При каких условиях образуется нейтронная звезда. "сверхтяжелая" нейтронная звезда отрицает теорию "свободных" кварков

Конечным продуктом эволюции звезд называют нейтронные звезды. Размерами и массой они просто поражают воображение! Имея размер до 20 км в диаметре, но массой как . Плотность вещества у нейтронной звезды во много раз превышает плотность атомного ядра. Появляются нейтронные звезды во время вспышек сверхновых.

Большинство известных нейтронных звезд имеют вес приблизительно 1,44 массы Солнца и равно пределу массы по Чандрасекара. Но теоретически возможно они могут иметь и до 2,5 масс . Самые тяжелые из открытых на сегодняшний момент имеет вес 1,88 Солнечной массы, и называется она – Vele X-1, и вторая с массой 1,97 Солнечной — PSR J1614-2230. При дальнейшем увеличение плотности звезда превращается уже в кварковую.

Магнитное поле у нейтронных звезд очень сильное и достигает 10 в12 степени Гс , у Земли поле равно 1Гс. Некоторые нейтронные звезды с 1990 года отождествлены как магнетары – это звезды у которых магнитные поля уходят далеко за пределы 10 в 14 степени Гс. При таких критических магнитных полях меняется и физика, появляются релятивистские эффекты (отклонение света магнитным полем), и поляризация физического вакуума. Нейтронные звезды были предсказаны, а уже за тем открыты.

Первые предположения были сделаны Вальтером Бааде и Фрицем Цвикки в 1933 году , они сделали предположение, что нейтронные звезды рождаются в результате взрыва сверхновой. По расчетам излучение этих звезд очень маленькое, его просто невозможно обнаружить. Но в 1967 году аспирантка Хьюиша Джоселин Белл открыла , который испускал регулярные радиоимпульсы.

Такие импульсы получались в результате быстрого вращения объекта, но обычные звезды от столь сильного вращения просто разлетелись бы, и поэтому решили, что это нейтронные звезды.

Пульсары в порядке убывания скорости вращения:

Эжектор это — радиопульсар. Малая скорость вращения и сильное магнитное поле. У такого пульсара магнитное поле и звезда вращается вместе с равной угловой скоростью. В определенный момент линейная скорость поля достигает скорости света и начинает превосходить ее. Дальше уже дипольное поле не может существовать, и линии напряженности поля рвутся. Двигаясь по этим линиям заряженные частицы достигают обрыва и срываются, таким образом они покидают нейтронную звезду и могут улетать на любое расстояние вплоть до бесконечности. Поэтому эти пульсары называют эжекторы (отдавать, извергать)- радиопульсары.

Пропеллер , у него уже нет такой скорости вращения как у эжектора, чтобы разгонять частицы до послесветовой скорости, по-этому быть радиопульсаром он не может. Но скорость вращения у него еще очень высока, вещество, захваченное магнитным полем не может еще упасть на звезду, то есть аккреция не происходит. Такие звезды изучены очень плохо, потому как наблюдать их практически невозможно.

Аккретор это — рентгеновский пульсар. Звезда вращается уже не так быстро и вещество начинает падать на звезду, падая по линия магнитного поля. Падая в районе полюса на твердую поверхность вещество разогревается до десятков миллионов градусов, в результате получается рентгеновское излучение. Пульсации происходя в результате того, что звезда еще вращается, а так как область падения вещества всего около 100 метров, то пятно это периодически пропадает из вида.

В астрофизике, как, впрочем, и в любой другой отрасли науки, наиболее интересны эволюционные проблемы, связанные с извечными вопросами «что было?» и «что будет?». Что случится со звездной массой, примерно равной массе нашего Солнца, мы уже знаем. Такая звезда, пройдя через стадию красного гиганта , станет белым карликом . Белые карлики на диаграмме Герцшпрунга - Рессела лежат в стороне от главной последовательности.

Белые карлики - конец эволюции звезд солнечной массы. Они являются своеобразным эволюционным тупиком. Медленное и спокойное угасание - конец пути всех звезд с массой, меньше солнечной. А что можно сказать о более массивных звездах? Мы увидели, что их жизнь полна бурными событиями. Но возникает естественный вопрос о том, чем же заканчиваются чудовищные катаклизмы, наблюдаемые в виде вспышек сверхновых?

В 1054 году на небе вспыхнула звезда-гостья. Она была видна на небе даже днем и погасла лишь через несколько месяцев. Сегодня мы видим остатки этой звездной катастрофы в виде яркого оптического объекта, обозначенного в каталоге туманностей Месье под номером M1. Это знаменитая Крабовидная туманность - остаток взрыва сверхновой.

В 40-х годах нашего столетия американский астроном В. Бааде начал изучать центральную часть «Краба» для того, чтобы попытаться отыскать в центре туманности звездный остаток от взрыва сверхновой. Кстати говоря, название «краб» этому объекту дал в XIX веке английский астроном лорд Росс. Бааде нашел кандидата на звездный остаток в виде звездочки 17т.

Но астроному не повезло, у него не было подходящей техники для детального исследования, и поэтому он не смог заметить, что звездочка эта мерцает, пульсирует. Будь период этих пульсаций яркости не 0,033 секунды, а, скажем, несколько секунд, Бааде, несомненно, заметил бы это, и тогда честь открытия первого пульсара принадлежала бы не А. Хьюишу и Д. Белл.

Лет за десять до того, как Бааде направил свой телескоп в центр Крабовидной туманности , физики-теоретики начали исследовать состояние вещества при плотностях, превышающих плотность белых карликов (106 - 107 г/см3). Интерес к этому вопросу возник в связи с проблемой конечных стадий эволюции звезд. Интересно, что одним из соавторов этой идеи был все тот же Бааде, который как раз и связал сам факт существования нейтронной звезды с взрывом сверхновой.

Если вещество сжимается до плотностей больших, чем плотность белых карликов, начинаются так называемые процессы нейтронизации. Чудовищное давление внутри звезды «вгоняет» электроны в атомные ядра. В обычных условиях ядро, поглотившее электроны, будет неустойчивым, поскольку оно содержит избыточное количество нейтронов. Однако в компактных звездах это не так. С увеличением плотности звезды электроны вырожденного газа постепенно поглощаются ядрами, и мало-помалу звезда превращается в гигантскую нейтронную звезду - каплю. Вырожденный электронный газ сменяется вырожденным нейтронным газом с плотностью 1014-1015 г/см3. Другими словами, плотность нейтронной звезды в миллиарды раз больше плотности белого карлика.

Долгое время эта чудовищная конфигурация звезды считалась игрой ума теоретиков. Понадобилось более тридцати лет, чтобы природа подтвердила это выдающееся предсказание. В те же 30-е годы было сделано еще одно важное открытие, которое оказало решающее влияние на всю теорию звездной эволюции. Чандрасекар и Л. Ландау установили, что для звезды, исчерпавшей источники ядерной энергии, существует некоторая предельная масса, когда звезда еще сохраняет устойчивость. При этой массе давление вырожденного газа еще в состоянии противостоять силам гравитации. Как следствие у массы вырожденных звезд (белые карлики, нейтронные звезды) существует конечный предел (предел Чандрасекара), превышение которого вызывает катастрофическое сжатие звезды, ее коллапс.

Отметим, что, если масса ядра звезды заключена между 1,2 М и 2,4 М, конечным «продуктом» эволюции такой звезды должна быть нейтронная звезда. При массе ядра менее 1,2 М эволюция приведет в конце концов к рождению белого карлика.

Что же представляет собой нейтронная звезда? Массу ее мы знаем, знаем также, что она состоит в основном из нейтронов, размеры которых также известны. Отсюда легко определить радиус звезды. Он оказывается близким к... 10 километрам! Определить радиус такого объекта действительно несложно, но очень трудно наглядно представить себе, что массу, близкую к массе Солнца, можно разместить в объекте, диаметр которого чуть больше длины Профсоюзной улицы в Москве. Это гигантская ядерная капля, сверхядро элемента, который не укладывается ни в какие периодические системы и имеет неожиданное, своеобразное строение.

Вещество нейтронной звезды обладает свойствами сверхтекучей жидкости! В этот факт на первый взгляд трудно поверить, но это так. Сжатое до чудовищных плотностей вещество напоминает в какой-то мере жидкий гелий. К тому же не следует забывать, что температура нейтронной звезды - порядка миллиарда градусов, а, как мы знаем, сверхтекучесть в земных условиях проявляется лишь при сверхнизких температурах.

Правда, для поведения самой нейтронной звезды температура особой роли не играет, поскольку устойчивость ее определяется давлением вырожденного нейтронного газа - жидкости. Строение нейтронной звезды во многом напоминает строение планеты. Помимо «мантии», состоящей из вещества с удивительными свойствами сверхпроводящей жидкости, такая звезда имеет тонкую твердую кору толщиной примерно в километр. Предполагается, что кора обладает своеобразной кристаллической структурой. Своеобразной потому, что в отличие от известных нам кристаллов, где строение кристалла зависит от конфигурации электронных оболочек атома, в коре нейтронной звезды атомные ядра лишены электронов. Поэтому они образуют решетку, напоминающую кубические решетки железа, меди, цинка, но, соответственно при неизмеримо более высоких плотностях. Далее идет мантия, о свойствах которой мы уже говорили. В центре нейтронной звезды плотности достигают 1015 граммов в кубическом сантиметре. Другими словами, чайная ложка вещества такой звезды весит миллиарды тонн. Предполагается, что в центре нейтронной звезды происходит непрерывное образование всех известных в ядерной физике, а также еще не открытых экзотических элементарных частиц.

Нейтронные звезды довольно быстро остывают. Оценки показывают, что за первые десять - сто тысяч лет температура падает от нескольких миллиардов до сотен миллионов градусов. Нейтронные звезды быстро вращаются, и это приводит к целому ряду очень интересных следствий. Кстати говоря, именно малые размеры звезды позволяют ей при быстром вращении оставаться целой. Будь ее диаметр не 10, а, скажем, 100 километров, она была бы просто разорвана центробежными силами.

Мы уже говорили об интригующей истории открытия пульсаров. Сразу же была высказана мысль, что пульсар - быстро вращающаяся нейтронная звезда, поскольку из всех известных звездных конфигураций лишь она одна могла бы остаться устойчивой, вращаясь с большой.скоростью. Именно изучение пульсаров позволило прийти к замечательному выводу о том, что открытые «на кончике пера» теоретиками нейтронные звезды действительно существуют в природе и возникают они в результате вспышек сверхновых. Трудности их обнаружения в оптическом диапазоне очевидны, поскольку из-за малого диаметра большинство нейтронных звезд нельзя увидеть в самые мощные телескопы, хотя, как мы видели, здесь есть и исключения - пульсар в Крабовидной туманности .

Итак, астрономы открыли новый класс объектов - пульсары , быстро вращающиеся нейтронные звезды. Возникает естественный вопрос: что является причиной столь быстрого вращения нейтронной звезды, почему, собственно говоря, она должна крутиться вокруг своей оси с огромной скоростью?

Причина этого явления проста. Мы хорошо знаем, как может увеличить скорость вращения фигурист, когда прижимает руки к телу. При этом он использует закон сохранения момента количества движения. Этот закон не нарушается никогда, и именно он при взрыве сверхновой во много раз увеличивает скорость вращения ее остатка - пульсара.

Действительно, в процессе коллапса звезды ее масса (то, что осталось после взрыва) не меняется, а радиус уменьшается примерно в сто тысяч раз. Но момент количества движения, равный произведению экваториальной скорости вращения на массу и на радиус, остается прежним. Масса не меняется, следовательно, скорость должна увеличиваться в те же сто тысяч раз.

Рассмотрим простой пример. Наше Солнце довольно медленно вращается вокруг собственной оси. Период этого вращения составляет примерно 25 суток. Так вот, если бы Солнце вдруг стало нейтронной звездой, период его вращения уменьшился бы до одной десятитысячной доли секунды.

Второе важное следствие из законов сохранения состоит в том, что нейтронные звезды должны быть очень сильно намагничены. В самом деле, в любом природном процессе мы не можем просто так взять и уничтожить магнитное поле (если оно уже существует). Магнитные силовые линии навсегда связаны с обладающим прекрасной электропроводностью веществом звезды. Величина магнитного потока на поверхности звезды равна произведению величины напряженности магнитного поля на квадрат радиуса звезды. Эта величина строго постоянна. Вот почему при сжатии звезды магнитное поле должно очень сильно увеличиться. Остановимся на этом явлении несколько подробнее, поскольку именно оно обусловливает многие удивительные свойства пульсаров.

На поверхности нашей Земли можно измерить напряженность магнитного поля. Мы получим небольшую величину около одного гаусса. В хорошей физической лаборатории можно получить магнитные поля величиной в миллион гаусс. На поверхности белых карликов напряженность магнитного поля достигает ста миллионов гаусс. Вблизи поля еще сильнее - до десяти миллиардов гаусс. Но на поверхности нейтронной звезды природа достигает абсолютного рекорда. Здесь напряженность поля может составлять сотни тысяч миллиардов гаусс. Пустота в литровой банке, содержащей внутри себя такое поле, весила бы около тысячи тонн.

Столь сильные магнитные поля не могут не повлиять (разумеется, в сочетании с гравитационным полем) на характер взаимодействия нейтронной звезды с окружающим веществом. Ведь мы пока еще не говорили о том, почему пульсары обладают огромной активностью, почему они излучают радиоволны. Да и не только радиоволны. На сегодняшний день астрофизикам хорошо известны рентгеновские пульсары, наблюдающиеся только в двойных системах, гамма-источники с необычными свойствами, так называемые рентгеновские барстеры.

Чтобы представить себе различные механизмы взаимодействия нейтронной звезды с веществом, обратимся к общей теории медленного изменения режимов взаимодействия нейтронных звезд с окружающей средой. Рассмотрим вкратце основные этапы такой эволюции. Нейтронные звезды - остатки вспышек сверхновых - вначале очень быстро вращаются с периодом 10 -2 - 10 -3 секунды. При таком быстром вращении звезда испускает радиоволны, электромагнитное излучение, частицы.

Одним иа наиболее удивительных свойств пульсаров является чудовищная мощность их излучения, в миллиарды раз превосходящая мощность излучения звездных недр. Так, например, мощность радиоизлучения пульсара в «Крабе» достигает 1031 эрг/сек, в оптике- 1034 эрг/сек, что гораздо больше, чем мощность излучения Солнца. Еще больше излучает этот пульсар в рентгеновском и гамма-диапазонах.

Как же устроены эти природные генераторы энергии? Все радиопульсары обладают одним общим свойством, которое и послужило ключом к разгадке механизма их действия. Это свойство заключается в том, что период излучения импульсов не остается постоянным, он медленно, увеличивается. Стоит отметить, что и это свойство вращающихся нейтронных звезд было сначала предсказано теоретиками, а затем очень быстро подтверждено экспериментально. Так, в 1969 году было установлено, что период излучения импульсов пульсара в «Крабе» растет на 36 миллиардных долей секунды в день.

Не будем сейчас говорить, каким образом измеряются столь малые промежутки времени. Для нас важен сам факт увеличения периода между импульсами, который, кстати говоря, дает возможность оценивать и возраст пульсаров. Но все-таки почему пульсар излучает импульсы радиоизлучения? Полностью это явление не объяснено в рамках какой-либо законченной теории. Но качественную картину явления можно тем не менее обрисовать.

Все дело в том, что ось вращения нейтронной звезды не совпадает с ее магнитной осью. Из электродинамики хорошо известно, что если вращать в вакууме магнит вокруг оси, которая не совпадает с магнитной, то возникнет электромагнитное излучение как раз на частоте вращения магнита. Одновременно будет тормозиться скорость вращения магнита. Это понятно из общих соображений, поскольку, если бы торможения не происходило, мы имели бы просто-напросто вечный двигатель.

Таким образом, наш передатчик черпает энергию радиоимпульсов из вращения звезды, а магнитное поле ее является как бы приводным ремнем машины. Реальный процесс намного сложнее, поскольку вращающийся в вакууме магнит лишь частично является аналогом пульсара. Ведь нейтронная звезда вращается отнюдь не в вакууме, она окружена мощной магнитосферой, плазменным облаком, а это хороший проводник, вносящий свои коррективы в нарисованную нами простую и довольно схематичную картину. В результате взаимодействия магнитного поля пульсара с окружающей его магнитосферой и образуются узкие пучки направленного излучения, которое при благоприятном «расположении светил» может наблюдаться в различных участках галактики, в частности на Земле.

Быстрое вращение радиопульсара в начале его жизни вызывает не только радиоизлучение. Значительная часть энергии уносится также релятивистскими частицами. По мере уменьшения скорости вращения пульсара давление излучения падает. До этого излучение отбрасывало плазму от пульсара. Теперь же окружающее вещество начинает падать на звезду и гасит ее излучение. Этот процесс может быть особенно эффективен, если пульсар входит в двойную систему. В такой системе, особенно если она достаточно тесная, пульсар перетягивает на себя вещество «нормального» компаньона.

Если пульсар молод и полон сил, его радиоизлучение еще в состоянии «пробиться» к наблюдателю. Но старый пульсар уже не в состоянии бороться с аккрецией, и она «тушит» звезду. По мере замедления вращения пульсара начинают проявляться и другие замечательные процессы. Поскольку гравитационное поле у нейтронной звезды очень мощное, при аккреции вещества выделяется значительное количество энергии в виде рентгеновского излучения. Если в двойной системе нормальный компаньон отдает пульсару заметное количество материи, примерно 10 -5 - 10 -6 М в год, нейтронная звезда будет наблюдаться не как радиопульсар, а как рентгеновский пульсар.

Но это еще не все. В некоторых случаях, когда магнитосфера нейтронной звезды находится близко к ее поверхности, вещество начинает там накапливаться, образуя своего рода оболочку звезды. В этой оболочке могут создаться благоприятные условия для прохождения термоядерных реакций, и тогда мы можем увидеть на небе рентгеновский барстер (от английского слова burst - «вспышка»).

Собственно говоря, этот процесс не должен выглядеть для нас неожиданным, мы уже говорили о нем применительно к белым карликам. Однако условия на поверхности белого карлика и нейтронной звезды сильно отличаются, и поэтому рентгеновские барстеры однозначно связываются именно с нейтронными звездами. Термо ядерные взрывы наблюдаются нами в виде рентгеновских вспышек и, быть может, гамма-всплесков. И действительно, некоторые гамма-всплески могут быть, по всей видимости, обусловлены термоядерными взрывами на поверхности нейтронных звезд.

Но вернемся к рентгеновским пульсарам. Механизм их излучения, естественно, совершенно иной, нежели у барстеров. Ядерные источники энергии здесь уже не играют никакой роли. Кинетическая энергия самой нейтронной звезды также не может быть согласована с данными наблюдений.

Возьмем для примера рентгеновский источник Центавр Х-1. Его мощность составляет 10 эрг/сек. Стало быть, запаса этой энергии могло бы хватить только на один год. Кроме того, вполне очевидно, что период вращения звезды в этом случае должен был бы увеличиваться. Однако у многих рентгеновских пульсаров в отличие от радиопульсаров период между импульсами со временем уменьшается. Значит, здесь дело не в кинетической энергии вращения. Как же работают рентгеновские пульсары?

Мы помним, что проявляются они в двойных системах. Именно там процессы аккреции особенно эффективны. Скорость падения вещества на нейтронную звезду может достигать одной трети скорости света (100 тысяч километров в секунду). Тогда один грамм вещества выделит энергию 1020 эрг. А чтобы обеспечить энерговыделение в 1037 эрг/сек, необходимо, чтобы поток вещества на нейтронную звезду составлял 1017 граммов в секунду. Это, в общем-то, не очень много, около одной тысячной массы Земли в год.

Поставщиком материала может быть оптический компаньон. С части поверхности его по направлению к нейтронной звезде будет непрерывно течь струя газа. Она и будет снабжать и энергией, и веществом аккреционный диск, образующийся вокруг нейтронной звезды.

Поскольку у нейтронной звезды огромное магнитное поле, газ будет «стекать» по магнитным силовым линиям к полюсам. Именно там, в сравнительно небольших «пятнах» размером порядка всего лишь одного километра, разыгрываются грандиозные по своим масштабам процессы рождения мощнейшего рентгеновского излучения. Излучают рентген релятивистские и обычные электроны, движущиеся в магнитном поле пульсара. Падающий на него газ может и «подпитывать» его вращение. Поэтому-то именно у рентгеновских пульсаров наблюдается в ряде случаев уменьшение периода вращения.

Рентгеновские источники, входящие в двойные системы,- одно из самых замечательных явлений в космосе. Их немного, вероятно, не более сотни в нашей Галактике, но значение их огромно не только с точки зрения , в частности для понимания I типа. Двойные системы обеспечивают наиболее естественный и эффективный путь перетекания вещества от звезды к звезде, и именно здесь (за счет сравнительно быстрого изменения массы звезд) мы можем столкнуться с различными вариантами «ускоренной» эволюции.

Еще одно интересное соображение. Мы знаем, как трудно, практически невозможно оценить массу одиночной звезды. Но поскольку нейтронные звезды входят в двойные системы, может оказаться, что рано или поздно удастся эмпирически (а это чрезвычайно важно!) определить предельную массу нейтронной звезды, а также получить прямую информацию о ее происхождении.

Объекты, о которых пойдет речь в статье, были открыты случайно, хотя ученые Ландау Л. Д. и Оппенгеймер Р. предсказали их существование еще в 1930 году. Речь идет о нейтронных звездах. О характеристиках и особенностях этих космических светил и пойдет речь в статье.

Нейтрон и одноименная звезда

После предсказания в 30-х годах XX столетия о существовании нейтронных звезд и после того, как был открыт нейтрон (1932 г.), Бааде В. вместе с Цвики Ф. в 1933 году на съезде физиков в Америке заявили о возможности образования объекта под названием нейтронная звезда. Это космическое тело, возникающее в процессе взрыва сверхновых.

Однако все выкладки были только теоретическими, так как доказать на практике такую теорию не представлялось возможным из-за отсутствия соответствующего астрономического оборудования и слишком малых размеров нейтронной звезды. Но в 1960 году стала развиваться рентгеновская астрономия. Тогда, совершенно неожиданно, нейтронные звезды были открыты благодаря радионаблюдениям.

Открытие

1967 год стал знаменательным в этой области. Белл Д., будучи аспиранткой Хьюиша Э., смогла открыть космический объект - нейтронную звезду. Это испускающее постоянное излучение радиоволновых импульсов тело. Феномен сравнили с космическим радиомаяком из-за узкой направленности радиолуча, который исходил от вращающегося очень быстро объекта. Дело в том, что любая другая стандартная звезда не смогла бы сохранить свою целостность при такой высокой вращательной скорости. На это способны только нейтронные звёзды, среди которых первой открытой стал пульсар PSR B1919+21.

Судьба массивных звезд очень отличается от маленьких. В таких светилах наступает момент, когда давление газа уже не уравновешивает гравитационные силы. Такие процессы приводят к тому, что звезда начинает неограниченно сжиматься (коллапсировать). При массе звезды, превышающей солнечную в 1,5-2 раза, коллапс будет неизбежным. В процессе сжатия газ внутри звездного ядра нагревается. Поначалу все происходит очень медленно.

Коллапс

Достигая определенной температуры, протон способен превратится в нейтрино, которые сразу покидают звезду, унося с собой энергию. Коллапс будет усиливаться, пока все протоны не перейдут в нейтрино. Таким образом образуется пульсар, или нейтронная звезда. Это коллапсирующее ядро.

Внешняя оболочка при образовании пульсара получает энергию сжатия, которая после будет со скоростью не в одну тысячу км/сек. выброшена в пространство. При этом образуется ударная волна, способная привести к новому звездообразованию. У такой в миллиарды раз превысит первоначальную. После такого процесса, в течение времени от одной недели до месяца, звезда излучает свет в количестве, превышающем целую галактику. Такое небесное светило называют сверхновой звездой. Ее взрыв приводит к образованию туманности. В центре туманности находится пульсар, или нейтронная звезда. Это так называемый потомок звезды, которая взорвалась.

Визуализация

В глубинах всего пространства космоса происходят удивительные события, среди которых - столкновение звезд. Благодаря сложнейшей математической модели ученым НАСА удалось визуализировать буйство огромного количества энергии и вырождение материи, задействованной в этом. Перед глазами наблюдателей разыгрывается невероятно мощная картина космического катаклизма. Вероятность того, что произойдет столкновение нейтронных звезд, - очень велика. Встреча двух таких светил в пространстве начинается с их запутывания в гравитационных полях. Обладая огромной массой, они, так сказать, обмениваются объятиями. При столкновении происходит сильнейший взрыв, сопровождающийся невероятно мощным выбросом гамма-излучения.

Если рассматривать нейтронную звезду отдельно, то это остатки после взрыва сверхновой, у которой жизненный цикл заканчивается. Масса доживающей свой век звезды превышает солнечную в 8-30 раз. Вселенная часто озаряется взрывами сверхновых светил. Вероятность того, что нейтронные светила встретятся во вселенной, достаточно высока.

Встреча

Интересно, что при встрече двух звезд развитие событий нельзя предвидеть однозначно. Один из вариантов описывает математическая модель, предложенная учеными НАСА из Центра космических полетов. Процесс начинается с того, что две нейтронные звезды располагаются друг от друга в космическом пространстве на расстоянии, приблизительно равном 18 км. По космическим меркам нейтронные звезды с массой в 1,5-1,7 раз больше солнечной считаются крошечными объектами. Их диаметр колеблется в пределах 20 км. Благодаря такому несоответствию объема и массы нейтронная звезда является обладательницей сильнейшего гравитационного и магнитного поля. Только представьте себе: чайная ложка материи нейтронного светила весит как вся гора Эверест!

Вырождение

Невероятно высокие гравитационные волны нейтронной звезды, действующие вокруг нее, являются причиной того, что материя не может находиться в виде отдельных атомов, которые начинают разрушаться. Сама же материя переходит в вырожденную нейтронную, в которой строение самих нейтронов не даст возможности перейти звезде в сингулярность и затем - в черную дыру. Если же масса вырожденной материи начнет увеличиваться по причине добавления к ней, то гравитационные силы будут в состоянии преодолеть сопротивление нейтронов. Тогда ничто не будет препятствовать разрушению структуры, образовавшейся в результате столкновения нейтронных звездных объектов.

Математическая модель

Изучая эти небесные объекты, ученые пришли к выводу, что плотность нейтронной звезды сравнима с плотностью вещества в ядре атома. Ее показатели находятся в рамках от 1015 кг/м³ до 1018 кг/м³. Таким образом, самостоятельное существование электронов и протонов невозможно. Вещество звезды практически состоит из одних нейтронов.

Созданная математическая модель демонстрирует, как мощные периодические гравитационные взаимодействия, возникающие между двумя нейтронными звездами, прорывают тонкую оболочку двух звезд и выбрасывают в пространство, окружающее их, огромное количество излучения (энергии и материи). Процесс сближения происходит очень быстро, буквально за доли секунды. В результате столкновения образуется тороидальное кольцо материи с новорожденной черной дырой в центре.

Важное значение

Моделирование таких событий имеет важное значение. Благодаря им ученые смогли понять, как образуются нейтронная звезда и черная дыра, что происходит при столкновении светил, каким образом зарождаются и умирают сверхновые и многие другие процессы космического пространства. Все эти события являются источником появления самых тяжелых химических элементов во Вселенной, еще более тяжелых, чем железо, неспособных образоваться иным путем. Это говорит об очень важном значении нейтронных звезд во всей Вселенной.

Вращение небесного объекта огромного объема вокруг своей оси поражает. Такой процесс вызывает коллапс, но при всем этом масса нейтронной звезды практически остается прежней. Если представить себе, что звезда будет продолжать сжиматься, то, согласно закону сохранения момента вращения, угловая скорость вращения звезды увеличится до невероятных значений. Если для полного оборота звезде нужно было примерно 10 суток, то в результате она будет проделывать тот же оборот за 10 миллисекунд! Это невероятные процессы!

Развитие коллапса

Ученые занимаются исследованием таких процессов. Возможно, мы станем свидетелями новых открытий, которые пока для нас кажутся фантастикой! Но что может быть, если представить себе развитие коллапса дальше? Чтобы легче было представить, возьмем для сравнения пару нейтронная звезда/земля и их гравитационные радиусы. Так вот, при непрерывном сжатии звезда может дойти до такого состояния, когда нейтроны начнут превращаться в гипероны. Радиус небесного тела станет настолько маленьким, что перед нами окажется комок сверхпланетного тела с массой и полем тяготения звезды. Это можно сравнить с тем, как если бы земля стала по размерам равной мячику для пинг-понга, а гравитационный радиус нашего светила, Солнца, был бы равен 1 км.

Если представить, что маленький комок звездного вещества обладает притяжением огромной звезды, то он способен удержать возле себя целую планетарную систему. Но и плотность у такого небесного тела слишком высока. Через него постепенно перестают пробиваться лучи света, тело как бы потухает, оно перестает быть видимым для глаза. Не меняется лишь поле тяготения, которое предупреждает о том, что здесь находится гравитационная дыра.

Открытия и наблюдения

Впервые от слияния нейтронных звезд были зафиксированы совсем недавно: 17 августа. Два года назад было зарегистрировано слияние черных дыр. Это настолько важное событие в области астрофизики, что наблюдения одновременно вели 70 космических обсерваторий. Ученые смогли убедиться в правоте гипотез о гамма-всплесках, удалось наблюдать описанный ранее теоретиками синтез тяжелых элементов.

Такое повсеместное наблюдение за гамма-всплеском, гравитационными волнами и видимым светом дало возможность определить область на небе, в которой произошло знаменательное событие, и галактику, где были эти звезды. Это NGC 4993.

Безусловно, астрономы давно наблюдают за короткими Но до сих пор они не могли точно сказать об их происхождении. За основной теорией была версия слияния нейтронных звезд. Теперь она подтвердилась.

Для описания нейтронной звезды с помощью математического аппарата ученые обращаются к уравнению состояния, связывающему плотность с давлением вещества. Однако таких вариантов целое множество, и ученые просто не знают, какой же из существующих будет правильным. Есть надежда, что гравитационные наблюдения помогут разрешить этот вопрос. На данный момент сигнал не дал однозначного ответа, но уже помогает оценить форму звезды, зависящую от гравитационного притяжения ко второму светилу (звезде).

>

В центре галактики М82 можно увидеть пульсар (розовый)

Изучите пульсары и нейтронные звезды Вселенной: описание и характеристика с фото и видео, строение, вращение, плотность, состав, масса, температура, поиск.

Пульсары

Пульсары представляют собою сферические компактные объекты, размеры которых не выходят за границу большого города. Удивительно то, что при таком объеме они по массивности превосходят солнечную. Их используют для исследования экстремальных состояний материи, обнаружения планет за пределами нашей системы и измерения космических дистанций. Кроме того, они помогли найти гравитационные волны, указывающие на энергетические события, вроде столкновений сверхмассивных . Впервые обнаружены в 1967 году.

Что такое пульсар?

Если высматривать на небе пульсар, то кажется обычной мерцающей звездой, следующей по определенному ритму. На самом деле, их свет не мерцает и не пульсирует, и они не выступают звездами.

Пульсар вырабатывает два стойких узких световых луча в противоположных направлениях. Эффект мерцания создается из-за того, что они вращаются (принцип маяка). В этот момент луч попадает на Землю, а затем снова поворачивается. Почему это происходит? Дело в том, что световой луч пульсара обычно не совмещается с его осью вращения.

Если мигание создается вращением, то скорость импульсов отображает ту, с которой вращается пульсар. Всего было найдено 2000 пульсаров, большая часть их которых делает один оборот в секунду. Но есть примерно 200 объектов, умудряющихся за то же время совершать по сотне оборотов. Наиболее быстрые называют миллисекундными, потому что их количество оборотов за секунду приравнивается к 700.

Пульсары нельзя считать звездами, по крайней мере «живыми». Это скорее нейтронные звезды, формирующиеся после того, как у массивной звезды заканчивается топливо, и она разрушается. В результате создается сильный взрыв – сверхновая, а оставшийся плотный материал трансформируется в нейтронную звезду.

Диаметр пульсаров во Вселенной достигает 20-24 км, а по массе вдвое больше солнечной. Чтобы вы понимали, кусочек такого объекта размером с сахарный куб будет весить 1 миллиард тонн. То есть, у вас в руке помещается нечто весом с Эверест! Правда есть еще более плотный объект – черная дыра. Наиболее массивная достигает 2.04 солнечной массы.

Пульсары обладают сильным магнитным полем, которое от 100 миллионов до 1 квадриллиона раз сильнее земного. Чтобы нейтронная звезда начала излучать свет подобный пульсару, она должна обладать правильным соотношением напряженности магнитного поля и частоты вращения. Случается так, что луч радиоволн может не пройти через поле зрения наземного телескопа и остаться невидимым.

Радиопульсары

Астрофизик Антон Бирюков о физике нейтронных звезд, замедлении вращения и открытии гравитационных волн:

Почему пульсары вращаются?

Медлительность для пульсара – одно вращение в секунду. Наиболее быстрые разгоняются до сотен оборотов в секунду и называются миллисекундными. Процесс вращения происходит, потому что звезды, из которых они образовались, также вращались. Но, чтобы добраться до такой скорости, нужен дополнительный источник.

Исследователи полагают, что миллисекундные пульсары сформировались при помощи воровства энергии у соседа. Можно заметить наличие чужого вещества, которое увеличивает скорость вращения. И это не очень хорошо для пострадавшего компаньона, который однажды может полностью поглотиться пульсаром. Такие системы называют черными вдовами (в честь опасного вида паука).

Пульсары способны излучать свет в нескольких длинах волн (от радио до гамма-лучей). Но как они это делают? Ученые пока не могут найти точного ответа. Полагают, что за каждую длину волн отвечает отдельный механизм. Маякоподобные лучи состоят из радиоволн. Они отличаются яркостью и узостью и напоминают когерентный свет, где частицы формируют сфокусированный луч.

Чем быстрее вращение, тем слабее магнитное поле. Но скорости вращения достаточно, чтобы они излучали такие же яркие лучи, как и медленные.

Во время вращения, магнитное поле создает электрическое, которое способно привести заряженные частицы в подвижное состояние (электрический ток). Участок над поверхностью, где доминирует магнитное поле, называют магнитосферой. Здесь заряженные частицы ускоряются до невероятно высоких скоростей из-за сильного электрического поля. При каждом ускорении они излучают свет. Он отображается в оптическом и рентгеновском диапазоне.

А что с гамма-лучами? Исследования говорят о том, что их источник нужно искать в другом месте возле пульсара. И они будут напоминать веер.

Поиск пульсаров

Главным методом для поиска пульсаров в космосе остаются радиотелескопы. Они небольшие и слабые по сравнению с другими объектами, поэтому приходится сканировать все небо и постепенно в объектив попадают эти объекты. Большая часть была найдена при помощи Обсерватории Паркса в Австралии. Много новых данных можно будет получить с Антенной решетки в квадрантный километр (SKA), стартующий в 2018 году.

В 2008 году запустили телескоп GLAST, который нашел 2050 гамма-излучающих пульсаров, среди которых 93 были миллисекундными. Этот телескоп невероятно полезен, так как сканирует все небо, в то время как другие выделяют лишь небольшие участки вдоль плоскости .

Поиск различных длин волн может сталкиваться с проблемами. Дело в том, что радиоволны невероятно мощные, но могут просто не попадать в объектив телескопа. А вот гамма-излучения распространяются по больше части неба, но уступают по яркости.

Сейчас ученые знают о существовании 2300 пульсаров, найденных по радиоволнам и 160 через гамма-лучи. Есть также 240 миллисекундных пульсаров, из которых 60 производят гамма-излучение.

Использование пульсаров

Пульсары – не просто удивительные космические объекты, но и полезные инструменты. Испускаемый свет может многое поведать о внутренних процессах. То есть, исследователи способны разобраться в физике нейтронных звезд. В этих объектах настолько высокое давление, что поведение материи отличается от привычного. Странное наполнение нейтронных звезд называют «ядерной пастой».

Пульсары приносят много пользы благодаря точности импульсов. Ученые знают конкретные объекты и воспринимают их как космические часы. Именно так начали появляться догадки о наличии других планет. Фактически, первая найденная экзопланета вращалась вокруг пульсара.

Не забывайте, что пульсары во время «мигания» продолжают двигаться, а значит, можно с их помощью измерять космические дистанции. Они также участвовали в проверке теории относительности Эйнштейна, вроде моментов с силой тяжести. Но регулярность пульсации может нарушаться гравитационными волнами. Это заметили в феврале 2016 года.

Кладбища пульсаров

Постепенно все пульсары замедляются. Излучение питается от магнитного поля, создаваемого вращением. В итоге, он также теряет свою мощность и прекращает посылать лучи. Ученые вывели специальную черту, где еще можно обнаружить гамма-лучи перед радиоволнами. Как только пульсар опускается ниже, его списывают в кладбище пульсаров.

Если пульсар сформировался из остатков сверхновой, то обладает огромным энергетическим запасом и быстрой скоростью вращения. Среди примеров можно вспомнить молодой объект PSR B0531+21. В такой фазе он может пробыть несколько сотен тысяч лет, после чего начнет терять скорость. Пульсары среднего возраста составляют большую часть населения и производят только радиоволны.

Однако, пульсар может продлить себе жизнь, если рядом есть спутник. Тогда он будет вытягивать его материал и увеличивать скорость вращения. Такие изменения могут произойти в любое время, поэтому пульсар способен возрождаться. Подобный контакт называют маломассивной рентгеновской двойной системой. Наиболее старые пульсары – миллисекундные. Некоторые достигают возраста в миллиарды лет.

Нейтронные звезды

Нейтронные звезды – довольно загадочные объекты, превышающие солнечную массу в 1.4 раза. Они рождаются после взрыва более крупных звезд. Давайте узнаем эти формирования поближе.

Когда взрывается звезда, массивнее Солнца в 4-8 раз, остается ядро с большой плотностью, продолжающее разрушаться. Гравитация так сильно давит на материал, что заставляет протоны и электроны сливаться, чтобы предстать в виде нейтронов. Так и рождается нейтронная звезда высокой плотности.

Эти массивные объекты способны достигать в диаметре всего 20 км. Чтобы вы осознали плотность, всего одна ложечка материала нейтронной звезды будет весить миллиард тонн. Гравитация на таком объекте в 2 миллиарда раз сильнее земной, а мощности хватает для гравитационного линзирования, позволяющего ученым рассмотреть заднюю часть звезды.

Толчок от взрыва оставляет импульс, который заставляет нейтронную звезду вращаться, достигая нескольких оборотов в секунду. Хотя они могут разгоняться до 43000 раз в минуту.

Пограничные слои вблизи компактных объектов

Астрофизик Валерий Сулейманов о возникновении аккреционных дисков, звездном ветре и веществе вокруг нейтронных звезд:

Недра нейтронных звезд

Астрофизик Сергей Попов об экстремальных состояниях вещества, составе нейтронных звезд и способах изучения недр:

Когда нейтронная звезда выступает частью двойной системы, где взорвалась сверхновая, картина выглядит еще более впечатляющей. Если вторая звезда уступала по массивности Солнцу, то тянет массу компаньона в «лепесток Роша». Это шарообразное облако материла, совершающее обороты вокруг нейтронной звезды. Если же спутник был больше солнечной массы в 10 раз, то передача массы также настраивается, но не такая устойчивая. Материал течет вдоль магнитных полюсов, нагревается и создаются рентгеновские пульсации.

К 2010 году было найдено 1800 пульсаров при помощи радиообнаружения и 70 через гамма-лучи. У некоторых экземпляров даже замечали планеты.

Типы нейтронных звезд

У некоторых представителей нейтронных звезд струи материала текут практически со скоростью света. Когда они пролетают мимо нас, то вспыхивают как свет маяка. Из-за этого их прозвали пульсарами.

Нейтронная звезда
Neutron star

Нейтронная звезда – сверхплотная звезда, образующаяся в результате взрыва Сверхновой. Вещество нейтронной звезды состоит в основном из нейтронов.
Нейтронная звезда имеет ядерную плотность (10 14 -10 15 г/см 3) и типичный радиус 10-20 км. Дальнейшему гравитационному сжатию нейтронной звезды препятствует давление ядерной материи, возникающее за счёт взаимодействия нейтронов. Это давление вырожденного существенно более плотного нейтронного газа в состоянии удерживать от гравитационного коллапса массы вплоть до 3M. Таким образом, масса нейтронной звезды меняется в пределах (1.4-3)M.


Рис. 1. Сечение нейтронной звезды массой 1.5M и радиусом R = 16 км. Указана плотность ρ в г/см 3 в различных частях звезды.

Нейтрино, образующиеся в момент коллапса сверхновой, быстро охлаждают нейтронную звезду. Её температура по оценкам падает с 10 11 до 10 9 К за время около 100 с. Дальше темп остывания уменьшается. Однако он высок по космическим масштабам. Уменьшение температуры с 10 9 до 10 8 К происходит за 100 лет и до 10 6 К – за миллион лет.
Известно ≈ 1200 объектов, которые относят к нейтронным звёздам. Около 1000 из них расположены в пределах нашей галактики. Структура нейтронной звезды массой 1.5M и радиусом 16 км показана на рис. 1: I – тонкий внешний слой из плотно упакованных атомов. Область II представляет собой кристаллическую решётку атомных ядер и вырожденных электронов. Область III – твёрдый слой из атомных ядер, перенасыщенных нейтронами. IV – жидкое ядро, состоящее в основном из вырожденных нейтронов. Область V образует адронную сердцевину нейтронной звезды. Она, помимо нуклонов, может содержать пионы и гипероны. В этой части нейтронной звезды возможен переход нейтронной жидкости в твёрдое кристаллическое состояние, появление пионного конденсата, образование кварк-глюонной и гиперонной плазмы. Отдельные детали строения нейтронной звезды в настоящее время уточняются.
Обнаружить нейтронные звёзды оптическими методами сложно из-за малого размера и низкой светимости. В 1967 г. Э. Хьюиш и Дж. Белл (Кембриджский университет) открыли космические источники периодического радиоизлучения – пульсары. Периоды повторения радиоимпульсов пульсаров строго постоянны и для большинства пульсаров лежат в интервале от 10 -2 до нескольких секунд. Пульсары – это вращающиеся нейтронные звёзды. Только компактные объекты, имеющие свойства нейтронных звёзд, могут сохранять форму, не разрушаясь при таких скоростях вращения. Сохранение углового момента и магнитного поля при коллапсе сверхновой и образовании нейтронной звезды приводит к рождению быстро вращающихся пульсаров с очень сильным магнитным полем 10 10 –10 14 Гс. Магнитное поле вращается вместе с нейтронной звездой, однако, ось этого поля не совпадает с осью вращения звезды. При таком вращении радиоизлучение звезды скользит по Земле как луч маяка. Каждый раз, когда луч пересекает Землю и попадает на земного наблюдателя, радиотелескоп фиксирует короткий импульс радиоизлучения. Частота его повторения соответствует периоду вращения нейтронной звезды. Излучение нейтронной звезды возникает за счёт того, что заряженные частицы (электроны) с поверхности звезды двигаются вовне по силовым линиям магнитного поля, испуская электромагнитные волны. Таков механизм радиоизлучения пульсара, впервые предложенный

Похожие публикации