Классификация культуральных клеток. Клеточная культура. Применение в биотехнологии


Клеточные культуры


Технология клеточных культур заключается в выращивании клеток вне живых организмов.


Культуры растительных клеток


Культуры растительных клеток не только являются важным этапом создания трансгенных растений, но и экологически приемлемым и экономически оправданым источником природных продуктов, обладающих терапевтическими свойствами, как, например, паклитаксель (paclitaxel), содержащийся в тисовой древесине и выпускаемый как препарат для химиотерапии под названием Таксол (Taxol). Культуры растительных клеток также применяются для производства веществ, используемых пищевой промышленностью в качестве ароматизаторов и красителей.


Культуры клеток насекомых


Изучение и применение культур клеток насекомых расширяет возможности разработки и использования человеком биологических агентов, уничтожающих насекомых-вредителей, но не влияющих на жизнеспособность полезных насекомых, а также не накапливающихся в окружающей среде. Несмотря на то, что достоинства биологических методов борьбы с вредителями были известны уже давно, производство таких биологически активных веществ и патогенных для насекомых и микроорганизмов в промышленных количествах очень затруднено. Использование культур клеток насекомых способно полностью решить эту проблему. Кроме того, так же как и растительные клетки, клетки насекомых могут быть использованы для синтеза лекарственных препаратов. Эта перспектива в настоящее время активно изучается. Кроме того, изучается возможность использования клеток насекомых для производства VLP-вакцин (VLP – virus-like particle – вирусоподобные частицы) для лечения инфекционных заболеваний, таких как атипичная пневмония и грипп. Эта методика могла бы сильно снизить затраты и исключить проблемы безопасности, связанные с традиционным методом, использующим куриные яйца.


Культуры клеток млекопитающих


Клеточные культуры млекопитающих являются одним из главных инструментов, используемых специалистами племенного животноводства в течение уже не одного десятилетия. В лабораторных условиях яйцеклетки, полученные от коров, обладающих выдающимися качествами, оплодотворяются сперматозоидами соответствующих быков. Образующиеся при этом эмбрионы в течение нескольких дней выращиваются в пробирке, после чего имплантируются в матки суррогатных коров-матерей. Этот же прием является основой экстракорпорального оплодотворения человека.


В настоящее время использование культур клеток млекопитающих выходит далеко за рамки искусственного оплодотворения. Клетки млекопитающих могут дополнять, а возможно, когда-нибудь и заменят использование животных для тестирования безопасности и эффективности новых лекарственных препаратов. Кроме того, так же как клетки растений и насекомых, клетки млекопитающих могут быть использованы для синтеза лекарственных веществ, особенно некоторых животных белков, слишком сложных для того, чтобы синтезировать их с помощью генетически модифицированных микроорганизмов. Например, моноклональные антитела синтезируются именно культурами клеток млекопитающих.


Ученые также рассматривают возможность использования клеток млекопитающих для производства вакцин. В 2005 году Министерство здравоохранения и социальных услуг США заключило с компанией Sanofi Pasteur контракт на 97 миллионов долларов США. Задачей специалистов компании является разработка методик культивирования клеток млекопитающих с целью ускорения процесса разработки вакцин против гриппа и, соответственно, повышения готовности человечества к пандемии.


Методы терапии, основанные на использовании культур взрослых стволовых клеток , обнаруженных в некоторых тканях организма (костном мозге, жировой ткани, мозге и др.), также скоро займут достойное место в клинической практике. Исследователи установили, что стволовые клетки могут быть использованы организмом для восстановления поврежденных тканей. Взрослые гемопоэтические стволовые клетки уже давно используются в качестве трансплантатов костного мозга. Они необходимы для восстановления процессов созревания и формирования всех типов клеток крови. Такие клетки могут быть в больших количествах получены из пуповинной крови, однако их выделение является довольно сложным процессом.


В настоящее время исследователи работают над методами выделения стволовых клеток из плаценты и жировой ткани. Ряд специалистов занят разработкой методов клеточного ре-программирования – возвращения в недифференцированное состояние зрелых клеток организма, например, клеток кожи, и последующей стимуляции их дифференцирования в клетки необходимого типа ткани.


Эмбриональные стволовые клетки


Использование эмбриональных стволовых клеток также рассматривается в качестве потенциального метода терапии многих заболеваний. Как понятно из названия, эмбриональные клетки получают из эмбрионов, в частности, тех, что развиваются из яйцеклеток, оплодотворенных in vitro (в клиниках, занимающихся экстракорпоральным оплодотворением) и, с согласия доноров, переданных исследователям для использования в научных целях. Обычно используются бластоцисты – 4-5-дневные эмбрионы, выглядящие под микроскопом как шарики, состоящие из нескольких сотен клеток.


Для выделения человеческих эмбриональных стволовых клеток внутренняя клеточная масса бластоцисты переносится в богатую питательными веществами культуральную среду, где клетки начинают активно делиться. В течение нескольких дней клетки покрывают всю поверхность культуральной плашки. После этого исследователи собирают делящиеся клетки, делят их на части и помещают в новые плашки. Процесс перемещения клеток в новые плашки называется пересевом и может многократно повторяться в течение многих месяцев. Цикл пересева клеток называется пассаж . Эмбриональные стволовые клетки, просуществовавшие в культуре в течение шести и более месяцев без дифференцировки (т.е. остающиеся плюрипотентными – способными дифференцироваться в клетки любой ткани организма) и сохранившие нормальный набор генов, называются линией эмбриональных стволовых клеток .


Внутренняя поверхность культуральной плашки зачастую покрывается клетками кожи мышиных зародышей, генетически модифицированных на неспособность к делению. Эти клетки образуют фидерный слой – «питательную подложку», благодаря которой эмбриональные клетки прикрепляются к поверхности. Ученые пытаются усовершенствовать существующий метод и исключить необходимость использования мышиных клеток, так как их присутствие всегда привносит риск попадания в культуру человеческих клеток вирусных частиц и мышиных белков, способных вызвать аллергическую реакцию.


Максимальная ценность терапии с использованием стволовых клеток и тканевой инженерии может быть достигнута в том случае, если терапевтические стволовые клетки и ткани, выращенные из них, являются генетически идентичными клеткам реципиента. Поэтому, если сам пациент не является их источником, стволовые клетки должны быть модифицированы методом замещения их генетического материала генами реципиента и только потом дифференцированы в клетки специфического типа. На настоящее время процедура замещения генетического материала и ре-программирования может быть успешно проделана только с эмбриональными стволовыми клетками.

Возможно поддержание жизни тканей и органов вне организма путем выращивания их в культуре. Впервые попытки поддержания жизнедеятельности клеток человека и животных в лабораторных условиях были предприняты в 1907 г. Харрионом и в 1912 г. Каррелем. Однако лишь в 1942 г. Ж. Моно предложил современные методы культивирования in vitro.

Культура клеток представляет собой популяцию генотипически однотипных клеток, которые функционируют и делятся in vitro. Культуры клеток, полученные путем целенаправленных или случайных мутаций, называются клеточными линиями .

Рост клеточных культур in vitro имеет сложный характер. В целом выделяют следующие фазы:

1. Индукционный период (лаг-фаза). В течение лаг-фазы не происходит сколько-нибудь заметного увеличения числа клеток или образования продуктов. Данная фаза обычно наблюдается после пересева клеточной культуры. В ней происходит адаптация клеток к новой культуральной среде, перестраивается метаболизм клетки.

2. Фаза экспоненциального роста. Она характеризуется быстрым накоплением биомассы и продуктов жизнедеятельности клеточных культур. В данной фазе наиболее часто встречаются митозы по сравнению с остальными фазами роста. Но в этой фазе экспоненциальный рост не может продолжаться бесконечно долго. Она переходит в следующую фазу.

Рис. 4.2. Клеточная культура Нер-2, 48 часов культивирования, видны митозы.

3. Фаза линейного роста. Характеризуется уменьшением числа митозов

4. Фаза замедленного роста. В этой фазе уменьшается рост клеточной культуры за счет уменьшения числа митозов.

5. Стационарная фаза . Наблюдается вслед за фазой замедления роста, при этом число клеток практически не меняется. В этой фазе либо происходит прекращение митотического деления клеток, либо число делящихся клеток равно числу отмирающих клеок.

6. Фаза отмирания культуры, в которой преобладают процессы гибели клеток и практически не наблюдаются митотические деления.

Последовательные переходы от фазы 1 к фазе 6 наблюдаются в значительной степени за счет истощения субстратов, необходимых для роста популяции клеток, или же за счет накопления токсичных продуктов их жизнедеятельности. Субстраты, ограничивающие рост клеточных культур получили название лимитирующих .

В условиях, когда концентрация субстратов и других компонентов, необходимых для роста клеток постоянна, процесс увеличения числа клеток носит автокаталитический характер. Данный процесс описывается следующим дифференциальным уравнением:

где N – число клеток, μ – удельная скорость роста.

Рис. 4.3. Клеточная культура RD – рабдомиосаркома человека. Монослой, живые неокрашенные клетки.

Последовательные переходы от фазы 1 к фазе 6 наблюдаются в значительной степени за счет истощения субстратов, необходимых для роста популяции клеток, или же за счет накопления токсических продуктов их жизнедеятельности.

Для поддержания жизни клеток в культуре необходимо соблюдать ряд обязательных условий:

Необходима сбалансированная питательная среда;

Строжайшая стерильность;

Оптимальная температура;

Своевременный пассаж, т. е. пересев на новую питательную среду.

Впервые на лимитирование процессов роста культур клеток субстратами ферментативных реакций обратил внимание Ж. Моно. Субстраты, ограничивающие рост клеточных популяций, получили название лимитирующих.

Практически для всех клеточных популяций характерно изменение скорости роста под действием ингибиторов и активаторов. Выделяют ингибиторы, действующие на ДНК (налидиксоновая кислота), ингибиторы, действующие на РНК (актиномицин Д), ингибиторы синтеза белка (левомицетин, эритромицин, тетрациклин), ингибиторы синтеза клеточной стенки (пенициллин), мембраноактивные вещества (толуол, хлороформ), ингибиторы энергетических процессов (2,4 – динитрофенол), ингибиторы лимитирующего фермента.

Одним из важнейших факторов, определяющих кинетику клеточного роста, являются ионы водорода. Многие клеточные культуры растут в узком диапазоне рН; изменение рН приводит к замедлению их скорости роста или к полному прекращению роста

Одна из первых попыток описать феномен ограничения роста популяций была предпринята П. Ферхгюльстом в 1838 г. Он предположил, что помимо процесса размножения организмов, есть процесс гибели организмов, наблюдаемых из-за «тесноты», т.е. данный процесс происходит при встрече двух индивидов.

В развитии любой клеточной популяции наступает период остановки клеточного роста и гибели клеток. Очевидно, что остановка роста и гибель клеток имеют не меньшее значение, чем их размножение и рост. Особенно эти процессы важны для многоклеточных организмов. Неудержимый и неконтролируемый рост отдельных клеток – причина онкологических заболеваний, остановка роста, старение и гибель клеток – причина старения и смерти организма в целом.

Различные популяции и различные клетки ведут себя совершенно по- разному. Бактериальные клетки и клетки одноклеточных организмов внешне представляются «бессмертными». При попадании в подходящую комфортную среду с избытком лимитирующего субстрата клетки начинают активно размножаться. Ограничение их роста определяется расходом субстрата, накоплением продуктов-ингибиторов, а также специфическим механизмом ограничения роста, который называется «прогрессирующей некомпетентностью».

Клетки многоклеточных организмов ведут себя совершенно по-другому. Дифференцированные клетки составляют органы и ткани, и их рост и размножение принципиально ограничены. Если механизм контроля роста разрушается, возникают индивидуальные клетки, растущие неограниченно. Эти клетки составляют популяцию раковых клеток, их рост приводит к гибели организма в целом.

Исследования проблемы старения «нормальных» клеток многоклеточных организмов имеет весьма интересную историю. Впервые мысль о том, что нормальные соматические клетки животных и человека детерминированно должны терять способность к делению и гибнуть, была высказана великим немецким биологом Августом Вейсманом в 1881 г. Приблизительно в это же время ученые научились переводить клетки животных и человека в культуру. В начале века известный хирург, один из основателей техники культивирования клеток in vitro, лауреат Нобелевской премии Алексис Каррель поставил эксперимент, который продолжался 34 года. В течение этого срока он культивировал клетки фибробластов, полученные из сердца цыпленка. Опыт был остановлен, потому что автор был уверен, что клетки можно культивировать вечно. Эти результаты убедительно демонстрировали, что старение не является отражением процессов, происходящих на клеточном уровне.

Однако этот вывод оказался ошибочным. «Бессмертными» являются перерожденные (трансформированные) клетки, потерявшие контроль роста и превратившиеся в раковые. Лишь в 1961 г.Л. Хейфлик, вернувшись к опытам А. Карреля, показал, что нормальные «не трансформированные» фибробласты человека способны провести около 50 делений и полностью прекратить размножение. В настоящее время нет сомнений, что нормальные соматические клетки обладают ограниченным репликационным потенциалом.

Для определения совокупности процессов «программированного» старения и гибели клеток был предложен термин «апоптоз». Апоптоз следует отличать от некроза – гибели клеток за счет случайных событий или под действием внешних токсинов. Некроз приводит к попаданию содержимого клетки в окружающую среду и в норме вызывает воспалительную реакцию. Апоптоз – это фрагментация содержимого клетки изнутри, осуществляемая специальными внутриклеточными ферментами, индукция и активация которых происходит при получении клеткой внешнего сигнала или при принудительной инъекции в клетку ферментов – активаторов апоптозной «машины», или при повреждении клетки внешними факторами, не приводящими к некрозу, но способными инициировать апоптоз (ионизирующая радиация, обратимый перегрев и др.).

Современный интерес исследователей к апоптозу очень велик, он определяется осознанием важной роли апоптоза в поведении клеточных популяций, т.к. его роль не меньше, чем роль процессов роста и размножения клеток.

Концепция «программируемой» клеточной смерти существовала очень долго, однако лишь в 1972 г. после работы Керра, Вилли и Куррье, в которой было показано, что многие процессы «программируемой» и «непрограммируемой» клеточной гибели совершенно близки, интерес к апоптозу сильно возрос. После того, как была показана роль в апоптозе процессов деградации ДНК и во многих случаях необходимый синтез de novo РНК и специфических белков, апоптоз стал предметом биохимии и молекулярной биологии.

Молекулярная биология апоптоза весьма разнообразна. Апоптоз изучают по морфологическим изменениям клеток, по индукции, активности и появлению продуктов трансглутаминазы, «сшивающей» белки, по фрагментации ДНК, по изменению потоков кальция, по появлению на мембране фосфатидилсерина.

В 1982 г. С.Р. Уманский предположил, что одной из функций программы клеточной гибели эукариотических клеток является элиминация постоянно возникающих клеток с онкогенными свойствами. Подтверждением этой гипотезы является открытие белка р53 – индуктора апоптоза и опухолевого супрессора. Белок р53 является регулятором транскрипции, способным узнавать специфические последовательности ДНК. Ген р53 активирует несколько генов, задерживающих деление клетки в G 1 -фазе. После действия факторов, повреждающих ДНК (радиация, УФО) экспрессия гена р53 в клетках существенно усиливается. Под влиянием р53 клетки, имеющие множественные разрывы ДНК, задерживаются в фазе G 1 , а если входят в S-фазу (например, в случае трансформации опухолей), то подвергаются апоптозу.

Мутация гена р53 позволяет клеткам с поврежденной ДНК завершить митоз, сохраняет клетки, подвергшиеся опухолевой трансформации, при этом они оказываются резистентными к лучевой и химиотерапии. Мутантная форма белка р53 не обладает способностью останавливать клеточный цикл.

Наиболее распространенная в настоящее время концепция «программируемого» старения основана на представлении о теломере. Дело в том, что ДНК-полимераза не способна реплицировать «хвосты» 3 / - конца матрицы ДНК – несколько нуклеотидов на 3 / - конце. Многократная репликация ДНК в процессе размножения клеток в этом случае должна приводить к укорачиванию считываемой области. Это укорочение и может быть причиной старения и падения репликационного потенциала, ухудшения функционирования хромосом. Для предотвращения этого процесса специфический фермент теломераза синтезирует на концах ядерной ДНК многократно повторяемый гексануклеотид TTAGGG, образующий протяженный участок ДНК, называемый теломерой. Фермент теломераза был предсказан в 1971 г. А. Оловниковым и открыт в 1985 г. Грейдером и Блэкберном.

В большинстве клеток нормальных тканей человека теломераза неактивна, и поэтому клетки подвергаются апоптозу через 50 – 100 делений, считая от их образования из клетки-предшественницы. В клетках злокачественных опухолей ген теломеразы активен. Поэтому, несмотря на свою «старость» по количеству пройденных клеточных циклов и накопление большого количества мутационных изменений в структуре ДНК, продолжительность жизни злокачественных клеток почти не ограничена. Для преодоления укорачивания генома и старения согласно этим представлениям клетка должна активировать теломеразный ген и экспрессировать большее количество теломеразы.

Рост клеточных популяций ограничен рядом факторов, приводящих к существованию предела в накоплении клеточной биомассы. Для клеток животных и растений ограничение роста является жизненной необходимостью, т.е. рост многоклеточных организмов ограничен. К наиболее важным факторам, ограничивающих рост клеточных популяций относятся:

1. Истощение системы по лимитирующему субстрату;

2. Появление в популяции клеток, потерявших способность к делению.

3. Накопление продуктов, являющихся сильными ингибиторами роста.

Ограничение роста клеточной популяции может иметь специфический характер запрограммированного отказа. Биохимические механизмы, останавливающие пролиферацию клеток, имеют, по-видимому, различную природу. В настоящее время ясно, что в ряде случаев остановка роста связана с потерей чувствительности клеток к ростовым факторам среды. В качестве примера можно привести особенности роста популяции лимфоцитов, индуцированного действием ростовых факторов. Например, динамика появления и исчезновения на клеточной мембране Т-лимфоцитов рецептора к фактору роста характеризуется тем, что быстрая экспрессия рецептора сменяется стадией его потери. Возможно, что «десенситизация» рецептора к ростовому фактору связана с механизмом его инактивации в процессе реакции.

Для получения культуры лучше всего использовать свежие клетки, взятые из тканей взрослого человека, эмбриона и даже из злокачественных опухолей. В настоящее время получены культуры клеток легкого, кожи, почки, сердца, печени и щитовидной железы. Клетки выращивают на твердых или жидких питательных средах в виде монослойной культуры, например на стекле, или в виде суспензии во флаконах или специальных приборах - ферментерах.

В настоящее время для изучения механизмов, лежащих в основе роста и развития клеточных популяций все шире применяются методы математического моделирования с использованием вычислительной техники. С одной стороны, эти подходы обеспечивают возможность фундаментального исследования динамики процессов с учетом всей совокупности эффектов, усложняющих рост популяции, с другой – позволяют вести обоснованный поиск технологических режимов, тонкого управления процессом роста клеток.

Продолжительность жизни некоторых штаммов клеток в культуре может достигать более 25 лет. Однако по данным Hayflick (1965) продолжительность жизни клеток в культуре не превосходит продолжительность жизни того вида организма, от которого они взяты. При большой продолжительности содержания клеток в культуре они могут перерождаться в раковые. Так, например, старение диплоидных фибробластов человека в культуре тканей соответствует старению целого организма. Легче поддерживать культуру клеток мало дифференцированных или недифференцированных тканей - клеток лимфоцитов, фибробластов, некоторых эпителиальных клеток. Плохо растут на питательных средах высокодифференцированные и узко специализированные клетки внутренних органов (печени, миокарда и др.).

Метод культуры тканей имеет большое значение для изучения злокачественных опухолей и их диагностики, изучения закономерностей регенерации (пролиферации, факторов регенерации и т. д.), для получения чистого продукта деятельности клеток (ферментов, гормонов, лекарственных препаратов), для диагностики наследственных заболеваний. Культура клеток широко используется в генетической инженерии (выделение и перенос генов, картирование генов, получение моноклональных антител и т.д.). На клеточных культурах изучается мутагенность и канцерогенность различных химических и биологических соединений, лекарственных препаратов и др.

В настоящее время невозможно представить выделение и исследование вирусов без применения клеточных культур. Первое сообщение о размножении вируса полиомиелита на клеточных культурах появилось в 1949 г. (Enders J.F. et al.). Клеточные культуры в вирусологии применяются для следующих целей: 1) выделения и идентификации вирусов; 2) обнаружения вирусной инфекции по значительному увеличению количества антител в парных сыворотках; 3) приготовления антигенов и антител для использования в серологических тестах. Основными источниками тканей для получения однослойных культур служат ткани животных, например, почки обезьян, злокачественные опухоли человека, ткани зародыша человека.

Важную роль в исследованиях макрофагальной системы также играет метод искусственного культивирования. Исследуется роль этой системы в инфекционном процессе, в образовании антител, метаболизме пигментов крови, в нарушениях липидного обмена, в метаболизме химиотерапевтических препаратов, биохимические и биофизические свойства, а также неопластические потенции этих клеток. Большая часть этих исследований обобщена в монографии Нельсона (Nelson D.S., 1969). В чистой культуре макрофаги впервые выделили в 1921 г. Каррел и Эбелинг из крови курицы. Поскольку многие работы, выполненные на макрофагах, имеют отношение к проблемам физиологии и патологии человека, желательно проводить такие исследования на культурах макрофагов человека или млекопитающих, хотя макрофаги млекопитающих не размножаются на искусственной питательной среде. Доступным источником макрофагов может служить кровь, но выход макрофагов мал. Наиболее широко используемым источником макрофагов является перитонеальная жидкость. Она содержит много макрофагов и обычно свободна от других клеток. Много свободных макрофагов присутствует в легких (альвеолярные макрофаги). Их получают путем смывов из альвеол и воздухоносных путей кролика.

Анализ кариотипа человека невозможен без применения культуры клеток. С этой целью исследуют лимфоциты крови, селезенки, лимфоузлов, клетки костного мозга, фибробласты человека и клетки амниотической жидкости. Для стимуляции митозов лимфоцитов в культуральную среду добавляют фитогемагглютинин. Рост клеток длится 48 – 72 часа. За 4 – 6 часов до конца культивирования в среду добавляют колхицин, который останавливает делящиеся клетки в метафазе, т.к. подавляет образование веретена деления. Для того, чтобы получить хороший разброс хромосом на метафазных пластинках, клетки обрабатывают гипотоническим раствором (0,17%) хлорида натрия или другими растворами.

Для диагностики многих биохимических и цитогенетических дефектов зародыша в последние годы широко используется культура клеток зародыша, полученная при трансабдоминальном амниоцентезе. Амниоцентез проводят между 15 – 18 нед. беременности. Клеточная популяция амниотической жидкости в этот период состоит главным образом из слущенных клеток эктодермального происхождения: из клеток амниона, эпидермиса кожи, а также эпителия потовых и сальных желез, ротовой полости и частично пищеварительного тракта и моче - половых путей и других частей зародыша. В 1956 г. появились сообщения об определении хромосомного пола плода на основании исследования полового хроматина в клетках амниотической жидкости. В 1963 г. Фукс и Филип получили культуру клеток амниотической жидкости. В настоящее время используют несколько методов получения культур клеток амниотической жидкости. Обычно для анализа берут 10 мл пробы жидкости, центрифугируют, осадок клеток ресуспендируют и высевают в пластиковые флаконы или чашки Петри в специальную среду. Рост становится заметным через несколько дней. После пересева суспензию клеток на 14 – 21 сутки используют для получения метафазных пластинок.

Большая часть современных знаний по молекулярной биологии, молекулярной генетике, генетической инженерии была получена на основе изучения клеточных культур микроорганизмов. Это определяется тем, что микроорганизмы и клеточные линии относительно легко культивируются, процесс генерации нового поколения занимает от десятков минут до нескольких часов по сравнению с макроорганизмами, для роста которых требуются годы и десятилетия. Вместе с тем сценарии развития близки для всех популяций, развивающихся в закрытых системах.

Клеточная культура

Культивирование клеток представляет собой процесс, посредством которого in vitro отдельные клетки (или единственная клетка) прокариот и эукариот искусственно выращиваются в контролируемых условиях. На практике термин «культура клеток» относится в основном к выращиванию клеток, относящихся к одной ткани, полученных от многоклеточных эукариот, чаще всего животных. Историческое развитие технологии и методик выращивания культур клеток неразрывно связаны с выращиванием тканевых культур и целых органов.

История

В XIX веке английский физиолог С. Рингер разработал солевой раствор , содержащий хлориды натрия, калия, кальция и магния для поддержания биения сердца животных вне организма. В 1885 году Вильгельм Ру установил принцип культивирования тканей, извлек часть костного мозга из куриного эмбриона и держал его в теплом физрастворе в течение нескольких дней . Росс Гранвилл Харрисон, работавший в Медицинской школе Дж. Хопкинса, а затем в Йельском университете, опубликовал результаты своих экспериментов в 1907 −1910 годах, создав методологию культивирования тканей. Методы культивирования клеток получили значительное развитие в 1940-х 1950-х годах в связи с исследованиями в области вирусологии. Выращивание вирусов в культурах клеток дало возможность получения чистого вирусного материала для производства вакцин. Вакцина против полиомиелита стала одним из первых препаратов, массово произведенных с использованием технологии культивирования клеток.

Основные принципы культивирования

Выделение клеток

Для культивирования вне организма живые клетки могут быть получены несколькими способами. Клетки могут быть выделены из крови, но к росту в культуре способны только лейкоциты. Моноядерные клетки могут быть выделены из мягких тканей с помощью таких ферментов как коллагеназа, трипсин, проназа, разрушающих внеклеточный матрикс . Кроме того, в питательную среду можно поместить кусочки тканей. Клетки, взятые непосредственно от объекта, называются первичными . Большинство первичных клеток, за исключением опухолевых, имеют ограниченный срок использования. После определенного количества делений клетки подвергаются процессу старения и прекращают делиться, но жизнеспособность не утрачивают. Существуют «бессмертные» линии клеток, способные размножаться бесконечно. Эта способность является результатом случайной мутации , либо приобретена искусственно, с помощью подавления гена теломеразы .

Выращивание клеток

Клетки выращивают в специальных питательных средах, при постоянной температуре и в специальной газовой среде в инкубаторе клеточных культур . Питательные среды для разных культур клеток различаются по составу, pH, концентрации глюкозы, составу факторов роста и др . Факторы роста, используемые в питательных средах, чаще всего получают из крови. Одним из факторов риска при этом является возможность заражения культуры клеток прионами или вирусами. При культивировании одной из важных задач является исключение или сведение к минимуму использование зараженных ингридиентов. Однако на практике это бывает достигнуто не всегда. Клетки можно выращивать в суспензии , либо в адгезивном состоянии. Некоторые клетки (такие, как клетки крови) в естественных условиях существуют во взвешенном состоянии. Существуют также линии клеток, искусственно измененных таким образом, чтобы они не могли прикрепляться к поверхности, это сделано для того, чтобы увеличить плотность клеток в культуре. Для выращивания адгезивных клеток требуется поверхность, например, культура ткани, или пластик, покрытый элементами внеклеточного матрикса для улучшения сцепных свойств, и для стимулирования роста и дифференцирования. Большинство клеток из мягких и твердых тканей адгезивны. Из адгезивного типа культуры выделяется органотипический тип культуры клеток, который представляет собой трехмерную среду, в отличие от от обычной лабораторной посуды. Этот система культивирования физически и биохимически наиболее схожа с живыми тканями, но имеет некоторые технические сложности в обслуживании (например, нуждается в диффузии).

Перекрестное загрязнение клеточных линий

При работе с клеточными культурами ученые могут столкнуться с проблемой перекрестного загрязнения. Судя по результатам исследований, можно предположить, что в 15-20 % случаев клетки, используемые в экспериментах были испорчены, или были загрязнены клетками других клеточных линий .

Особенности выращивания клеток

При выращивании клеток, из-за постоянного деления может возникнуть их переизбыток в культуре. В результате чего могут возникнуть следующие проблемы:

  • Накопление в питательной среде продуктов выделения, в том числе токсичных.
  • Накопление в культуре омертвевших клеток, прекративших жизнедеятельность.
  • Скопление большого количества клеток оказывает негативное влияние на клеточный цикл, рост и деление замедляются, а клетки начинают стареть и отмирать (контактное ингибирование роста).
  • По той же причине может начаться клеточное дифференцирование .

Для поддержания нормального функционирования культур клеток а также для предотвращения негативных явлений периодически проводят замену питательной среды, пассажирование и трансфекция клеток. Во избежание загрязнения культур бактериями, дрожжами, или другими линиями клеток, все манипуляции обычно проводят с соблюдением правил асептики в стерильном боксе. Для подавления микрофлоры в питательную среду могут быть добавлены антибиотики (пенициллин , стрептомицин) и противогрибковые препараты(амфотерицин Б).

Линии клеток человека

Одна из самых ранних культур клеток человека, полученная от Генриетты Лакс, которая умерла от рака шейки матки. Культура клеток ядра окрашены в синий цвет.

Культивирование человеческих клеток несколько противоречит правилам биоэтики , поскольку изолированно выращиваемые клетки могут пережить родительский организм, а затем использоваться для проведения экспериментов или для разработки новых методов лечения и извлечения из этого прибыли. Первое судебное решение в данной области было вынесено в Верховном суде штата Калифорния по делу «Джон Мур против представителей Калифорнийского университета », согласно которому пациенты не имеют никаких прав собственности на линии клеток, полученных из органов, удаленных с их согласия .

Линия клеток «Гибридома»

Продукты биотехнологии

Промышленным методом из культур клеток получают такие продукты, как ферменты , синтетические гормоны , моноклональные антитела , интерлейкины , лимфокины, противоопухолевые препараты. Хотя многие простые белки относительно просто могут быть получены с использованием рДНК в бактериальных культурах, более сложные белки, такие как гликопротеины, в настоящее время могут быть получены только из животных клеток. Одним из таких важнейших белков является гормон эритропоэтин . Стоимость выращивания культур клеток млекопитающих является довольно высокой, поэтому в настоящее время проводятся исследования по возможности производства сложных белков в культурах клеток насекомых или высших растений .

Тканевые культуры

Культивирование клеток является неотъемлемой частью технологии культивирования тканей и тканевой инженерии, поскольку именно оно определяет основы выращивания клеток и поддержания их в жизнеспособном состоянии ex vivo .

Вакцины

С применением методики культивирования клеток в настоящее время выпускаются вакцины против полиомиелита , кори , эпидемического паротита , краснухи , ветрянки . Вследствие угрозы пандемии гриппа , вызываемого Соединенных Штатов финансирует исследования по получению вакцины против

Тема 10. Использование в вирусологии культур клеток. Типы культур клеток

Контрольные вопросы

Задание к следующему занятию.

Подведение итогов занятия.

Задания

1. Подготовить куриные эмбрионы к заражению.

2. Заразить куриные эмбрионы вирусами ньюкаелской болезни и оспы голубей (кур).

3. Вскрыть зараженные куриные эмбрионы, получить ХАО и аллантоисную жидкость.

4. Поставить капельную РГА с аллантоисной жидкостью.

Самостоятельная работа студентов:

а) подготовка рабочих мест и спецодежды к вскрытию куриных эмбрионов, зараженных на предыдущем занятии;

б) вскрытие куриных эмбрионов, зараженных вирусом ньюкаслской болезни, отсасывание аллантоисной и амниотической жидкостей, постановка капельной РГА;

в) вскрытие куриных эмбрионов, зараженных вирусом оспы, извлечение ХАО, подсчет и зарисовка оспин;

г) подготовка к обеззараживанию инструментов, эмбрионов, посуды.

1. Что вы знаете о методах индикации вирусов в куриных эмбрионах?

2. Какие способы получения вируссодержащего материала от куриных эмбрионов вы знаете?

3. Каковы гемагглютинирующие свойства вирусов и их использование? Каков механизм гемагглютинации?

Цель занятия: изучить различные виды культур, их номенклатуру. Изучить материальное обеспечение при производстве клеточных культур.

Оборудование и материалы: растворы Хенкса. Эрла, питательная среда 199, Игла, гидролизат лактальбумина, матрасы, флаконы, стеклянная посуда, готовые культуры клеток, мультимедийное оборудование, презентации MS Office Power Point по теме занятия.

Объяснение преподавателя. Выращивание культур клеток для получения различных биологических про­дуктов, проведения научно-исследовательских или диагностических работ явля­ется революционизирующим моментом XX в. Признание идеи о том, что клетки тканей высших животных можно выделить из организма и затем создать условия для роста и воспроизводства их in vitro, датируется первым десятилетием XX в. После того как стало известно, что подобные процессы реальны, наступил вто­рой этап работ – выращивание клеток и репродукция в них вирусов. Третий и четвертый этапы начинаются с появлением возможности вставить в клетки экзогенно полученные гены и получить их экспрессию и подтверждения возмож­ности выращивания из одиночной клетки целой популяции (гибридом что знаменуют собой возможность получения трансгенных систем и клонирования организмов. В настоящее время ни одна вирусологическая лаборатория не может обойтись без культуры клеток. Культуры клеток имеют следующие преимущества перед лабораторными животными и куриными эмбрионами:


можно добиться заражения практически всех культур клеток, что позволяет получать вируссодержащий материал с наивысшей концентрацией вируса при наименьшем содержании белкового балласта;

поскольку можно получить культуры клеток любого вида животного, снимаются видовые ограничения культивирования вирусов;

возможно вмешательство в инфекционный процесс в любой момент, не нарушая целостности живой системы;

можно непрерывно контролировать ход инфекционного процесса;

возможно получение готовой суспензии вируса в виде культуральной жидкости;

соблюдается полная стерильность культуральном жидкости в отношении грибов и бактерий;

предельно просты техника заражения и получение вируссодержащего материала;

относительная дешевизна.

Культуры клеток – наиболее совершенная из лабораторных система для культивирования вирусов. В вирусологической практике культуры клеток чаще всего используют для первичного обнаружения вирусов и их выделения из патологического материала, накопления вируса при изготовлении вакцин и диагностикумов, поддержания вирусных штаммов в лаборатории, титрования вирусов и как тест-объект в реакции нейтрализации.

Для успешного выделения вируса необходимо соблюдать следующие требования:

используемая культура клеток должна быть чувствительной к предполагаемому вирусу. Чувствительность ее повышается, если клетки получены от молодых животных (лучше эмбрионов);

10.1 Типы культур клеток. Культура клеток – это клетки многоклеточного организма, живущие и размножающиеся в искусственных условиях вне организма (in vitro).

Методика культивирования клеток особенно успешно стала развиваться после 40-х годов текущего столетия. Этому способствовали следующие обстоятельства: открытие антибиотиков, предотвращающих бактериальное заражение культур клеток, открытие Хуангом (1943) и Эндерсом (1949) способности вирусов вызывать специфическую деструкцию клеток (цитопатический эффект) – удобный метод индикации вирусов в культурах клеток, и, наконец, Дульбекко и Фогт (1952) предложили методику трипсинизации тканей и получения однослойных культур клеток.

В вирусологической практике применяют следующие культуры клеток.

Первично-трипсинизированные культуры клеток – клетки, полученные непосредственно из органов или тканей организма, растущие in vitro в один слой (рис. 26). Культуру клеток можно получить практически из любого органа или ткани человека или животного (взрослого или эмбриона). Однако лучше это удается сделать из эмбриональных органов, так как клетки эмбрионов обладают более высокой потенцией роста. Чаще всего для этих целей используют почки, легкие, кожу, тимус, тестикулы эмбрионов или молодых животных.

Рисунок 26. Первичная культура клеток легких эмбриона овцы (по Троценко Н.И. и др.)

Для получения первичных клеток от здорового животного не позднее 2-3 ч после убоя берут соответствующие органы или ткани, измельчают их на кусочки (1-4 мм) и обрабатывают ферментами: трипсином, панкреатином, коллагеназой и другими (чаще трипсином). Ферменты разрушают межклеточные вещества, полученные при этом отдельные клетки суспендируют в питательной среде и культивируют на внутренней поверхности пробирок или матрасов в термостате при 37 °С.

Клетки прикрепляются к стеклу и начинают делиться. В развитии культур клеток различают несколько фаз: адаптации, логарифмического роста, стационарную и старения (гибель клеток). Размножаясь, клетки размещаются на поверхности стекла и при полном покрытии его в один слой контактируют друг с другом и прекращают делиться (контактная ингибиция). На стекле формируется слой толщиной в одну клетку (поэтому эти культуры клеток называют однослойными или монослойными).

Обычно монослой формируется через 3–5 дней. Скорость его формирования зависит от вида ткани, возраста животного, качества питательной среды, посевной концентрации клеток и других факторов.

Питательную среду меняют по мере загрязнения ее продуктами жизнедеятельности клеток. Монослой сохраняет жизнеспособность в течение 7–21 дня (в зависимости от вида клеток и состава питательной среды).

Интенсивность размножения клеток и состояние монослоя контролируют визуально под малым увеличением микроскопа (объектив х10). Лучше для этой цели использовать инвертированный микроскоп.

Для культивирования вирусов используют молодые культуры клеток (как только сформировался монослой).

Субкультуры. В вирусологической практике часто используют субкультуры, которые получают из первичных клеток, выращенных в матрасах, путем снятия их со стекла раствором версена или трипсина, ресуспендирования в новой питательной среде и пересева на новые матрасы или пробирки. Через 2–3 сут формируется монослой.

Практически субкультуру можно получить из всех первичных культур клеток. (Хуже субкультивируются куриные фибробласты.) Субкультуры по чувствительности к вирусам не уступают первичным культурам клеток, кроме того, они более экономичны, и есть возможность выявления контаминации клеток вирусами. Субкультуры получают от 2–5 пассажей (перевивок) и очень редко до 8–10. Последующие пассажи приводят к изменению морфологии клеток и их гибели.

Если клеточные культуры прошли более 10 пассажей, они уже на стадии перехода к перевиваемым культурам клеток.

Перевиваемые культуры клеток – это клетки, способные к размножению вне организма неопределенно длительное время. В лабораториях их поддерживают путем пересевов из одного сосуда в другой (при условии замены питательной среды).

Получают перевиваемые клетки из первичных культур клеток с повышенной активностью роста путем длительных пересевов в определенном режиме культивирования. Обычно работа по получению новых клеточных линий продолжается несколько месяцев. Полагают, что механизм происхождения перевиваемых культур клеток – результат генетической изменчивости клеток или селекции единичных клеток, присутствующих в первичной исходной культуре.

Клетки перевиваемых культур имеют одинаковую форму, гетероплоидный набор хромосом (у первичных клеток он диплоидный), стабильны в условиях роста in vitro, некоторые из них обладают онкогенной активностью. Последнее свойство ограничивает использование перевиваемых культур клеток для культивирования вирусов при производстве вакцин.

Перевиваемые культуры клеток можно получать как из здоровых тканей животных, так и из опухолевых. Среди них наиболее широко используют следующие линии клеток: HeLa (из раковой опухоли шейки матки женщины); Нер-2 (из карциономы гортани человека); KB (из раковой опухоли полости рта); ВНК-21 (почка новорожденного хомячка); ППЭС (перевиваемая почка эмбриона свиньи); ППТ (перевиваемая почка теленка); ППО (перевиваемая почка овцы); TR (из слизистой трахеи коровы); L (мышиные фибробласты); СОЦ (из сердца обезьяны циномольгус) и др.

Перевиваемые клетки имеют преимущества перед первичными: их приготовление значительно проще, экономятся труд и материальные средства; эти культуры заранее можно проверить на наличие латентных вирусов и микрофлоры; клональные линии обеспечивают более стандартные условия для размножения вирусов, чем первичные, представляющие смешанную популяцию клеток. Большинство перевиваемых клеток обладает более широким спектром чувствительности к вирусам, чем соответствующие первичные культуры.

Однако перевиваемые клетки имеют и недостатки: они склонны к малигнизации, т. е. злокачественное перерождение независимо отпроисхождения и снижения чувствительности к вирусам у них происходит быстрее, чем у первичных, поэтому необходимо применять клональные линии перевиваемых клеток.

Поддерживают перевиваемые клетки путем периодических пересевов. Чаще используют бесцентрифужный метод. Для очередного пересева отбирают 2–3-дневную культуру с хорошим монослоем, сливают питательную среду, а клеточный монослой покрывают подогретым до 35-37°С 0,02%-ным раствором версена. Диспергирующее действие версена объясняется связыванием им двухвалентных катионов (Mg ++ , Ca ++), которые способствуют прикреплению клеток к стеклу и обеспечивают целостность клеточной культуры. Под действием версена клетки округляются, отделяются от стекла.

Через 10–15 мин после округления клеток версен сливают, оставляя небольшое количество его (в 1-литровом матрасе – 5-–10 мл, в 0,1-литровом – 2–3 мл), и выдерживают еще 5–10 мин, периодически омывая клетки версеном, затем добавляют небольшое количество питательной среды. После встряхивания подсчитывают клетки в камере Горяева, исходную клеточную взвесь разводят ростовой питательной средой до необходимой концентрации (80–200 тыс. в 1 мл) и разливают при помешивании в пробирки или матрасы, закрывают резиновыми пробками и культивируют в термостате при 37 °С в течение 3–4 дней до образования сплошного монослоя. Обычно клетки в камере Горяева не подсчитывают, а пересевают с коэффициентом от 1:2 до 1:6 в зависимости от вида клеток. Состав питательной среды также зависит от вида клеток, но чаще при культивировании перевиваемых клеток используют среды Игла, 199 или смеси этих сред с гидролизатом лактальбумина.

Важно отметить, что при поддержании перевиваемых клеток путем их систематического пересева в лаборатории оставляют не менее одного матраса без пересева на случай непригодности последнего пассажа.

Диплоидные культуры клеток. Международный комитет по клеточным культурам дал следующее определение диплоидным клеткам: это морфологически однородная популяция клеток, стабилизированная в процессе культивирования in vitro, имеющая ограниченный срок жизни, характеризующаяся тремя фазами роста, сохраняющая в процессе пассирования кариотип, свойственный исходной ткани, свободная от контаминантов и не обладающая туморогенной активностью при трансплантации хомячкам.

Диплоидные культуры клеток, так же как и перевиваемые, получают из первичных культур клеток. Кариотип клеток очень лабилен и при обычных методах культивирования клеток он изменяется в первые дни. Поэтому потребовались специальные методы обработки ткани, высокого качества питательные среды, фетальная сыворотка для длительного поддерживания клеток in vitro в диплоидном состоянии. Эту задачу впервые успешно решили американские ученые Хейфлик и Мурхед (1961).

Диплоидные клетки получены из различных тканей эмбриона человека (легкие, почки, кожно-мышечная ткань, сердце и др.) и животных (почка эмбриона крупного рогатого скота, свиней, ВНК-21 – почка хомяка и др.).

Диплоидные клетки в отличие от перевиваемых имеют ограниченные возможности пассирования. Максимальное число пассажей 50±10, затем количество делящихся клеток резко уменьшается и они гибнут. Однако диплоидные клетки могут быть использованы в течение длительного времени, так как при каждом пассаже часть клеток можно заморозить (минус 196 °С) и при необходимости восстановить.

Диплоидные клетки имеют преимущества перед перевиваемыми и первичными клетками: 10–12 дней они могут быть в жизнеспособном состоянии без смены питательной среды; при смене среды один раз в неделю остаются жизнеспособны в течение 4 нед; особенно пригодны для длительного культивирования вирусов, у них сохранена чувствительность исходной ткани к вирусам.

Суспензионные культуры клеток. В 1953 г. Оуэне с сотр. показали способность клеток размножаться в свободно суспендированном состоянии. В последующие годы этот метод был значительно усовершенствован: была создана современная аппаратура, обеспечивающая размножение клеток со строго заданными параметрами (температура, рН, скорость перемешивания), а также адаптированы многие линии перевиваемых клеток к размножению в этих условиях (ВНК-21, Нер-2, МДВК и др.). Выращивание вирусов в суспензионных культурах клеток открывает большие возможности в промышленном производстве вакцин и диагностикумов. Однако только перевиваемые клетки хорошо культивируются в суспензии.

Новый подход к культивированию клеток в суспензии – применение микроносителей (сефадекс, силикагель, цитолар и др.). На микроносителях культивируемые клетки формируют монослой. Таким образом, этот способ позволяет методами суспензионного культивирования выращивать зависимые от прикрепления к твердому субстрату клетки: первичные, субкультуры, диплоидные. Эти клетки принято называть поверхностно зависимыми.

Способ культивирования на микроносителях (рис. 27) в настоящее время чрезвычайно популярен, так как он открывает большие перспективы в клеточной биотехнологии, в получении вакцин и других биологически активных веществ (интерферон, гормоны и т. д.).

Рисунок 27. Культивирование клеток на микроносителях (схема)

10.2 Хранение культур клеток. Каждый из трех основных типов клеточных культур – первичных культур, диплоидных штаммов и перевиваемых линий клеток, используемых в вирусологических исследованиях, часто приходится консервировать, так как при продолжительном пассировании клеток in vitro есть опасность бактериального загрязнения и неконтролируемых (генетических) изменений самих клеток.

Наиболее простой метод консервирования культур клеток – хранение их при 4 °С до 1–6 нед. Успешно применяют хранение клеточных штаммов в условиях сухого льда (минус 78 °С) и жидкого азота (минус 196 °С). Для этого клетки снимают с матрасов, суспендируют в концентрации 10 6 в 1 мл питательной среды, содержащей в качестве защитных веществ 10–40 % сыворотки и 10 % очищенного стерильного глицерина (вместо глицерина успешно применяют ДМСО – диметилсульфоксид). Затем клеточную суспензию разливают в ампулы, запаивают и выдерживают 1–3 ч при 4 °С, после чего замораживают клетки в смеси этилового спирта с сухим льдом. Скорость охлаждения не должна превышать 1 °С в 1 мин. При снижении температуры до минус 25 °С ампулы помещают для хранения в сухой лед. Если для хранения используют жидкий азот, то ампулы с клетками охлаждают до минус 70 °С и кладут в жидкий азот. Хранение клеток в жидком азот е в течение ряда лет не изменяет их пролиферативную активность и чувствительность к вирусам.

Восстанавливают замороженные клетки следующим образом: ампулу с замороженными клетками быстро погружают в водяную баню на 1–2 мин при легком встряхивании, затем клетки выливают в матрас, добавляют соответствующее количество ростовой среды и культивируют в термостате при 37 °С. Для удаления глицерина или ДМСО питательную среду заменяют на следующий день после посева.

При транспортировке клеток матрасы с выросшим монослоем заливают средой доверху и закрывают резиновой пробкой. В лаборатории питательную среду сливают и используют при культивировании этих клеток в виде добавок к питательной среде, применяемой в данной лаборатории.

Можно транспортировать и клеточную суспензию при 4 °С. При благоприятных условиях транспортировки, исключающих перегревание и замораживание клеток, 80–90 % из них сохраняют жизнеспособность до 7–8 дней.

Работа с культурой клеток требует абсолютной стерильности, тщательной подготовки посуды, соответствующих растворов, питательных сред и высокого качества воды.

10.3 Контаминация культур клеток. Работа с культурами клеток, их использование в вирусологических и других исследованиях, в биотехнологии требуют постоянного контроля на отсутствие посторонних агентов (контаминантов). Контаминантами могут быть вирусы, бактерии, грибы, микоплазмы и клетки других клеточных культур. Микоплазмы – одни из наиболее частых контаминантов, особенно в перевиваемых линиях клеток. Своевременное выявление их, других микроорганизмов или вирусов в культуре клеток – важное условие поддержания высокого качества последней. Паспортизация стабильных клеточных линий предусматривает в качестве необходимого теста контроль на отсутствие микоплазмоконтаминации, что должно стать обязательным для всех лабораторий, где работают с культурами клеток.

Резкое закисление питательной среды в культуральных флаконах и опалесценция ее могут быть следствием контаминации культур клеток микоплазмами. Для выявления последних используют следующие методы: посев на питательные среды, тест-культуры, цитологические, радиоавтографические и электронно-микроскопические.

В случае контаминации клеточные культуры уничтожают, а культивирование возобновляют из резервных расплодок, хранящихся в жидком азоте. Только редкие и уникальные культуры подлежат деконтаминации.

Предупредить размножение и подавить случайно попавшие в клеточную культуру бактерии удается с помощью противомикробных препаратов (антибиотиков и др.), добавляемых в ростовые среды непосредственно перед их использованием. Эти препараты следует строго дозировать и применять дифференцированно. Их использование – необходимое условие при возрастании риска контаминации в процессе получения первичных культур клеток при крупномасштабном суспензионном выращивании клеток, массовом производственном культивировании перевиваемых клеток, а также во всех случаях объединения клеточного материала.

При работе с культурами клеток используют многие антимикробные (нетоксичные) препараты в оптимальных дозах, характер действия которых приведен в таблице 5. Выбор эффективного препарата или комплекса препаратов зависит от чувствительности к ним конкретных контаминантов.

Таблица 5.

Противомикробные препараты для культур клеток (Л. П. Дьяконов и др.)

Клеточные культуры — это генетически однородные популяции клеток, растущих в постоянных условиях окружающей среды. Это могут быть штаммы нормальных клеток человека, животных, растений или тканей злокачественных опухолей.

Условия культивирования

Клетки обычно помещают в стеклянные сосуды, отсюда и исследования получили название изучение in vitro (от лат. In — в, vitro — стекло), хотя теперь чаще культуры выращивают в пластмассовых сосудах. Выделенные из тканей клетки инкубируют при температуре 38 ° C 39 ° C (для клеток животного и человеческого организмов) и при 22 ° C 28 ° C (для растительных клеток) в питательной среде соответствующего состава. Клетки тогда растут в виде суспензии или монослоя. Суспензионная культура — это выращивание отдельных клеток или небольших их групп во взвешенном состоянии в жидкой питательной среде с использованием аппаратуры, обеспечивающей их аэрацию и перемешивание. Характерной особенностью суспензионных культур является их морфологическая и биохимическая гетерогенность. Клеточная популяция содержит клетки, которые отличаются по размеру и форме.

Применение

Применение в цитологии

В цитологии данный метод удобен тем, что клетки в культуре легко доступны для различных биохимических манипуляций. При работе с ними радиоактивные вещества, яды, гормоны и др. могут быть введены в нужной концентрации в течение требуемого времени. Количество этих веществ может быть на порядок меньше, чем при эксперименте на животных. Исчезает угроза того, что вещество будет Метаболизированный печенью, экскретироваться почками или отложится в мышцах. Это обеспечивает получение реальных значений скорости действия вещества на клетку или ее усвоения клеткой.

Для исследования живых растительных клеток используют культуру изолированных протопластов. Изолированные протопласты можно определить как «голые» клетки растений, поскольку клеточная стенка удаляется механическим или ферментативным способом. Система изолированных протопластов дает возможность вести селекцию на клеточном уровне, работать в малом объеме с большим количеством индивидуальных клеток, получать новые формы растений путем прямого переноса генов, получать соматические гибриды между удаленными в систематическом отношении видами. Поскольку в изолированных протопластах сразу начинается регенерация клеточной оболочки, то они являются удобным объектом для изучения формирования целлюлозных микрофибрилл.

Применение в вирусологии

В вирусологии культуры клеток используются очень широко, поскольку с ними сравнительно легко работать в лаборатории, в отличие от других методов — выращивание вирусов на куриных эмбрионах или в организме живых животных. Кроме того, на монослое клеточной культуры можно хорошо изучить цитопатическое действие вирусов, по образованию внутри- клеточных включений, бляшек, в реакциях гемадсорбции и гемагглютинации и по цветовой пробоя. При работе с культурами клеток существенные результаты могут быть получены при работе с небольшим количеством культур. Эксперименты, которые требуют для подтверждения того или иного факта сотни или тысячи лабораторных животных могут быть с равным статистической достоверностью поставлены на таком же количестве культур клеток. Таким образом при лаборатории не надо держать виварий и отсутствуют этические аспекты обращения с больными животными.

Также изучается трансформация клеток вирусами, механизм которой подобен механизму возникновения злокачественных опухолей.

Применение в фармакологии

Культуры клеток широко применяются для тестирования действия веществ, которые могут быть использованы в качестве лекарственных препаратов. Несмотря на то, что результаты, полученные на культурах клеток нельзя экстраполировать на весь организм, не вызывает сомнения, что если то или иное вещество нарушает деятельность клеток из нескольких разных линиях культур, то необходимо ожидать негативного эффекта и при введении этого вещества в организм.

Применение в биотехнологии

Специфические культуры клеток является ценным источником гормонов и других биологически активных веществ. Уже сейчас они применяются для производства противовирусного белка интерферона.

Применение в генетике

В генетике способность клеток к росту в культуре используется в следующих направлениях:

  • Клонирование
  • Хранение клеток
  • Получение мутантных клеток и работа с ними

Типы культур клеток

1. Первично-трипсинизовани — получают из измельченных тканей человека и животных путем их обработки трипсином или другими ферментами. Выдерживают лишь 5-10 делений (пассажей).

2. перевиваемых — клетки, которые приобрели способность к безграничному размножению, поскольку являются производными опухолей человека и животных.

3. Напивперещеплювани (диплоидные) — могут выдерживать до 100 пассажей, сохраняя при этом исходный диплоидный набор хромосом.

Наиболее распространенные линии клеток

Линия клеток Расшифровка сокращения Организм Ткань Морфология Примечания и ссылки
293-T человек почка (эмбриональная) Производная от HEK-293 ECACC
3T3 cells «3-day transfer, inoculum 3 x 105 cells» мышь эмбриональные фибробласты Известна также как NIH 3T3 ECACC
721 человек меланома
9L крыса глиобластома
A2780 человек яичник рак яичника ECACC
A2780ADR человек яичник производное A2780 с резистентностью к адриамицин ECACC
A2780cis человек яичник производное A2780 с резистентностью к цисплатина ECACC
A172 человек глиобластома злокачественная глиома ECACC
A431 человек кожаный эпителий плоскоклеточная карцинома ECACCCell Line Data Base
A-549 человек карцинома легких эпителий DSMZECACC
B35 крыса нейробластома ATCC
BCP-1 человек периферические лейкоциты HIV + лимфома ATCC
BEAS-2B bronchial epithelium + adenovirus 12-SV40 virus hybrid (Ad12SV40) человек легкие эпителий ATCC
bEnd.3 brain endothelial мышь кора головного мозга эндотелий ATCC
BHK-21 «Baby Hamster Kidney» хомяк почка фибробласты ECACCOlympus
BR 293 человек молочная железа рак
BxPC3 Biopsy xenograph of pancreatic carcinoma line 3 человек панкреатическая аденокарцинома эпителий ATCC
C3H-10T1 / 2 мышь эмбриональные мезенхимальные клетки ECACC
C6 / 36 комар ткани личинки ECACC
CHO Chinese hamster ovary Cricetulus griseus яичник эпителий ECACCICLC
COR-L23 человек легкие ECACC
COR-L23 / CPR человек легкие ECACC
COR-L23 / 5010 человек легкие ECACC
COR-L23 / R23 человек легкие эпителий ECACC
COS-7 Cercopithecus aethiops, origin-defective SV-40 обезьяна Cercopithecus aethiops почка фибробласты ECACCATCC
CML T1 Chronic Myelod Leukaemia T-lymphocyte 1 человек хроническая миелоидна лейкемия T-клеточная лейкемия Blood
CMT canine mammary tumor собака молочная железа эпителий
D17 собака остеосаркома ECACC
DH82 собака гистиоцитоз моноциты / макрофаги ECACC
DU145 человек карцинома простата
DuCaP Dura mater Cancer of the Prostate человек эпителий 11317521
EL4 мышь T-клеточная лейкемия ECACC
EMT6 / AR1 мышь молочная железа эпителий ECACC
EMT6 / AR10.0 мышь молочная железа эпителий ECACC
FM3 человек метастазы в лимфатический узел меланома
H1299 человек легкие рак
H69 человек легкие ECACC
HB54 Гибридома Гибридома секретирует L243 mAb (против HLA-DR) Human Immunology
HB55 Гибридома Гибридома секретирует MA2.1 mAb (против HLA-A2 и HLA-B17) Journal of Immunology
HCA2 человек фибробласты Journal of General Virology
HEK-293 human embryonic kidney человек почка (эмбриональная) эпителий ATCC
HeLa Henrietta Lacks человек рак шейки матки эпителий DSMZECACC
Hepa1c1c7 clone 7 of clone 1 hepatoma line 1 мышь гепатома эпителий ECACC
HL-60 human leukemia человек миелобласты клетки крови ECACCDSMZ
HMEC human mammary epithelial cell человек эпителий ECACC
HT-29 человек эпителий толстого кишечника аденокарцинома ECACC

Cell Line Data Base

Jurkat человек T-клеточная лейкемия белые клетки крови ECACC
JY человек лимфобласты В-клетки, имортализовани EBV
K562 человек лимфобласты ECACC
Ku812 человек лимфобласты эритролейкемию ECACC
KCL22 человек лимфобласты хронической миелоидной лейкемией
KYO1 Kyoto 1 человек лимфобласты хронической миелоидной лейкемией DSMZ
LNCap Lymph node Cancer of the Prostate человек аденокарцинома простаты эпителий ECACCATCC
Ma-Mel 1, 2, 3 … .48 человек линии клеток меланомы
MC-38 мышь аденокарцинома
MCF-7 Michigan Cancer Foundation-7 человек молочная железа инвазивная карцинома протоков молочной железы ER +, PR +
MCF-10A Michigan Cancer Foundation человек молочная железа эпителий ATCC
MDA-MB-231 человек молочная железа рак ECACC
MDA-MB-468 MD Anderson — Metastatic Breast человек молочная железа рак ECACC
MDA-MB-435 MD Anderson — Metastatic Breast человек молочная железа меланома или карцинома (единое мнение отсутствует) Cambridge Pathology ECACC
MDCK II Madin Darby canine kidney собака почка эпителий ECACC ATCC
MOR / 0.2R человек легкие ECACC
NCI-H69 / CPR человек легкие ECACC
NCI-H69 / LX10 человек легкие ECACC
NCI-H69 / LX20 человек легкие ECACC
NCI-H69 / LX4 человек легкие ECACC
NIH-3T3 National Institutes of Health, 3-day transfer, inoculum 3 x 10 май cells мышь эмбрион фибробласты ECACCATCC
NALM-1 периферическая кровь хронической миелоидной лейкемией Cancer Genetics and Cytogenetics
NW-145 меланома ESTDAB
OPCN / OPCT Onyvax Prostate Cancer …. линии клеток рака простаты Asterand
Peer человек T-клеточная лейкемия DSMZ
PNT-1A / PNT 2 линии клеток рака простаты ECACC
RenCa Renal Carcinoma мышь карцинома почки
RIN-5F мышь поджелудочная железа
RMA / RMAS мышь T-клеточный рак
Saos-2 человек остеосаркома ECACC
Sf-9 Spodoptera frugiperda бабочка Spodoptera frugiperda яичник DSMZECACC
SkBr3 человек карцинома молочной железы
T2 человек Гибридома В-клеток и Т-клеточной лейкемии DSMZ
T-47D человек молочная железа карцинома протоков
T84 человек карцинома толстого кишечника / метастазы в легкие эпителий ECACCATCC
THP1 человек моноциты острый миелоидный лейкоз ECACC
U373 человек глиобластома-астроцитома эпителий
U87 человек глиобластома-астроцитома эпителий Abcam
U937 человек лейкемическая моноцитарная лимфома ECACC
VCaP Vertebra Prostate Cancer человек метастатический рак простаты эпителий ECACC ATCC
Vero "Vera Reno "/" Vero" ("истина") африканская зеленая мартышка эпителий почки ECACC
WM39 человек кожа первичная меланома
WT-49 человек лимфобласты
X63 мышь меланома
YAC-1 мышь лимфома Cell Line Data Base ECACC
YAR человек B-лимфоциты трансформированные EBV Human Immunology
Похожие публикации