Основные положения мутационной теории. Основные положения мутационной теории (Гуго де Фриз)

§ 2. Мутационная теория

Открытие прерывистых, внезапных, наследственных ненаправленных изменений - мутаций (от лат. mutation - изменение) * , распределение которых носит чисто случайный характер, послужило толчком для еще более бурного развития классической генетики в начале 20-го века и для выяснения роли наследственных изменений в эволюции.

* (Внезапно возникающие наследственные изменения еще издавно (в 17-м и 18-м веках) называли мутациями. Воскресил этот термин Г. Де Фриз. )

В 1898 г. русский ботаник С. И. Коржинский , а два года спустя голландский ботаник Де Фриз (один из тех, кто вторично открыл закон Менделя - см. главу IV, § 3) делают независимо друг от друга еще одно чрезвычайно важное генетическое обобщение, получившее название мутационной теории.

Сущность этой теории заключается в том, что мутации возникают внезапно и ненаправленно, но, раз возникнув, мутация становится устойчивой. Одна и та же мутация может возникать повторно.

Однажды, проходя мимо картофельного поля (близ голландской деревни Гилверсум), заросшего привезенным из Америки сорняком ослинником, ночной свечкой или энотерой (Oenothera Lamarckiana ) из семейства кипрейных (в состав которого входит всем известный кипрей, или Иван-чай), Де Фриз заметил среди обычных растений экземпляры, резко от них отличающиеся. Ученый собрал семена этих исключительных растений и высеял их в своем опытном саду. В течение 17 лет Де Фриз наблюдал энотеру (тысячи растений). Вначале он обнаружил три мутанта: один из них был карликовым, другой гигантским - крупными оказались его листья, цветы, плоды, семена, длинными стебли (рис. 29), третий имел красные жилки на листьях и плодах. За 10 лет от нормальных растений Де Фриз получил много новых форм, отличающихся рядом признаков. Ученый внимательно следил за мутантами (так называются носители мутаций) и их потомками на протяжении нескольких лет. На основании наблюдений, дополняя учение Дарвина, он пришел к заключению о первостепенной важности резких наследственных уклонений - мутаций для возникновения новых видов. Мутации появляются в самых разных направлениях у представителей любого из видов. Так как не все мутации позволяют мутанту выжить (в определенной среде), то дальнейшее существование соответствующей формы решается дарвиновской борьбой за существование путем естественного отбора.

Вскоре в научной литературе появилось множество описаний различных мутаций у животных и растений.

Не зная механизма возникновения мутаций, Де Фриз полагал, что все подобные изменения возникают самопроизвольно, спонтанно. Это положение справедливо лишь для части мутаций.

Неизбежность спонтанных мутаций следует из неизбежности движения атомов, при котором рано или поздно, но статистически неизбежно происходят переходы электронов с одной орбиты на другую. В результате изменяются отдельные атомы и целые молекулы даже при самых постоянных условиях среды. В появлении спонтанных мутаций и сказывается это неизбежное изменение любой физико-химической структуры (такой структурой являются и молекулы ДНК - хранители наследственной информации).

Спонтанные мутации постоянно обнаруживаются в природе с определенной частотой, сравнительно близкой у самых разнообразных видов живых организмов. Частота появления спонтанных мутаций колеблется по отдельным признакам от одной мутации на 10 тыс. гамет до одной мутации на 10 млн. гамет. Однако в связи с большим числом генов у каждой особи у всех организмов 10-25% всех гамет несут те или иные мутации. Примерно каждый десятый индивидуум является носителем новой спонтанной мутации.

Надо отметить, что большинство вновь возникающих мутаций находится обычно в рецессивном состоянии, увеличивая лишь скрытую, потенциальную, изменчивость, характерную для организмов любого вида. При изменении условий внешней среды, например при изменении действия естественного отбора, эта скрытая наследственная изменчивость может проявиться, так как особи, несущие в гетерозиготном состоянии рецессивные мутации, не будут в новых условиях уничтожаться в процессе борьбы за существование, а будут оставаться и давать потомство. Самопроизвольные, спонтанные мутации появляются без каких-либо вмешательств со стороны. Однако существует множество так называемых индуцированных мутаций . Факторами, вызывающими (индуцирующими) мутации, могут быть самые разнообразные влияния внешней среды: температура, ультрафиолетовое излучение, радиация (как естественная, так и искусственная), действие различных химических соединений - мутагенов . Мутагенами называют агенты внешней среды, вызывающие те или иные изменения генотипа - мутацию, а сам процесс образований мутаций - мутагенезом.

Радиоактивным мутагенезом начали заниматься в 20-х годах нашего столетия. В 1925 г. советские ученые Г. С. Филиппов и Г. А. Надсон впервые в истории генетики применили рентгеновские лучи для получения мутаций у дрожжей. Через год американский исследователь Г. Меллер (впоследствии дважды лауреат Нобелевской премии), длительное время работавший в Москве, в институте, руководимом Н. К. Кольцовым , применил тот же мутаген на дрозофиле.

У дрозофилы обнаружены многочисленные мутации, две из них vestigial и curled изображены на рис. 30.

В настоящее время работы в этой области переросли в одну из наук-радиационную биологию, науку, имеющую большое практическое применение. Например, некоторые мутации грибов - продуцентов антибиотиков - дают в сотни и даже тысячи раз больший выход лекарственных веществ. В сельском хозяйстве благодаря мутациям получены высокоурожайные растения. Радиационная генетика имеет значение в изучении, освоении космических пространств.

Химический мутагенез впервые целенаправленно начали изучать сотрудник Н. К. Кольцова В. В. Сахаров в 1931 г. на дрозофиле при воздействии на ее яйца йодом, а позже М. Е. Лобашов.

К химическим мутагенам относятся самые разнообразные вещества (алкилирующие соединения, перекись водорода, альдегиды и кетоны, азотистая кислота и ее аналоги, различные антиметаболиты, соли тяжелых металлов, красители, обладающие основными свойствами, вещества ароматического ряда), инсектициды (от лат. insecta - насекомые, cida - убийца), гербициды (от лат herba - трава), наркотики, алкоголь, никотин, некоторые лекарственные вещества и многие другие.

За последние годы в нашей стране начаты работы по использованию химических мутагенов для создания новых пород животных . Интересные результаты достигнуты по изменению окраски шерсти у кроликов и увеличению длины шерсти у овец. Существенно, что эти достижения получены при таких дозировках мутагенов, которые не вызывают гибели подопытных животных. Широко используются сильнейшие химические мутагены (нитрозоалкилмочевины, 1,4-бисдиазоацетилбутан).

Одной из основных задач селекции сельскохозяйственных растений является создание сортов, устойчивых к грибковым и вирусным заболеваниям. Химические мутагены являются эффективным средством для получения форм растений, устойчивых к самым различным заболеваниям. У злаков (яровая и озимая пшеница, ячмень, овес) получены формы, устойчивые к мучнистой росе, с повышенной устойчивостью к различным видам ржавчины. Немаловажно то, что у отдельных мутантов увеличение количества белка не коррелирует с ухудшением его качества и возможно получение форм с повышенным содержанием белка и незаменимых аминокислот в нем (лизина, метионина, треонина).

Среди мутантов, индуцированных химическими мутагенами, большой интерес представляют формы с комплексом положительных признаков. Нередки случаи получения таких форм у пшеницы, гороха, томатов, картофеля и других культур. Мутации являются материалом как для естественного , так и для искусственного отбора (селекции).

В 1920 г. в то время еще молодой, но один из крупнейших генетиков 20-го века Николай Иванович Вавилов установил, что существует параллелизм изменчивости среди самых разнообразных систематических единиц живых существ. Это положение получило название правила гомологических (от лат. homologis - согласие, единое происхождение) рядов, которое до известной степени позволяет предсказать, какие мутации могут возникать у родственных (а иногда и у отдаленных) форм. Это правило заключается в том, что между различными систематическими группами (виды, роды, классы и даже типы) существуют повторяющиеся ряды форм, сходные по своим морфологическим и физиологическим свойствам. Это сходство обусловлено наличием общих генов и сходным их мутированием.

Так, среди сортов пшеницы и ржи встречаются сходные формы, озимые и яровые, обладающие остистостью, короткоостистостью или безостистостью колоса; и у тех и у других наблюдаются опущенные, гладкоколосные, красно-, бело- и черноколосные расы, расы с ломким и неломким колосом и другими признаками. Подобный же параллелизм между организмами, относящимися к разным видам, родам, семействам и даже к разным классам, наблюдается у животных. Примером могут служить гигантизм, карликовость или отсутствие пигментации - альбинизм у млекопитающих, птиц, а также у других животных и растений.

Обнаружив у одного биологического вида серию форм А, Б, В, Г, Д, Е и установив у другого родственного ему вида формы А 1 , Б 1 , Д 1 , Е 1 , можно предположить, что существуют еще не открытые формы В 1 и Г 1 .

У человека частота мутирования составляет в естественных условиях 1:1 000 000, но если учесть огромное число генов, то не менее 10% гамет как мужских, так и женских, несет какую-либо вновь возникающую мутацию.

«мутация» (от лат. mutatio – изменение) - термин долгое время использовался в биологии для обозначения любых скачкообразных изменений.

1899 г. - российский ботаник С.И. Коржинский разработал эволюционную теорию гетерогенезиса, основанную на представлениях о ведущей эволюционной роли дискретных (прерывистых) изменений.

1901 Г. - мутационная теория голландского ботаника Хьюго (Гуго) Де Фриза.

ввел современное, генетическое понятие мутации для обозначения редких вариантов признаков в потомстве родителей, которые не имели этого признака.

Де Фриз разработал мутационную теорию на основе наблюдений за широко распространенным сорным растением – ослинником двулетним, или энотерой (Oenothera biennis ). У этого растения существует несколько форм: крупноцветковые и мелкоцветковые, карликовые и гигантские. Де Фриз собирал семена с растения определенной формы, высевал их и получал в потомстве 1-2% растений другой формы. В дальнейшем было установлено, что появление редких вариантов признака у энотеры не является мутацией; данный эффект обусловлен особенностями организации хромосомного аппарата этого растения. Кроме того, редкие варианты признаков могут быть обусловлены редкими сочетаниями аллелей (например, белая окраска оперения у волнистых попугайчиков определяется редким сочетанием aabb ).

Основные положения мутационной теории де фриза

Положения мутационной теории

Де Фриза

Современные уточнения

Мутации возникают внезапно, без всяких переходов.

существует особый тип мутаций, накапливающихся в течение ряда поколений (прогрессирующая амплификация в интронах).

Успех в выявлении мутаций зависит от числа проанализированных особей.

без изменений

Мутантные формы вполне устойчивы.

при условии 100%-ной пенетрантности (мутантному генотипу соответствует мутантный фенотип) и 100%-ной экспрессивности (одна и та же мутация проявляется у разных особей в равной степени)

Мутации характеризуются дискретностью (прерывистостью); это качественные изменения, которые не образуют непрерывных рядов, не группируются вокруг среднего типа (моды).

существуют ликовые мутации, в результате которых происходит незначительное изменение характеристик конечного продукта

растекающаяся мутация leaky mutation - ликовая (растекающаяся) мутация.Форма миссенс-мутации , при которой мутантный фермент обладает сниженной активностью либо снижен уровень его синтеза; Л.м. в регуляторных элементах генов проявляются в неполной блокировке их экспрессии.

Одни и те же мутации могут возникать повторно.

это касается генных мутаций; хромосомные аберрации уникальны и неповторимы

В настоящее время принято следующее определение мутаций:

Мутации – это качественные изменения генетического материала, приводящие к изменению тех или иных признаков организма.

Организм, во всех клетках которого обнаруживается мутация, называется мутантом .

В ряде случаев мутация обнаруживается не во всех соматических клетках организма; такой организм называют генетической мозаикой . Это происходит, если мутации появляются в ходе онтогенеза – индивидуального развития.

И, наконец, мутации могут происходить только в генеративных клетках (в гаметах, спорах и в клетках зародышевого пути – клетках-предшественницах спор и гамет). В последнем случае организм не является мутантом, но часть его потомков будет мутантами.

Различают «новые» мутации (возникающие de novo) и «старые» мутации. Старые мутации – это мутации, появившиеся в популяции задолго до начала их изучения; обычно о старых мутациях идет речь в генетике популяций и в эволюционной теории. Новые мутации – это мутации, появляющиеся в потомстве немутантных организмов (♀ АА × ♂ АА Аа ); обычно именно о таких мутациях идет речь в генетике мутагенеза.

Мутация – это случайное явление, т.е. невозможно предсказать: где, когда и какое изменение произойдет. Можно только оценить вероятность мутации в популяциях, зная фактические частоты определенных мутаций. Например, вероятность появления у кишечной палочки устойчивости к тетрациклину равна 10 –10 (одна десятимиллиардная), поскольку лишь одна из 10 миллиардов клеток обнаруживает устойчивость к этому антибиотику (зато все потомство этой бактерии будет устойчивым к тетрациклину).

Установлено, что мутабильность гена (т.е. частота появления определенной мутации) зависит от природы гена: существуют гены, склонные к мутированию, и относительно стабильные гены.

Термин «мутация» впервые был предложенГ. Де Фризом в его классическом труде «Мутационная теория» (1901-1903).

Основные положения мутационной теории:

1.Мутация возникает скачкообразно , т.е. внезапно, без переходов.

2. Образовавшиеся новые формы наследуются, т.е. являются стойкими .

3. Мутации не направлены (т. е. могут быть полезными, вредными или нейтральными).

4. Мутации – редкие события.

5. Одни и те же мутации могут возникать повторно .

Мутация – это скачкообразное стойкое ненаправленное изменение генетического материала.

3. Закон гомологических рядов в наследственной изменчивости

Следующим после мутационной теории Де Фриза серьезным исследованием мутаций была работа Н.И. Вавилова по наследственной изменчивости у растений.

Изучая морфологию различных растений, Н.И Вавилов в1920 г . пришел к выводу, что, несмотря на резко выраженноеразнообразие (полиморфизм) многих видов , можно заметить и четкиезакономерности в их изменчивости . Если взять для примера семейство злаков, то окажется, что одинаковые отклонения признаков присущи всем видам (карликовость у пшеницы, ржи, кукурузы; колоски безостые, неосыпающиеся и т.д.).

Закон Н. И. Вавилова гласит: «Виды и роды,генетически близкие , характеризуютсясходными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм в пределах одного вида, можнопредвидеть нахождение параллельных форм у других видов и родов».

Свой закон Н.И. Вавилов выразил формулой:

где G 1 , G 2 , G 3 , – виды, аa , b , c – различные варьирующие признаки.

Этот закон важен прежде всего для селекционной практики , потому что даёт направление поиска неизвестных форм у растений (вообще у организмов) данного вида, если они уже известны у других видов.

Под руководством Н.И.Вавилова были организованы многочисленные экспедиции по всему миру. Из разных стран были привезены сотни тысяч образцов семян культурных и диких растений для коллекции Всесоюзного института растениеводства (ВИР). Она до сих пор является важнейшим источником исходных материалов при создании новых сортов.

Теоретическое значение этого законасейчас не кажется столь большим, каким считалось в 1920 г. В законе Н.И. Вавилова содержалось предвидение того, что у близкородственных видов должны бытьгомологичные , т.е. сходные по структуре гены. В тот период, когда о структуре гена ничего не было известно, это был, безусловно, шаг вперед в познании живого (закон Н.И.Вавилова сравнивали по значимости с периодическим законом Д. И. Менделеева). Молекулярная генетика, секвенирование генов подтвердили правильность догадки Н.И. Вавилова, его идея стала очевидным фактом и уже не является ключом к познанию живого.

4. Классификация мутаций

Наиболее полную классификацию мутаций предложил в 1989 г. С. Г. Инге-Вечтомов . Приводим ее с некоторыми изменениями и дополнениями.

I . По характеру изменения генотипа :

    Генные мутации, или точковые.

    Хромосомные перестройки.

    Геномные мутации.

II . По характеру изменения фенотипа :

    Морфологические.

    Физиологические.

    Биохимические.

    Поведенческие

III . По проявлению в гетерозиготе :

    Доминантные.

    Рецессивные.

IV . По условиям возникновения :

    Спонтанные.

    Индуцированные.

V . По локализации в клетке :

1. Ядерные.

2. Цитоплазматические (мутации внеядерных генов).

VI . По возможности наследования (по локализации в организме ):

1. Генеративные (возникшие в половых клетках).

2. Соматические (возникшие в соматических клетках).

VII . По адаптивному значению :

    Полезные.

    Нейтральные.

    Вредные (летальные и полулетальные).

8. Прямые иобратные .

Теперь дадим пояснения по некоторым типам мутаций.














































Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Тип урока: изучение новой темы.

Цель урока:

  • раскрыть сущность мутационной изменчивости, проблемы биологической безопасности продуктов питания и показать роль мутаций в природе и жизни человека;

Задачи урока:

  • Образовательные : на основе знаний учащихся определить особенности мутационной изменчивости, формировать умения по выявлению мутагенных факторов в окружающей среде, углубить знания о сущности процессов, происходящих при мутационной изменчивости.
  • Развивающие : развивать умение сравнивать, анализировать, делать выводы.
  • Воспитательные : воспитывать бережное отношение к своему здоровью и здоровью будущих поколений; понимание необходимости исследования своей родословной с целью предотвращения заболеваний в случае существования предрасположенности к ним.

Оборудование: мультимедийный проектор или интерактивная доска с подготовленными схемами, компьютерная презентация “Мутационная изменчивость. Проблемы биобезопасности”; муляжи полиплоидных плодов.

Цели урока (для учащихся):

  • Узнать о видах наследственной изменчивости, причинах возникновения мутаций их материальной основе.
  • Определить значение мутаций для эволюции, селекции и медицины.
  • Понять, как можно избежать возникновения мутаций.

Методы обучения: репродуктивные (рассказ, эвристическая беседа), проблемные задания, технология развития критического мышления, метод сравнения, становления связи, анализа, синтеза и классификации, здоровьесберегающие технологии.

Ход урока

I. Организационный момент

Учитель объявляет тему урока.

План урока:

  1. Понятие “Мутация”.
  2. Основные положения мутационной теории.
  3. Классификация мутаций.
  4. Факторы возникновения мутаций – мутагены.
  5. Проблемы биобезопасности.
  6. Значение мутаций.

II. Актуализация опорных знаний учащихся

Давайте вспомним, какое свойство живых организмов дает возможность приобретать им новые свойства и признаки? (Изменчивость).

Какие формы изменчивости вам известны? (Ненаследственная, или модификационная, наследственная).

Чем отличаются эти формы изменчивости? (Модификационная изменчивость не передается из поколения в поколение, она не затрагивает генотип организма, мутационная изменчивость является наследственной и затрагивает генотип организма).

III. Активизация познавательного интереса

Когда мы проходим мимо экспонатов Кунсткамеры, сердце замирает от вида мутантов с лишними или недостающими частями тела (двухголовый ягнёнок, сиамские близнецы, сиреномелия). Уроды человеческие и животные собирались по указу Петра со всех концов России, поскольку “во всех государствах они ценились как диковинки”. Мутанты вызывают у народа смесь интереса и брезгливости: голубые лобстеры, мыши с ушами человека на спинах, мухи с ногами вместо антенн, двуглавые змеи….

IV. Постановка проблемного вопроса

За время своего развития человечество накопило величайшее достояние – ГЕНОФОНД, определяющий состояние вида HOMO SAPIENS, в котором заложено все, что, есть в нас животного и человеческого. Но наш генофонд в целом и генотип конкретного человека – хрупкая система. Химизация сельского хозяйства, современная косметика, отходы промышленного производства, генно-модифицированные объекты, лекарственные препараты – причины генетических изменений организма - мутаций.

Каковы последствия мутаций?

Не подвергает ли человечество себя серьезному риску непредвиденных генетических изменений?

V. Изучение нового материала

Сегодня на уроке мы подробно рассмотрим одну из форм наследственной изменчивости, а именно - мутационную изменчивость.

Мутационная изменчивость основывается на возникновении мутаций. Мутации (от лат. “mutation – изменение, перемена) – внезапно возникающие стойкие изменения генотипа, передающиеся по наследству. Термин “мутация” был введен голландским биологом Гуго де Фризом в 1901 г. Проводя опыты с растением ослинник (энотера), он случайно обнаружил экземпляры, отличающиеся рядом признаков от остальных (большой рост, гладкие, узкие длинные листья, красные жилки листьев и широкая красная полоса на чашечке цветка…). Причем при семенном размножении растения из поколения в поколение стойко сохраняли эти признаки. В результате обобщения своих наблюдений, Де Фриз создал мутационную теорию. Дальнейшие исследования показали, что подобные отклонения характерны для всех живых организмов: растений, животных, микроорганизмов. На основе этих исследований де Фризом была создана мутационная теория. Процесс возникновения мутаций называют мутагенез , организмы, у которых произошли мутации, – мутантами , а факторы среды, вызывающие появление мутаций, мутагенами . Мутации генов возникают у всех классов и типов животных, высших и низших растений, многоклеточных и одноклеточных организмов, у бактерий и вирусов. Мутационная изменчивость как процесс качественных скачкообразных изменений является общим свойством всех органических форм.

Основные положения мутационной теории

1. Мутации возникают внезапно, скачкообразно.

2. Мутации наследуются, то есть передаются из поколения в поколение.

3. Мутации не направлены: мутировать может ген в любом локусе, вызывая изменения как незначительных, так и жизненно важных признаков.

4. Сходные мутации могут возникать повторно.

5. Мутации по характеру проявления могут быть доминантными и рецессивными.

6. Мутации носят индивидуальный характер.

Классификация мутаций

I. По характеру изменения генома

Цитоплазматические мутации - результат изменения ДНК клеточных органоидов – пластид, митохондрий. Передаются только по женской линии, т.к. митохондрии и пластиды из сперматозоидов в зиготу не попадают. Пример у растений – пестролистность.

Генные мутации

Наиболее часто встречающиеся мутации – генные, их ещё называют точечными – изменения нуклеотидной последовательности молекулы ДНК в определенном участке хромосомы. Генные мутации выражаются в выпадении, добавлении или перестановке нуклеотидов в гене. Эффекты генных мутаций разнообразны. Большая часть из них в фенотипе не проявляется, так как они рецессивные. Это позволяет им длительное время сохраняться у особей в гетерозиготном состоянии без вреда для организма и проявиться в будущем при переходе в гомозиготное состояние.

Однако известны случаи, когда замена даже одного азотистого основания в нуклеотиде влияет на фенотип . Примером нарушения, вызванного такой мутацией, служит серповидно-клеточная анемия. При этом заболевании эритроциты под микроскопом имеют характерную серпообразную форму и обладают пониженной стойкостью и пониженной кислород-транспортирующей способностью, поэтому у больных с серповидноклеточной анемией повышено разрушение эритроцитов в селезенке, укорочен срок их жизни, повышен гемолиз и часто имеются признаки хронической гипоксии (кислородной недостаточности). Развивающаяся анемия вызывает физическую слабость, нарушение деятельности сердца, почек и может привести к ранней смерти людей, гомозиготных по мутантному аллелю.

Хромосомные мутации - изменения структуры хромосом.

Самостоятельная работа с учебником.

Задание: Изучив материал параграф 47 на с. 167-168 “Хромосомные мутации” и рис. 66 на с. 168, заполнить таблицу “Виды хромосомных мутаций”:

Геномные мутации приводят к изменению числа хромосом. Это может происходить в процессе мейоза из-за нерасхождения хромосом.

При кратном увеличении набора хромосом образуются полиплоиды. Они называются: 3n – триплоид, 4n – тетраплоид, 5n – пентаплоид, 6n – гексаплоид и т.д.

Большая часть сельскохозяйственных растений являются полиплоидами, они обладают высокой урожайностью, лучшей приспособленностью к неблагоприятным условиям, имеют крупные плоды, запасающие органы, цветки, листья. Академик П. М. Жуковский сказал: “Человечество питается и одевается преимущественно продуктами полиплоидии”. Полиплоидия у животных встречается очень редко. Как вы думаете, почему?

(Полиплоидные животные нежизнеспособны, поэтому полиплоидия в селекции животных не используется).

Единственное полиплоидное животное, которое использовалось человеком, которое использовалось человеком, это тутовый шелкопряд.

Геномные мутации, при которых кратно уменьшается количество хромосом, дают мутантов, которые называются гаплоидами.

Если в результате мутации появляется или исчезает одна хромосома, такие мутанты называют анэуплоидами (2n+1, 2n-1, 2n+2, 2n – 2…).

У человека анэуплоидия приводит к наследственным болезням. Например, когда в хромосомном наборе оказывается одна лишняя хромосома и в диплоидном наборе их будет 47, вместо 46, то это вызовет геномную мутацию, которую называют синдром Дауна (трисомия – 21). Клинически была описана в 1866 г. Английским педиатром Л. Дауном. По его имени и названа эта болезнь - синдром (или болезнь) Дауна. Болезнь Дауна проявляется в значительном снижении жизнеспособности, недостаточном умственном развитии. Дети - Дауны обучаемы, но значительно отстают в развитии от своих сверстников и требуют к себе более повышенного внимания. Кроме того, у них короткое коренастое туловище, наблюдается снижение сопротивляемости болезням, врожденные сердечные аномалии и т.д.Одна из наиболее распространенных хромосомных болезней, встречается в среднем с частотой 1 на 700 новорожденных. У мальчиков и девочек болезнь встречается одинаково часто. Дети с синдромом Дауна чаще рождаются у пожилых родителей. Если возраст матери 35 - 46 лет, то вероятность рождения больного ребенка возрастает до 4,1 %, с возрастом матери риск увеличивается. Возможность возникновения повторного случая заболевания в семье с трисомией 21 составляет 1 - 2 %.

II. По месту возникновения:

По исходу для организма какие могут быть мутации?

Летальные, полулетальные, нейтральные.

Летальные – не совместимые с жизнью;

- полулетальные – снижающие жизнеспособность.

- нейтральные – повышают приспособленность и жизнеспособность организмов. Они являются материалом для эволюционного процесса, используются человеком для выведения новых сортов растений, пород животных.

Факторы возникновения мутаций:

Учитель: Давайте рассмотрим факторы, которые вызывают мутации – мутагены.

Распределите понятия по данным факторам: радиоактивное излучение, ГМО, соли тяжелых металлов, температура, лекарства, вирусы, аналоги азотистых оснований, бактерии, пищевые консерванты, рентгеновские лучи, кофеин, формальдегид, стрессы.

С какой группой мутагенов мы встречаемся чаще всего?

В повседневной жизни мы сталкиваемся с продуктами питания, производители которых используют ГМО. Порой, балуем себя шоколадками, варим супы быстрого приготовления, заходим перекусить в рестораны быстрого питания и никогда не задумываемся, к каким последствиям это может привести в дальнейшем.

Что такое ГМО?

Расшифровывается ГМО - генно-модифицированные организмы, это живые организмы, созданные при помощи генной инженерии. Данные технологии очень широко применяются в сельском хозяйстве, потому что растения, выращенные при помощи генной инженерии, устойчивы к вредителям и имеют повышенную урожайность.

Генетически модифицированные организмы - это организмы в генетический код которых при помощи генной инженерии внедрены чужеродные гены. Например, в ген картофеля добавляют ген скорпиона - его не едят никакие насекомые! Или в помидоры внедрили ген полярной камбалы - они перестали бояться морозов.

Проблемы биобезопасности

Вопросы использования и контроля за ГМО затрагивают права граждан на получение своевременной, полной и достоверной информации о состоянии окружающей среды, рисках и угрозах для здоровья, а широкомасштабное неконтролируемое распространение на пищевом рынке России ГМ продуктов питания может негативно отразиться на здоровье населения и будущем нации.

Население России необходимо шире информировать о вреде генетически модифицированных (ГМ) продуктов . Чем больше вы будете говорить об этой проблеме, тем лучше для граждан и сельхозпроизводителей ”, – считает Владимир Путин . "Надо использовать европейский опыт, где работа в этом направлении сводится к тому, чтобы как можно больше улучшить информирование населения о вреде таких продуктов ", – подчеркнул он.

Генный инженер, создавая ГМО, нарушает один из основных запретов эволюции – запрет на обмен генетической информацией между далеко отстоящими видами (например, между растениями и человеком, между растением и рыбой или медузой). Опасность ГМО состоит в нарушении стабильности генома или встроенного в него чужеродного фрагмента ДНК, в проявлении возможных аллергических или токсических эффектов чужеродного белка, в изменении “работы” генетического аппарата и клеточного метаболизма с непредсказуемыми биологическими последствиями. Одним из основных недостатков современных генных технологий является наличие во встроенном фрагменте ДНК помимо так называемого “целевого гена”, изменяющего то или иное свойство организма, “технологического мусора”, в том числе генов устойчивости к антибиотикам и вирусных промоторов, которые небезопасны для природы и человека.

Значение мутаций

Мутации часто вредны, так как меняют приспособительные признаки организмов, вызывают врожденные заболевания человека и животных, часто несовместимые с жизнью (около 2 тыс. генетических дефектов, в соматических клетках – рак). Однако именно мутации создают резерв наследственной изменчивости и играют важную роль в эволюции.

Итак, мы закончили рассмотрение материала по теме “Мутационная изменчивость”. Вы узнали о сущности мутационной изменчивости и значениях мутаций. А теперь закрепим полученные знания, решив 2 задачи. Я предлагаю вам условия, а вы должны дать развернутый ответ.

VI. Закрепление изученного материала

Ответьте на вопросы:

1. У одного котенка возникла мутация в хромосомах половых клеток, а у другого - в аутосомах. Как повлияют эти мутации на каждый организм? В каком случае мутация проявится у котенка фенотипически?

2. Особенности строения и жизнедеятельности любого организма определяют белки, входящие в состав клетки. Почему же считают, что формирование признаков организма происходит под воздействием генов? В чем проявляется связь между генами, белками и признаками организма?

VII. Подведение итогов урока

Учитель: Урок подходит к концу, подведем итоги.

Ответьте пожалуйста мне на вопрос, который мы поставили в начале урока:

Можем ли мы снизить вероятность появления мутаций?

(Ответы учащихся)

Безусловно, ДА! Один из самых действенных методов - это знания. Необходимо знать свои особенности, знать – что может вызвать генетические нарушения еще не родившегося ребенка… Вероятность трагедии можно снизить. ЗДОРОВЫЙ ОБРАЗ ЖИЗНИ и ПРАВИЛЬНОЕ ПИТАНИЕ - пути снижения этого риска.

Продукты питания, в которых ГМО в принципе не может быть

ГМО не может быть практически в большинстве овощей и фруктов: сливы, персики, дыни… Соки, вода, молоко и молочные продукты из натурального молока. Несомненно, не может быть ГМО в минеральной воде.

Не может быть ГМО в?надкушенном? картофеле, который имеет разные размеры и неправильную форму. Не будет ГМО в яблоках с червячком. Гречка не поддается генной инженерии.

Продукты питания, в которых могут содержаться ГМО

ГМО может содержаться в таких продуктах питания, в состав которых входят в основном соя, кукуруза, рапс. Это наши всеми любимые колбаски, сосиски, сардельки, пельмени… Растительное масла, маргарин, майонез, хлебобулочные изделия. Конфетки, шоколад, мороженное, детское питание… Около 30% рынка чая и кофе содержит ГМО. Внимательно читайте, что написано на кетчупах, сгущенке.

Призываю вас, прежде чем покупать вышеперечисленные продукты, задать себе следующий вопрос: “Что такое ГМО?” Содержатся генно-модифицированные организмы в том наборе, которые Вы несете в дом и которыми кормите своих близких. Может быть, иногда можно отказаться от определенных продуктов питания? Колбаску заменить натуральным мясом, например.

Оценка деятельности учащихся на уроке:

За проверку домашнего задания

За устную работу на уроке

За ответы на вопросы по новой теме

VIII. Рефлексия

Учащимся дается индивидуальная карточка, в которой нужно подчеркнуть фразы, характеризующие работу ученика на уроке по трем направлениям.

Домашнее задание по программе В. В. Пасечника: параграфы 47, 48 ответить на вопросы в конце параграфа, выучить мутационную теорию наизусть, ответить письменно на вопрос: Что имеют общего и чем отличаются комбинативная и мутационная изменчивость?

Список используемых источников.

  1. Гаврилова А. Ю. Биология. 10 класс: поурочные планы по учебнику Д. К. Беляева, П. М, Бородина, Н. Н. Воронцова II ч. / - Волгоград: Учитель, 2006 – 125 с.
  2. Лысенко И. В. Биология. 10 класс: поурочные планы по учебнику А. А. Каменского, Е. А. Криксунова, В. В. Пасечника / - Волгоград: Учитель, 2009. – 217 с.

Мутационная теория или теория мутаций - раздел генетики, закладывающий основы генетической изменчивости и эволюции.

Возникновение

Мутационная теория составляет одну из основ генетики. Она зародилась вскоре после законов Менделя в начале XX века. Можно считать, что она почти одновременно зародилась в умах голландца Хуго де Фриза (1903) и отечественного ученого-ботаника С. И. Коржинского (1899). Однако приоритет в первенстве и в большем совпадении изначальных положений принадлежит российскому ученому . Признание основного эволюционного значения за дискретной изменчивостью и отрицание роли естественного отбора в теориях Коржинского и Де Фриза было связано с неразрешимостью в то время противоречия в эволюционном учении Ч. Дарвина между важной ролью мелких уклонений и их «поглощением» при скрещиваниях (см. кошмар Дженкина и История эволюционного учения#Кризис дарвинизма).

Основные положения

Основные положения мутационной теории Коржинского - Де Фриза можно свести к следующим пунктам :

  1. Мутации внезапны, как дискретные изменения признаков.
  2. Новые формы устойчивы.
  3. В отличие от ненаследственных изменений, мутации не образуют непрерывных рядов, не группируются вокруг какого-либо среднего типа. Они являют собой качественные скачки изменений.
  4. Мутации проявляются по-разному и могут быть как полезными, так и вредными.
  5. Вероятность обнаружения мутаций зависит от числа исследуемых особей.
  6. Сходные мутации могут возникать неоднократно.

Исследования Х. Де Фриза проводились на различных видах Ослинника (Oenothera ), которые в ходе эксперимента не выщепляли мутации, а показывали сложную комбинативную изменчивость, поскольку эти формы являлись сложными гетерозиготами по транслокациям.

Строгое доказательство возникновения мутаций принадлежит В. Иогансену на основе экспериментов на самоопыляющихся линиях фасоли и ячменя - были исследованы массы семян, мутационное изменение этого признака и обнаружил В. Иогансен (1908-1913 гг.). Примечательно то, что, даже имея мутационный характер, масса семян распределялась относительно некоторых средних значений, тем самым ставя под сомнение третий пункт мутационной теории.

Похожие публикации