О чем свидетельствует рождение сверхновых звезд. Что нужно делать. Масштабы звездных взрывов

Астрономы официально заявили об одном из самых громких событий в научном мире: в 2022 году с Земли невооружённым глазом мы сможем увидеть уникальное явление - один из ярчайших взрывов сверхновой. По прогнозам , он затмит своим светом сияние большинства звёзд в нашей галактике.

Речь идёт о тесной двойной системе KIC 9832227 в созвездии Лебедя, которую отделяет от нас 1800 световых лет. Звёзды в этой системе расположены настолько близко друг к другу, что имеют общую атмосферу, а скорость их вращения постоянно увеличивается (сейчас период обращения составляет 11 часов).

О возможном столкновении, которое ожидается примерно через пять лет (плюс-минус один год) рассказал на ежегодном собрании Американского астрономического общества профессор Ларри Мольнар (Larry Molnar) из Колледжа Кальвина в США. По его словам, предсказать подобные космические катастрофы довольно сложно — на исследование ушло несколько лет (изучать звёздную пару астрономы начали ещё в 2013 году).

Первым такой прогноз сделал Дэниел Ван Нурд (Daniel Van Noord), научный сотрудник Мольнара (на тот момент ещё студент).

"Он изучил, как цвет звезды коррелирует с её яркостью, и предположил, что мы имеем дело с двойным объектом, более того с тесной двойной системой — такой, где у двух звёзд есть общая атмосфера, словно у двух ядер арахиса под одной скорлупой", — поясняет Мольнар в пресс-релизе .

В 2015 году Мольнар, после нескольких лет наблюдений, рассказал коллегам о прогнозе: вероятно, астрономов ожидает взрыв, подобный рождению сверхновой V1309 в созвездии Скорпиона в 2008 году. Не все учёные отнеслись к его заявлению серьёзно, однако теперь, после новых наблюдений, Ларри Мольнар вновь затронул эту тему, представив ещё больше данных. Спектроскопические наблюдения и обработка более 32 тысяч изображений, полученных с разных телескопов, исключили другие сценарии развития событий.

Астрономы полагают, что когда звёзды врежутся друг в друга, то обе погибнут, однако перед этим испустят много света и энергии, образовав красную сверхновую и увеличив яркость двойной звезды в десять тысяч раз. Сверхновая будет видна на небосклоне как часть созвездия Лебедя и Северного Креста. Это станет первым случаем, когда специалисты и даже любители смогут проследить за двойными звёздами непосредственно в момент их смерти.

"Это будет очень резкое изменение в небе, и любой человек сможет увидеть это. Вам не понадобится телескоп, чтобы сказать мне в 2023 году, прав я был или нет. Хотя отсутствие взрыва разочарует меня, любой альтернативный исход будет не менее интересным", — добавляет Молнер.

По мнению астрономов, к прогнозу действительно нельзя отнестись несерьёзно: у экспертов впервые появилась возможность наблюдать последние несколько лет жизни звёзд перед их слиянием.

Будущие исследования помогут многое узнать о подобных двойных системах и их внутренних процессах, а также о последствиях масштабного столкновения. "Взрывы" такого рода, по статистике, происходят примерно раз в десять лет, однако это первый случай, когда столкновение звёзд произойдёт на . Ранее, например, учёные наблюдали взрыв .

Препринт возможной будущей статьи Мольнара (PDF-документ) можно прочитать на сайте Колледжа.

Кстати, в 2015 году астрономы ЕКА обнаружили уникальную в туманности Тарантул, чьи орбиты находятся на невероятно малом расстоянии друг от друга. Учёные спрогнозировали, что в какой-то момент такое соседство окончится трагически: небесные тела либо сольются в единую звезду гигантских размеров, либо случится взрыв сверхновой, который породит двойную систему .

Напомним также, что ранее мы рассказывали о том, как взрывы сверхновых .

Их возникновение - это довольно редкое космическое явление. В среднем в доступных наблюдению просторах Вселенной вспыхивает три сверхновых в столетие. Каждая такая вспышка представляет собой гигантскую космическую катастрофу, при которой выделяется невероятно много энергии. По самой грубой оценке такое количество энергии могло бы образоваться при одновременном взрыве многих миллиардов водородных бомб.

Достаточно строгая теория вспышек сверхновых пока отсутствует, но ученые выдвинули любопытную гипотезу. Они предположили, на основании сложнейших расчетов, что в ходе альфа-синтеза элементов ядро продолжает сжиматься. Температура в нем достигает фантастической цифры - 3 миллиарда градусов. При таких условиях в ядре значительно ускоряются различные ; в результате выделяется много энергии. Быстрое сжатие ядра влечет за собой столь же быстрое сжатие оболочки звезды.

Она тоже сильно разогревается, и протекающие в ней ядерные реакции, в свою очередь, сильно ускоряются. Таким образом буквально в считанные секунды выделяется громадное количество энергии. Это приводит к взрыву. Конечно, такие условия достигаются далеко не всегда, и потому сверхновые вспыхивают довольно редко.

Такова гипотеза. Насколько ученые правы в своих предположениях, покажет будущее. Но и настоящее привело исследователей к совершенно поразительным догадкам. Астрофизические методы позволили проследить, как уменьшается светимость сверхновых. И вот что выяснилось: в первые несколько дней после взрыва светимость уменьшается очень быстро, а затем это уменьшение (в течение 600 дней) замедляется. Причем каждые 55 дней светимость ослабевает ровно вдвое. С точки зрения математики, это уменьшение происходит по так называемому экспоненциальному закону. Хорошим примером такого закона является закон радиоактивного распада. Ученые высказали смелое предположение: выделение энергии после взрыва сверхновой обусловлено радиоактивным распадом изотопа какого-то элемента с периодом полураспада 55 дней.

Но какого изотопа и какого элемента? Эти поиски продолжались несколько лет. «Кандидатами» на роль подобных «генераторов» энергии выступили бериллий-7 и стронций-89. Они распадались наполовину как раз за 55 дней. Но выдержать экзамен им не довелось: расчеты показали, что энергия, выделяющаяся при их бета-распаде, слишком мала. А другие известные радиоактивные изотопы подобным периодом полураспада не обладали.

Новый претендент обнаружился среди элементов, которые на Земле не существуют. Он оказался представителем трансурановых элементов, синтезированных учеными искусственно. Имя претендента - калифорний, его порядковый номер - девяносто восемь. Его изотоп калифорний-254 удалось приготовить в количестве всего лишь около 30 миллиардных долей грамма. Но и этого поистине невесомого количества вполне хватило, чтобы измерить период полураспада изотопа. Он оказался равным 55 дням.

А отсюда возникла любопытная гипотеза: именно энергия распада калифорния-254 обеспечивает в течение двух лет необычайно высокую светимость сверхновой звезды. Распад калифорния происходит путем самопроизвольного деления его ядер; при таком виде распада ядро как бы раскалывается на два осколка - ядра элементов середины периодической системы.

Но каким образом синтезируется сам калифорний? Ученые и здесь дают логичное объяснение. В ходе сжатия ядра, предшествующего взрыву сверхновой, необычайно ускоряется ядерная реакция взаимодействия уже знакомого нам неона-21 с альфа-частицами. Следствием этого оказывается появление в течение довольно короткого промежутка времени чрезвычайно мощного потока нейтронов. Снова возникает процесс нейтронного захвата, но на сей раз уже быстрого. Ядра успевают поглотить очередные нейтроны раньше, чем подвернутся бета-распаду. Для этого процесса неустойчивость трансвисмутовых элементов уже не препятствие. Цепь превращений не порвется, и конец периодической таблицы тоже будет заполнен. При этом, видимо, образуются даже такие трансурановые элементы, которые в искусственных условиях еще не получены.

Ученые подсчитали, что при каждом взрыве сверхновой только калифорния-254 образуется фантастическое количество. Из такого количества можно было бы изготовить 20 шаров, каждый из которых весил бы столько, сколько наша Земля. Какова же дальнейшая судьба сверхновой? Она погибает довольно быстро. На месте ее вспышки остается лишь маленькая очень тусклая звездочка. Она отличается, правда, необычайно высокой плотностью вещества: наполненный им спичечный коробок весил бы десятки тонн. Такие звезды называют « ». Что происходит с ними дальше, мы пока не знаем.

Материя, которая выбрасывается в мировое пространство, может сгуститься и образовать новые звезды; они начнут новый долгий путь развития. Ученые сделали пока лишь общие грубые мазки картины происхождения элементов, картины работы звезд - грандиозных фабрик атомов. Быть может, это сравнение в общем передает суть дела: художник набрасывает на холсте лишь первые контуры будущего произведения искусства. Уже ясен основной замысел, но многие, в том числе и существенные, детали еще приходится лишь угадывать.

Окончательное решение проблемы происхождения элементов потребует колоссального труда ученых различных специальностей. Вероятно, многое, что сейчас нам представляется несомненным, на самом деле окажется грубо приблизительным, а то и вовсе неверным. Наверное, ученым придется столкнуться с закономерностями, до сих пор нам неизвестными. Ведь для того чтобы разобраться в сложнейших процессах, протекающих во Вселенной, бесспорно, понадобится новый качественный скачок в развитии наших представлений о ней.

СВЕРХНОВАЯ ЗВЕЗДА

СВЕРХНОВАЯ ЗВЕЗДА , взрыв звезды, при котором практически вся ЗВЕЗДА разрушается. В течение недели сверхновая звезда может затмить все другие звезды Галактики. Светимость сверхновой звезды на 23 звездных величины (в 1000 млн. раз) больше, чем светимость Солнца, а энергия, высвобождаемая при взрыве, равна всей энергии, излученной звездой в течение всей ее предыдущей жизни. Через несколько лет сверхновая увеличивается в объеме настолько, что становится разреженной и полупрозрачной. В течение сотен или тысяч лет остатки выброшенного вещества видны как остатки сверхновой звезды. Сверхновая примерно в 1000 раз ярче НОВОЙ ЗВЕЗДЫ. Каждые 30 лет в такой галактике, как наша, появляется примерно одна сверхновая, однако, большинство этих звезд не видно из-за пыли. Сверхновые звезды бывают двух основных типов, различаемых по их кривым блеска и по спектрам.

Сверхновые - неожиданно вспыхивающие звезды, приобретающие яркость иногда в 10 000 млн. раз большую, чем яркость Солнца. Это происходит в несколько стадий.В начале (А) огромная звезда очень быстро развивается до стадии, когда различные ядерные процессы начинают протекать внутри звезды одновременно. В центре может образоваться железо,что означает конец производства ядерной энергии. Затем звезда начинает подвергаться гравитационному коллапсу (B). Это, однако, нагревает центр звезды до такой степени, что химические элементы распадаются, а новые реакции протекают со взрывной силой (C). Выбрасывается большая часть вещества звезды в космос, в то время как остатки центра звезды коллапсируют, пока звезда не станет полностью темной, возможно пре вратившись в очень плотную нейтронную звезду (D). Одна такая сзерхновая была видна в 1054г. в созвездии Тельца (Е). Остатки этой звезды представляет собой облако газа, называемое Крабовид ной туманностью (F).


Научно-технический энциклопедический словарь .

Смотреть что такое "СВЕРХНОВАЯ ЗВЕЗДА" в других словарях:

    Запрос «Сверхновая» перенаправляется сюда; см. также другие значения. Остаток сверхновой Кеплера Сверхновые звёзды … Википедия

    Взрыв, которым ознаменована смерть звезды. Иногда вспышка сверхновой превышает по яркости галактику, в которой она произошла. Сверхновые делят на два основных типа. Тип I отличается дефицитом водорода в оптическом спектре; поэтому считают, что… … Энциклопедия Кольера

    сверхновая звезда - астрон. Внезапно вспыхивающая звезда с мощностью излучения во много тысяч раз превосходящей мощность вспышки новой звезды … Словарь многих выражений

    Сверхновая SN 1572 Остаток сверхновой SN 1572, композиция изображений в рентгеновском и инфракрасном диапазоне, сделанных телескопами «Сптицер», «Чандра» и обсерваторией Калар Альто Наблюдательные данные (Эпоха?) Тип сверхновой … Википедия

    Художественное изображение звезды Вольфа Райе Звёзды Вольфа Райе класс звёзд, для которых характерны очень высокая температура и светимость; звёзды Вольфа Райе отличаются от других горячих звёзд наличием в спектре широких полос излучения водорода … Википедия

    Сверхновая: Сверхновая звезда звёзды, заканчивающие свою эволюцию в катастрофическом взрывном процессе; Сверхновая российская поп панк группа. Сверхновая (фильм) фантастический хорор фильм 2000 года американского режиссёра… … Википедия

    У этого термина существуют и другие значения, см. Звезда (значения). Плеяды Звезда небесное тело, в котором идут, шли или будут идти … Википедия

    Художественное изображение звезды Вольфа Райе Звёзды Вольфа Райе класс звёзд, для которых характерны очень высокая температура и светимость; звёзды Вольфа Райе отличаются от других горячих звёзд наличие … Википедия

    SN 2007on Сверхновая SN 2007on, сфотографированная космическим телескопом Swift. Наблюдательные данные (Эпоха J2000,0) Тип сверхновой Ia … Википедия

Книги

  • Перст судьбы (включая полный обзор неаспектированных планет) , Хамакер-Зондаг К.. Книга известного астролога Карен Хамакер-Зондаг - плод двадцатилетнего труда по изучению загадочных и нередко непредсказуемых скрытых факторов гороскопа: конфигурации "Перст Судьбы",…

> Сверхновая звезда

Узнайте, что такое сверхновая звезда : описание взрыва и вспышки звезды, где рождаются сверхновые, эволюция и развитие, роль двойных звезд, фото и исследования.

Сверхновая – это, по сути, звездный взрыв и наиболее сильный, который можно наблюдать в космическом пространстве.

Где появляются сверхновые звезды?

Очень часто сверхновые можно заметить в других галактиках. Но в нашем Млечном Пути это редкое явление для наблюдения, потому что пылевые и газовые дымки перекрывают обзор. Последняя наблюдаемая сверхновая в была замечена Иоганном Кеплером в 1604 году. Телескоп Чандра смог отыскать лишь остатки от звезды, взорвавшейся больше века назад (последствия взрыва сверхновой).

Что приводит к сверхновой?

Сверхновая звезда рождается, когда в центре звезды происходят изменения. Есть два главных типа.

Первый – в двойных системах. Двойные звезды – объекты, связанные общим центром. Одна из них подворовывает вещество у второй и становится чересчур массивной. Но не способна уравновесить внутренние процессы и взрывается в сверхновой.

Второй – в момент смерти. Топливо имеет свойство заканчиваться. В итоге, часть массы начинает поступать в ядро, и оно становится таким тяжелым, что не выдерживает собственной гравитации. Происходит процесс расширения, и звезда взрывается. Солнце – одиночная звезда, но ей не пережить подобного, так как не хватает массы.

Почему исследователи интересуются сверхновыми звездами?

Сам процесс охватывает небольшой временной промежуток, но может очень многое поведать о Вселенной. Например, один из экземпляров подтвердил свойство Вселенной расширяться и то, что темпы увеличиваются.

Также выяснилось, что эти объекты влияют на момент распределения элементов в пространстве. При взрыве звезда выстреливает элементами и космическими обломками. Многие из них даже попадают на нашу планету. Посмотрите видео, в котором раскрываются особенности сверхновых звезд и их взрывов.

Наблюдения вспышек сверхновых

Астрофизик Сергей Блинников об открытии первой сверхновой звезды, остатках после вспышки и современных телескопах

Как их найти сверхновые звезды?

Для процесса поиска сверхновых звезд исследователи используют различные приборы. Некоторые нужны для наблюдения за видимым светом после взрыва. А другие отслеживают рентгеновские и гамма-лучи. Фото получают при помощи телескопов Хаббл и Чандра.

В июне 2012 года начал работать телескоп, фокусирующий свет в области высоких энергий электромагнитного спектра. Речь идет о миссии NuSTAR, которая ищет разрушившиеся звезды, черные дыры и остатки сверхновых. Ученые планируют узнать побольше о том, как они взрываются и создаются.

Измерение расстояний до небесных тел

Астроном Владимир Сурдин о цефеидах, вспышках сверхновых звезд и скорости расширения Вселенной:

Чем вы можете помочь в исследовании сверхновых звезд?

Для того, чтобы внести свою лепту, вам не нужно становиться ученым. В 2008 году сверхновую нашел обычный подросток. В 2011 году это повторила 10-летняя канадская девочка, рассматривавшая снимок ночного неба на своем компьютере. Очень часто снимки любителей вмещают множество интересных объектов. Немного практики и вы можете найти следующую сверхновую! А если говорить точнее, то у вас есть все шансы запечатлеть взрыв сверхновой звезды.

СВЕРХНОВАЯ ЗВЕЗДА, взрыв, которым ознаменована смерть звезды. Иногда вспышка сверхновой превышает по яркости галактику, в которой она произошла.

Сверхновые делят на два основных типа. Тип I отличается дефицитом водорода в оптическом спектре; поэтому считают, что это взрыв белого карлика – звезды, по массе близкой к Солнцу, но меньшей по размеру и более плотной. В составе белого карлика почти нет водорода, поскольку это конечный продукт эволюции нормальной звезды. В 1930-х годах С.Чандрасекар показал, что масса белого карлика не может быть выше определенного предела. Если он находится в двойной системе с нормальной звездой, то ее вещество может перетекать на поверхность белого карлика. Когда его масса превысит предел Чандрасекара, белый карлик коллапсирует (сжимается), нагревается и взрывается. См. также ЗВЕЗДЫ.

Сверхновая II типа вспыхнула 23 февраля 1987 в соседней с нами галактике Большое Магелланово Облако. Ей дали имя Яна Шелтона, первым заметившего вспышку сверхновой с помощью телескопа, а затем и невооруженным глазом. (Последнее подобное открытие принадлежит Кеплеру, увидевшему вспышку сверхновой в нашей Галактике в 1604, незадолго до изобретения телескопа.) Одновременно с оптической вспышкой сверхновой 1987 специальные детекторы в Японии и в шт. Огайо (США) зарегистрировали поток нейтрино – элементарных частиц, рождающихся при очень высоких температурах в процессе коллапса ядра звезды и легко проникающих сквозь ее оболочку. Хотя поток нейтрино был испущен звездой вместе с оптической вспышкой примерно 150 тыс. лет назад, он достиг Земли практически одновременно с фотонами, доказав тем самым, что нейтрино не обладает массой и движется со скоростью света. Эти наблюдения подтвердили также предположение, что около 10% массы коллапсирующего ядра звезды излучается в виде нейтрино, когда само ядро сжимается в нейтронную звезду. У очень массивных звезд при вспышке сверхновой ядра сжимаются до еще больших плотностей и, вероятно, превращаются в черные дыры, но сброс внешних слоев звезды все же происходит. См . также ЧЕРНАЯ ДЫРА.

В нашей Галактике Крабовидная туманность является остатком взрыва сверхновой, который наблюдали китайские ученые в 1054. Известный астроном Т.Браге также наблюдал в 1572 сверхновую, вспыхнувшую в нашей Галактике. Хотя сверхновая Шелтона стала первой близкой сверхновой, открытой после Кеплера, сотни сверхновых в других, более далеких галактиках были замечены при помощи телескопов за последние 100 лет.

В остатках взрыва сверхновой можно найти углерод, кислород, железо и более тяжелые элементы. Следовательно, эти взрывы играют важную роль в нуклеосинтезе – процессе образования химических элементов. Возможно, что 5 млрд. лет назад рождению Солнечной системы тоже предшествовал взрыв сверхновой, в результате которого возникли многие элементы, вошедшие в состав Солнца и планет. НУКЛЕОСИНТЕЗ.

Похожие публикации