации различных ионов.

Особое значение имеет количество молекул белка-рецептора на наружной мембране или внутри клетки-мишени. Оно изменяется в зависимости от физиологического состояния организма, при заболеваниях или под влиянием лекарственных средств. А это означает, что при разных условиях и реакция клетки-мишени на действие гормона будет различной.

Разные гормоны обладают различными физико-химическими свойствами и от этого зависит местонахождение рецепторов для определенных гормонов. Принято различать два механизма взаимодействия гормонов с клетками-мишенями:

Мембранный механизм - когда гормон связывается с рецептором на поверхности наружной мембраны клетки-мишени;

Внутриклеточный механизм - когда рецептор для гормона находится внутри клетки, т.е. в цитоплазме или на внутриклеточных мембранах.

Гормоны обладающие мембранным механизмом действия:

Все белковые и пептидные гормоны, а также амины (адреналин, норадреналин);

Внутриклеточным механизмом действия обладают:

Стероидные гормоны и производные аминокислот - тироксин и трийодтиронин.

Передача гормонального сигнала на клеточные структуры происходит по одному из механизмов. Например, через аденилатциклазную систему или с участием Са +2 и фосфоинозитидов. Это справедливо для всех гормонов с мембранным механизмом действия. Но стероидные гормоны с внутриклеточным механизмом действия, которые обычно регулируют скорость биосинтеза белков и имеют рецептор на поверхности ядра клетки-мишени, не нуждаются в дополнительных посредниках в клетке.

^ Особенности строения белков-рецепторов для стероидов.

Наиболее изученным является рецептор для гормонов коры надпочечников - глюкокортикостероидов(ГКС). В этом белке имеется три функциональных участка:

1 - для связывания с гормоном (С-концевой)

2 - для связывания с ДНК (центральный)

3 - антигенный участок, одновременно способный модулировать функцию промотора в процессе транскрипции (N-концевой).

Функции каждого участка такого рецептора ясны из их названий. Очевидно, что такое строение рецептора для стероидов позволяет им влиять на скорость транскрипции в клетке. Это подтверждается тем, что под действием стероидных гормонов избирательно стимулируется (или тормозится) биосинтез некоторых белков в клетке. В этом случае наблюдается ускорение (или замедление) образования мРНК. В результате изменяется количество синтезируемых молекул определенных белков (часто - ферментов) и меняется скорость метаболических процессов.

БИОСИНТЕЗ и СЕКРЕЦИЯ ГОРМОНОВ РАЗЛИЧНОГО СТРОЕНИЯ

^ Белково-пептидные гормоны.

В процессе образования белковых и пептидных гормонов в клетках эндокринных желез происходит образование полипептида, не обладающего гормональной активностью. Но такая молекула в своем составе имеет фрагмент(ы), содержащий(е) аминокислотную последовательность данного гормона. Такая белковая молекула называется пре-про-гормоном и имеет в своем составе (обычно на N-конце) структуру, которая называется лидерной или сигнальной последовательностью (пре-). Эта структура представлена гидрофобными радикалами и нужна для прохождения этой молекулы от рибосом через липидные слои мембран внутрь цистерн эндоплазматического ретикулума (ЭПР). При этом, во время перехода молекулы через мембрану в результате ограниченного протеолиза лидерная (пре-) последовательность отщепляется и внутри ЭПР оказывается прогормон. Затем через систему ЭПР прогормон транспортируется в комплекс Гольджи и здесь заканчивается созревание гормона. Вновь в результате гидролиза под действием специфических протеиназ отщепляется оставшийся (N-концевой) фрагмент (про-участок). Образованная молекула гормона, обладающая специфической биологической активностью поступает в секреторные пузырьки и накапливается до момента секреции.

При синтезе гормонов из числа сложных белков гликопротеинов (например, фолликулостимулирующего (ФСГ) или тиреотропного (ТТГ) гормонов гипофиза) в процессе созревания происходит включение углеводного компонента в структуру гормона.

Может происходить и внерибосомальный синтез. Так синтезируется трипептид тиролиберин (гормон гипоталамуса).

^ Гормоны - производные аминокислот

Из тирозина синтезируются гормоны мозгового слоя надпочечников АДРЕНАЛИН и НОРАДРЕНАЛИН, а также ЙОДСОДЕРЖАЩИЕ ГОРМОНЫ ЩИТОВИДНОЙ ЖЕЛЕЗЫ. В ходе синтеза адреналина и норадреналина тирозин подвергается гидроксилированию, декарбоксилированию и метилированию с участием активной формы аминокислоты метионина.

В щитовидной железе происходит синтез йодсодержащих гормонов трийодтиронина и тироксина (тетрайодтиронина). В ходе синтеза происходит йодирование фенольной группы тирозина. Особый интерес представляет метаболизм иода в щитовидной железе. Молекула гликопротеина тиреоглобулина (ТГ) имеет молекулярную массу более 650 кДа. При этом в составе молекулы ТГ около 10% массы - углеводы и до 1% - йод. Это зависит от количества иода в пище. В полипептиде ТГ - 115 остатков тирозина, которые иодируются окисленным с помощью специального фермента - тиреопероксидазы - йодом. Эта реакция называется органификацией йода и происходит в фолликулах щитовидной железы. В результате из остатков тирозина образуются моно- и ди-иодтирозин. Из них примерно 30% остатков в результате конденсации могутпревратитьться в три- и тетра- иодтиронины. Конденсация и иодирование идут с участием одного и того же фермента - тиреопероксидазы. Дальнейшее созревание гормонов щитовидной железы происходит в железистых клетках - ТГ поглощается клетками путем эндоцитоза и образуется вторичная лизосома в результате слияния лизосомы с поглощенным белком ТГ.

Протеолитические ферменты лизосом обеспечивают гидролиз ТГ и образование Т 3 и Т 4 , которые выделяются во внеклеточное пространство. А моно- и дииодтирозин деиодируются с помощью специального фермента деиодиназы и иод повторно может подвергаться органификации. Для синтеза тиреоидных гормонов характерным является механизм торможения секреции по типу отрицательной обратной связи (Т 3 и Т 4 угнетают выделение ТТГ).

^ Стероидные гормоны.

Стероидные гормоны синтезируются из холестерина (27 углеродных атомов), а холестерин синтезируется из ацетил-КоА.

Холестерин превращается в стероидные гормоны в результате следующих реакций:

Отщепление бокового радикала

Образование дополнительных боковых радикалов в результате реакции гидроксилирования с помощью специальных ферментов монооксигеназ (гидроксилаз) - чаще всего в 11-м, 17-м, и 21-м положениях (иногда в 18-м). На первом этапе синтеза стероидных гормонов сначала образуются предшественники (прегненолон и прогестерон), а затем другие гормоны (кортизол, альдостерон, половые гормоны). Из кортикостероидов могут образоваться альдостерон, минералокортикоиды.

^ СЕКРЕЦИЯ ГОРМОНОВ.

Регулируется со стороны ЦНС. Синтезированные гормоны накапливаются в секреторных гранулах. Под действием нервных импульсов или под влиянием сигналов из других эндокринных желез (тропные гормоны) в результате экзоцитоза происходит дегрануляция и выход гормона в кровь.

Механизмы регуляции в целом были представлены в схеме механизма реализации эндокринной функции.

^ ТРАНСПОРТ ГОРМОНОВ.

Транспорт гормонов определяется их растворимостью. Гормоны, имеющие гидрофильную природу (например, белково-пептидные гормоны) обычно транспортируются кровью в свободном виде. Стероидные гормоны, йодсодержащие гормоны щитовидной железы транспортируются в виде комплексов с белками плазмы крови. Это могут быть специфические транспортные белки (транспортные низкомолекулярные глобулины, тироксинсвязывающий белок; транспортирующий кортикостероиды белок транскортин) и неспецифический транспорт (альбумины).

Уже говорилось о том, что концентрация гормонов в кровяном русле очень низка. И может меняться в соответствии с физиологическим состоянием организма. При снижении содержания отдельных гормонов развивается состояние, характеризуемое как гипофункция соответствующей железы. И, наоборот, повышение содержания гормона - это гиперфункция.

Постоянство концентрации гормонов в крови обеспечивается также процессами катаболизма гормонов.

^ КАТАБОЛИЗМ ГОРМОНОВ.

Белково-пептидные гормоны подвергаются протеолизу, распадаются до отдельных аминокислот. Эти аминокислоты вступают дальше в реакции дезаминирования, декарбоксилирования, трансаминирования и распадаются до до конечных продуктов: NH 3 , CO 2 и Н 2 О.

Гормоны - производные аминокислот подвергаются окислительному дезаминированию и дальнейшему окислению до СО 2 и Н 2 О. Стероидные гормоны распадаются иначе. В организме нет ферментных систем, которые обеспечивали бы их распад. Что же происходит при их катаболизме?

В основном происходит модификация боковых радикалов. Вводятся дополнительные гидроксильные группы. Гормоны становятся более гидрофильными. Образуются молекулы, представляющие собой структуру стерана, у которого в 17-м положении находится кетогруппа. В таком виде продукты катаболизма стероидных половых гормонов выводятся с мочой и называются 17-КЕТОСТЕРОИДЫ. Определение их количества в моче и крови показывает содержание в организме половых гормонов.

Механизм действия тиреоидных гормонов на клетки-мишени

Гормоны T3 и Т4 являются жирорастворимыми гормонами, которые транспортируются через мембрану в цитоплазму клетки-мишени (шаг 1) и связываются с тиреоидными рецепторами в ядре (шаг 2). Образованный комплекс ГР взаимодействует с ДНК (шаг 3), стимулирует процессы транскрипции - образование мРНК (шаг 4) и как следствие - синтез новых белков на рибосомах (шаг 5), что приводит к изменению функции клетки-мишени (шаг 6) (рис. 6.13).

Роль гормонов щитовидной железы в процессах роста, психического развития и метаболизма

Влияние гормонов на рост. Тиреоидные гормоны, как синергисты гормона роста и соматомединов (ИФР-I), в физиологических концентрациях стимулируют рост и развитие скелета, путем потенциации синтеза белков в клетках-мишенях, в том числе в хондроцитах, скелетных мышцах.

Гормоны также способствуют оссификации костей - закрыванию эпифизарных ростовых зон. При их недостатке ростовые зоны долго не закрываются и развитие костей отстает от хронологического возраста.

Влияние гормонов на ЦНС. Развитие ЦНС у детей после рождения осуществляется с обязательным учас-

РИС. 6.13. Схема механизма действия тиреоидных гормонов и их основные влияния на функции организма. 1-6 - последовательность реакции гормона со структурами ядра и системой синтеза новых белков

тю тиреоидных гормонов. Они способствуют миелинизации и разветвления отростков нейронов головного мозга, развития психических функций. Наибольшее влияние проявляется на кору большого мозга, базальные ганглии, завиток. При отсутствии тиреоидных гормонов в перинатальном периоде возникает умственная отсталость - кретинизм. Существует очень короткий период времени после рождения, когда заместительная терапия гормонами может способствовать нормальному психическому развитию. Поэтому важно выявлять дефицит гормонов еще до рождения ребенка.

У взрослых людей нормальные психические функции, память, скорость рефлекторных реакций поддерживаются с участием тиреоидных гормонов непосредственно и косвенно - благодаря увеличению количества адренорецепторов в нейронах ЦНС.

Люди, у которых наблюдается избыток тиреоидных гормонов, становятся раздражительными, неугомонными, скорость мыслительных процессов ускоряется. У людей с недостатком тиреоидных процессов мыслительные процессы замедляются, память ухудшается, скорость рефлекторных реакций уменьшается.

Влияние гормонов на интенсивность метаболизма. Интенсивность метаболизма в состоянии покоя под влиянием гормонов возрастает, особенно это заметно в условиях избытка тиреоидных гормонов. Увеличение интенсивности метаболизма происходит почти во всех клетках-мишенях, за исключением головного мозга, яичек, лимфатических узлов, селезенки, аденогипофиза. Повышается поглощение кислорода, теплообразования.

Рост интенсивности метаболизма под действием тиреоидных гормонов может в своей основе иметь их влияние на синтез клеточного ферментного белка - натрий калиевой АТФ-азы, расположенной в мембранах клеток. В свою очередь, интенсивная работа натрий-калиевых насосов увеличивает интенсивность метаболизма.

Влияние гормонов на углеводный метаболизм. Тиреоидные гормоны в физиологических концентрациях потенцируют действие инсулина и способствуют гликогенеза и утилизации глюкозы.

При увеличении концентрации гормонов (во время стресса или фармакологическим путем) развивается гипергликемия за счет потенциации гликогенолиза, вызванного адреналином. Растет глюконеогенез, окисления глюкозы и ее всасывания в кишечнике вторичным активным транспортом.

Влияние гормонов на белковый метаболизм. Тиреоидные гормоны в физиологических концентрациях имеют анаболическим действием - стимулируют синтез белков, однако в больших концентрациях вызывают их катаболизм.

Влияние гормонов на жировой метаболизм. Тиреоидные гормоны стимулируют все аспекты жирового метаболизма - синтез липидов, их мобилизацию и использование. Увеличение их концентрации приводит к липолиза - уменьшение в крови концентрации триглицеридов, фосфолипидов и рост свободных жирных кислот и глицерина. Под влиянием гормонов повышается количество рецепторов липопротеинов низкой плотности (ЛПНП) и падает число холестероловых - в печени. Это приводит к увеличению выделения холестерина из организма, уменьшение его уровня в крови.

Метаболизм жирорастворимых витаминов также находится под влиянием тиреоидных гормонов - они необходимы для синтеза витамина А из каротина и превращение его в ретинен.

Влияние гормонов на автономную нервную систему заключается в том, что в клетках-мишенях увеличивается количество бета-адренорецепторов, которые синтезируются под влиянием тиреоидных гормонов, что приводит к усилению эффекта катехоламинов в эффекторных клетках.

Влияние гормонов на висцеральные системы. Система кровообращения. Частота сокращения сердца ускоряется благодаря увеличению количества β-адренорецепторов в пейсмекера и усиление влияния катехоламинов; сила сокращения - повышается в результате увеличения в кардиомиоцитах пула тяжелых цепей α-миозина, имеющих высокую активность АТФ-азы.

Система дыхания. Вентиляция легких углубляется, что является приспособительной реакцией к росту поглощения кислорода при увеличении интенсивности метаболизма.

Похожие публикации