Как пройдет луч через призму. A. Лучи в призме

Закон преломления света

Явление преломления света, наверное, каждый не раз встречал в повседневной жизни. Например, если опустить в прозрачный стакан с водой трубочку, то можно заметить, что та часть трубочки, которая находится в воде, кажется сдвинутой в сторону. Это объясняется тем, что на границе двух сред происходит изменение направления лучей, иными словами преломления света.

Точно так же, если опустить в воду под наклоном линейку, будет казаться, что она преломилась и ее подводная часть поднялась выше.

Ведь оказывается, что лучи света, оказавшись на границе воздуха и воды, испытывают преломление. Луч света попадает на поверхность воды под одним углом, а дальше он уходит вглубь воды под другим углом, под меньшим наклоном к вертикали.



Если пустить из воды в воздух обратный луч, он пройдет по тому же самому пути. Угол между перпендикуляром к поверхности раздела сред в точке падения и падающим лучом называется углом падения.

Угол преломления – это угол между тем же самым перпендикуляром и преломленным лучом. Преломления света на границе двух сред объясняется различной скоростью распространения света в этих средах. При преломлении света всегда выполнятся две закономерности:

Во-первых, лучи, независимо от того он падающий или преломленный, а также и перпендикуляр, который является границей раздела двух сред в точке излома луча - всегда лежат в одной плоскости;

Во-вторых, отношение sіnus угла падения к sіnus угла преломления, являются постоянной величиной для двух этих сред.

Эти два утверждения выражают закон преломления света.



Sіnus угла падения α относится к sіnus угла преломления β, так же как скорость волны в первой среде - v1 к скорости волны во второй среде - v2, и равен величине n. N – это постоянная величина, которая не зависит от угла падения. Величина n называется показателем преломления второй среды относительно первой среды. И если в качестве первой среды был вакуум, то показатель преломления второй среды называют абсолютным показателем преломления. Соответственно он равен отношению sіnus угла падения к sіnus угла преломления при переходе светового луча из вакуума в данную среду.

Показатель преломления зависит от характеристик света, от температуры вещества и от его плотности, то есть от физических характеристик среды.

Чаще приходится рассматривать переход света через границу воздух-твердое тело или воздух-жидкость, чем через границу вакуум-определенная среда.

Следует отметить так же, что относительные показатель преломления двух веществ равен отношению из абсолютных показателей преломления.

Давайте познакомится с этим законом с помощью простых физических опытов, которые доступы вам всем в бытовых условиях.

Опыт 1.

Положим монету в чашку так, чтобы она скрылась за краем чашки, а теперь будем наливать в чашку воду. И вот что удивительно: монета показалась из-за края чашки, будто бы она всплыла, или дно чашки поднялось вверх.



Нарисуем монету в чашке с водой, и идущие от нее лучи солнца. На границе раздела воздуха и воды эти лучи преломляются и выходят из воды под большим углом. А мы видим монету в том месте, где сходятся линии преломленных лучей. Поэтому видимое изображение монеты находится выше, чем сама монета.



Опыт 2.

Поставим на пути параллельных лучей света наполненную водой емкость с параллельными стенками. На входе из воздуха в воду все четыре луча повернулись на некоторый угол, а на выходе из воды в воздух они повернулись на тот же самый угол, но в обратную сторону.



Увеличим наклон лучей, и на выходе они все равно останутся параллельными, но сильнее сдвинутся в сторону. Из-за этого сдвига книжные строчки, если посмотреть на них сквозь прозрачную пластину, кажутся перерезанными. Они сместись вверх, как поднималась вверх монета в первом опыте.



Все прозрачные предметы мы, как правило, видим исключительно благодаря тому, что свет преломляется и отражается на их поверхности. Если бы такого эффекта не существовало, то все эти предметы были бы полностью невидимыми.

Опыт 3.

Опустим пластину из оргстекла в сосуд с прозрачными стенками. Ее прекрасно видно. А теперь зальем в сосуд подсолнечное масло, и пластина стала почти невидимой. Дело в том, что световые лучи на границе масла и оргстекла почти не преломляются, вот пластина и становится пластиной невидимой.



Ход лучей в треугольной призме

В различных оптических приборах довольно часто используют треугольную призму, которая может быть изготовлена из такого материала, как стекло, или же из других прозрачных материалов.

При прохождении через треугольную призму лучи преломляются на обеих поверхностях. Угол φ между преломляющими поверхностями призмы называется преломляющим углом призмы. Угол отклонения Θ зависит от показателя преломления n призмы и угла падения α.

Θ = α + β1 - φ, f= φ + α1


Все вы знаете известную считалочку для запоминания цветов радуги. Но почему эти цвета всегда располагаются в таком порядке, как они получаются из белого солнечного света, и почему в радуге нет никаких других цветов кроме этих семи известно не каждому. Объяснить это легче на опытах и наблюдениях.

Красивые радужные цвета мы можем видеть на мыльных пленках, особенно если эти пленки совсем тонкие. Мыльная жидкость стекает вниз и в этом же направлении движутся цветные полосы.



Возьмем прозрачную крышку от пластиковой коробки, а теперь наклоним ее так, чтобы от крышки отразился белый экран компьютера. На крышке появятся неожиданно яркие радужные разводы. А какие прекрасные радужные цвета видны при отражении света от компакт-диска, особенно если посветить на диск фонариком и отбросить эту радужную картину на стену.



Первым появление радужных цветов попробовал объяснить великий английский физик Исаак Ньютон. Он пропустил в темную комнату узкий пучок солнечного света, а на его пути поставил треугольную призму. Выходящий из призмы свет образует цветную полосу, которая называется спектром. Меньше всего в спектре отклоняется красный цвет, а сильнее всего - фиолетовый. Все остальные цвета радуги располагаются между этими двумя без особо резких границ.



Лабораторный опыт

В качестве источник белого света выберем яркий светодиодный фонарик. Чтобы сформировать узкий световой пучок поставим одну щель сразу за фонариком, а вторую непосредственно перед призмой. На экране видна яркая радужная полоса, где хорошо различимы красный цвет, зеленый и синий. Они и составляют основу видимого спектра.



Поставим на пути цветного пучка цилиндрическую линзу и настроим ее на резкость – пучок на экране собрался в узкую полоску, все цвета спектра смешались, и полоска снова стала белой.

Почему же призма превращает белый свет в радугу? Оказывается, дело в том, что все цвета радуги уже содержатся в белом свете. Показатель преломления стекла различается для лучей разного цвета. Поэтому призма отклоняет эти лучи по-разному.



Каждый отдельный цвет радуги является чистым и его уже нельзя расщепить на другие цвета. Ньютон доказал это на опыте, выделив из всего спектра узкий пучок и поставив на его пути вторую призму, в которой никакого расщепления уже не произошло.

Теперь мы знаете, как призма разлагает белый свет на отдельные цвета. А в радуге капельки воды работают как маленькие призмы.

Но если посветить фонариком на компакт-диск работает немного другой принцип, несвязанный с преломление света через призму. Эти принципы будут изучаться в дальнейшем, на уроках физики, посвященным свету и волновой природе света.

«Преломление света физика» - N 2,1 – относительный показатель преломления второй среды относительно первой. Если n<1, то угол преломления больше угла падения. Если обозначить скорость распространения света в первой среде V1, а во второй – V2, то n = V1/ V2. Преломление света. Законы преломления света 8 класс. План изложения нового материала:

«Преломление света» - Световой луч. Негомоцентрические пучки не сходятся в одну точку пространства. Видимый свет - электромагнитное излучение с длинами волн? 380-760 нм (от фиолетового до красного). На фольгу выливалась ртуть, которая образовывала с оловом амальгаму. Набор близких лучей света может рассматриваться как пучок света.

«Отражение и преломление света» - Рене Декарт. С > V. Можно ли создать шапку-невидимку? Евклид. Опыт Евклида. Евклид (III в.до н.э.) - древнегреческий ученый. Закон преломления света. Зависимость угла преломления от угла падения. Учитель физики Октябрьской СОШ №1 Салихова И.Э. {Ссылка на эксперимент «Ход луча воздух - стекло» }.

«Законы преломления» - Преломление света Примеры явления. Обратимая диаграмма. Какая среда оптически более плотная? 1.На рисунке изображено преломление луча света на границе двух сред. Определение. Оптические приборы 1. Микроскоп. 2.Фотоаппарат. 3.Телескоп. Законы преломления. На диаграмме отражён принцип обратимости световых лучей.

«Физика преломление света» - Преломление света. Автор: Васильева Е.Д. Учитель физики, МОУ гимназия, 2009г. Из сказки Г.-Х. Законы преломления света. Но увы! Зеркальное Диффузное. Полное отражение. Отражение -.

«Преломление света в разных средах» - Мираж сверхдальнего видения. Радуга глазами наблюдателя. Истинное (А) и кажущееся (В) положение рыбы. Ход луча в оптически неоднородной среде. Почему ноги человека, зашедшего в воду, кажутся короче? Малый круг. Световод. Рефракция – отклонение света от прямолинейного распространения в оптически неоднородной среде.

11.2. Геометрическая оптика

11.2.2. Отражение и преломление световых лучей в зеркале, плоскопараллельной пластинке и призме

Формирование изображения в плоском зеркале и его свойства

Законы отражения, преломления и прямолинейного распространения света используются при построении изображений в зеркалах, рассмотрении хода световых лучей в плоскопараллельной пластинке, призме и линзах.

Ход световых лучей в плоском зеркале показан на рис. 11.10.

Изображение в плоском зеркале формируется за плоскостью зеркала на том же расстоянии от зеркала f , на каком находится предмет перед зеркалом d :

f = d .

Изображение в плоском зеркале является:

  • прямым;
  • мнимым;
  • равным по величине предмету: h = H .

Если плоские зеркала образуют между собой некоторый угол, то они формируют N изображений источника света, помещенного на биссектрису угла между зеркалами (рис. 11.11):

N = 2 π γ − 1 ,

где γ - угол между зеркалами (в радианах).

Примечание. Формула справедлива для таких углов γ, для которых отношение 2π/γ является целым числом.

Например, на рис. 11.11 показан источник света S , лежащий на биссектрисе угла π/3. Согласно приведенной выше формуле формируются пять изображений:

1) изображение S 1 формируется зеркалом 1;

2) изображение S 2 формируется зеркалом 2;

Рис. 11.11

3) изображение S 3 является отражением S 1 в зеркале 2;

4) изображение S 4 является отражением S 2 в зеркале 1;

5) изображение S 5 является отражением S 3 в продолжении зеркала 1 или отражением S 4 в продолжении зеркала 2 (отражения в указанных зеркалах совпадают).

Пример 8. Найти число изображений точечного источника света, полученных в двух плоских зеркалах, образующих друг с другом угол 90°. Источник света находится на биссектрисе указанного угла.

Решение . Выполним рисунок, поясняющий условие задачи:

  • источник света S расположен на биссектрисе угла между зеркалами;
  • первое (вертикальное) зеркало З1 формирует изображение S 1;
  • второе (горизонтальное) зеркало З2 формирует изображение S 2;
  • продолжение первого зеркала формирует изображение мнимого источника S 2, а продолжение второго зеркала - мнимого источника S 1; указанные изображения совпадают и дают S 3.

Число изображений источника света, помещенного на биссектрису угла между зеркалами, определяется формулой

N = 2 π γ − 1 ,

где γ - угол между зеркалами (в радианах), γ = π/2.

Число изображений составляет

N = 2 π π / 2 − 1 = 3 .

Ход светового луча в плоскопараллельной пластинке

Ход светового луча в плоскопараллельной пластинке зависит от оптических свойств среды, в которой находится пластинка.

1. Ход светового луча в плоскопараллельной пластинке, находящейся в оптически однородной среде (по обе стороны от пластинки коэффициент преломления среды одинаков), показан на рис. 11.12.

Световой луч, падающий на плоскопараллельную пластинку под некоторым углом i 1 , после прохождения плоскопараллельной пластинки:

  • выходит из нее под тем же углом:

i 3 = i 1 ;

  • смещается на величину x от первоначального направления (пунктир на рис. 11.12).

2. Ход светового луча в плоскопараллельной пластинке, находящейся на границе двух сред (по обе стороны от пластинки коэффициенты преломления сред различны), показан на рис. 11.13 и 11.14.

Рис. 11.13

Рис. 11.14

Световой луч после прохождения плоскопараллельной пластинки выходит из пластинки под углом, отличающимся от угла падения его на пластинку:

  • если показатель преломления среды за пластинкой меньше показателя преломления среды перед пластинкой (n 3 < n 1), то:

i 3 > i 1 ,

т.е. луч выходит под бо́льшим углом (см. рис. 11.13);

  • если показатель преломления среды за пластинкой больше показателя преломления среды перед пластинкой (n 3 > n 1), то:

i 3 < i 1 ,

т.е. луч выходит под меньшим углом (см. рис. 11.14).

Смещение луча - длина перпендикуляра между выходящим из пластинки лучом и продолжением луча, падающего на плоскопараллельную пластинку.

Смещение луча при выходе из плоскопараллельной пластинки, находящейся в оптически однородной среде (см. рис. 11.12), рассчитывается по формуле

где d - толщина плоскопараллельной пластинки; i 1 - угол падения луча на плоскопараллельную пластинку; n - относительный показатель преломления материала пластинки (относительно той среды, в которую помещена пластинка), n = n 2 /n 1 ; n 1 - абсолютный показатель преломления среды; n 2 - абсолютный показатель преломления материала пластинки.

Рис. 11.12

Смещение луча при выходе из плоскопараллельной пластинки может быть рассчитано с помощью следующего алгоритма (рис. 11.15):

1) вычисляют x 1 из треугольника ABC , пользуясь законом преломления света:

где n 1 - абсолютный показатель преломления среды, в которую помещена пластинка; n 2 - абсолютный показатель преломления материала пластинки;

2) вычисляют x 2 из треугольника ABD ;

3) рассчитывают их разность:

Δx = x 2 − x 1 ;

4) смещение находят по формуле

x = Δx  cos i 1 .

Время распространения светового луча в плоскопараллельной пластинке (рис. 11.15) определяется формулой

где S - путь, пройденный светом, S = | A C | ; v - скорость распространения светового луча в материале пластинки, v = c /n ; c - скорость света в вакууме, c ≈ 3 ⋅ 10 8 м/с; n - показатель преломления материала пластинки.

Путь, пройденный световым лучом в пластинке, связан с ее толщиной выражением

S = d  cos i 2 ,

где d - толщина пластинки; i 2 - угол преломления светового луча в пластинке.

Пример 9. Угол падения светового луча на плоскопараллельную пластинку равен 60°. Пластинка имеет толщину 5,19 см и изготовлена из материала с показателем преломления 1,73. Найти смещение луча при выходе из плоскопараллельной пластинки, если она находится в воздухе.

Решение . Выполним рисунок, на котором покажем ход светового луча в плоскопараллельной пластинке:

  • световой луч падает на плоскопараллельную пластинку под углом i 1 ;
  • на границе раздела воздуха и пластинки луч преломляется; угол преломления светового луча равен i 2 ;
  • на границе раздела пластинки и воздуха луч преломляется еще раз; угол преломления равен i 1 .

Указанная пластинка находится в воздухе, т.е. по обе стороны от пластинки среда (воздух) имеет одинаковый показатель преломления; следовательно, для расчета смещения луча можно применить формулу

x = d sin i 1 (1 − 1 − sin 2 i 1 n 2 − sin 2 i 1) ,

где d - толщина пластинки, d = 5,19 см; n - показатель преломления материала пластинки относительно воздуха, n = 1,73; i 1 - угол падения света на пластинку, i 1 = 60°.

Вычисления дают результат:

x = 5,19 ⋅ 10 − 2 ⋅ 3 2 (1 − 1 − (3 / 2) 2 (1,73) 2 − (3 / 2) 2) = 3,00 ⋅ 10 − 2 м = 3,00 см.

Cмещение луча света при выходе из плоскопараллельной пластинки равно 3 см.

Ход светового луча в призме

Ход светового луча в призме показан на рис. 11.16.

Грани призмы, через которые проходит луч света, называются преломляющими . Угол между преломляющими гранями призмы называется преломляющим углом призмы.

Световой луч после прохождения через призму отклоняется; угол между лучом, выходящим из призмы, и лучом, падающим на призму, называется углом отклонения луча призмой.

Угол отклонения луча призмой φ (см. рис. 11.16) представляет собой угол между продолжениями лучей I и II - на рисунке обозначены пунктиром и символом (I), а также пунктиром и символом (II).

1. Если световой луч падает на преломляющую грань призмы под произвольным углом , то угол отклонения луча призмой определяется формулой

φ = i 1 + i 2 − θ,

где i 1 - угол падения луча на преломляющую грань призмы (угол между лучом и перпендикуляром к преломляющей грани призмы в точке падения луча); i 2 - угол выхода луча из призмы (угол между лучом и перпендикуляром к грани призмы в точке выхода луча); θ - преломляющий угол призмы.

2. Если световой луч падает на преломляющую грань призмы под малым углом (практически перпендикулярно преломляющей грани призмы), то угол отклонения луча призмой определяется формулой

φ = θ(n − 1),

где θ - преломляющий угол призмы; n - относительный показатель преломления материала призмы (относительно той среды, в которую эта призма помещена), n = n 2 /n 1 ; n 1 - показатель преломления среды, n 2 - показатель преломления материала призмы.

Вследствие явления дисперсии (зависимость показателя преломления от частоты светового излучения) призма разлагает белый свет в спектр (рис. 11.17).

Рис. 11.17

Лучи различного цвета (различной частоты или длины волны) отклоняются призмой по-разному. В случае нормальной дисперсии (показатель преломления материала тем выше, чем больше частота светового излучения) призма наиболее сильно отклоняет фиолетовые лучи; наименее - красные.

Пример 10. Стеклянная призма, изготовленная из материала с коэффициентом преломления 1,2, имеет преломляющий угол 46° и находится в воздухе. Луч света падает из воздуха на преломляющую грань призмы под углом 30°. Найти угол отклонения луча призмой.

Решение . Выполним рисунок, на котором покажем ход светового луча в призме:

  • световой луч падает из воздуха под углом i 1 = 30° на первую преломляющую грань призмы и преломляется под углом i 2 ;
  • световой луч падает под углом i 3 на вторую преломляющую грань призмы и преломляется под углом i 4 .

Угол отклонения луча призмой определяется формулой

φ = i 1 + i 4 − θ,

где θ - преломляющий угол призмы, θ = 46°.

Для расчета угла отклонения светового луча призмой необходимо вычислить угол выхода луча из призмы.

Воспользуемся законом преломления света для первой преломляющей грани

n 1  sin i 1 = n 2  sin i 2 ,

где n 1 - показатель преломления воздуха, n 1 = 1; n 2 - показатель преломления материала призмы, n 2 = 1,2.

Рассчитаем угол преломления i 2:

i 2 = arcsin (n 1  sin i 1 /n 2) = arcsin(sin 30°/1,2) = arcsin(0,4167);

i 2 ≈ 25°.

Из треугольника ABC

α + β + θ = 180°,

где α = 90° − i 2 ; β = 90° − i 3 ; i 3 - угол падения светового луча на вторую преломляющую грань призмы.

Отсюда следует, что

i 3 = θ − i 2 ≈ 46° − 25° = 21°.

Воспользуемся законом преломления света для второй преломляющей грани

n 2  sin i 3 = n 1  sin i 4 ,

где i 4 - угол выхода луча из призмы.

Рассчитаем угол преломления i 4:

i 4 = arcsin (n 2  sin i 3 /n 1) = arcsin(1,2 ⋅ sin 21°/1,0) = arcsin(0,4301);

i 4 ≈ 26°.

Угол отклонения луча призмой составляет

φ = 30° + 26° − 46° = 10°.

Геометрическая оптика

Геометрической оптикой называется раздел оптики, в котором изучаются законы распространения световой энергии в прозрачных средах на основе представления о световом луче.

Световой луч - это не пучок света,а линия указывающая направление распространения света.

Основные законы:

1. Закон о прямолинейном распространении света.

Свет в однородной среде распространяется прямолинейно. Прямолинейностью распространения света объясняется образование тени,то есть место, куда не проникает световая энергия. От источников малых размеров образуется резко очерченная тень,а больших размеров создают тени и полутени, в зависимости от величины источника и расстояния между телом и источником.

2. Закон отражения. Угол падения равен углу отражения.

Падающий луч, отраженный луч и перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости

б-угол падения в-угол отражения г-перпендикуляр опущенный в точку падения

3. Закон преломления.

На границе раздела двух сред свет меняет направление своего распространения. Часть световой энергии возвращается в первую среду,то есть происходит отражение света. Если вторая среда прозрачна,то часть света при определенных условиях может пройти через границу сред также меняя при этом,как правило, направление распространения. Это явление называется преломлением света.

б-угол падения в- угол преломления.

Падающий луч, отраженный луч и перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости. отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух данных сред.

Постоянная n называется относительным показателем преломления или показателем преломления второй среды относительно первой.

Ход лучей в треугольной призме

В оптических приборах часто применяется треугольная призма из стекла или других прозрачных материалов.

Ход лучей в сечении треугольной призмы

Луч, проходящий через треугольную стеклянную призму, всегда стремится к её основанию.

Угол цназывается преломляющим углом призмы.Угол отклонения луча и зависит от показания преломления n призмы и угла падения б.В оптических приборах часто применяют оптические призмы в виде равнобедренного прямоугольного треугольника. Их применение основано на том что предельный угол полного отражения для стекла равенб 0 =45 0

Рассмотрим метод определения показателя преломления, применимый для прозрачных веществ. Метод состоит в измерении угла отклонения лучей при прохождении света через призму, изготовленную из исследуемого материала. На призму направляется параллельный пучок лучей, поэтому достаточно рассмотреть ход одного из них (S 1) в плоскости, перпендикулярной линии пересечения луча преломляющих граней призмы (рис.6).

А 1 ─направление нормали к грани, на которую падает луч S 1 ,

А 2 ─ направление нормали к грани, из которой выходит луч S 2 ,

i 1 , i 2 - углы падения,

r 1 , r 2 - углы преломления на границах раздела АС и АВ соответственно,

φ - преломляющий угол призмы,

δ - угол отклонения выходящего из призмы луча относительно первоначального направления.

Ход луча через призму рассчитывается на основании законов преломления света. При преломлении на первой грани призмы АС получим

(12)

где n – показатель преломления материала призмы для данной длины волны света.

Для грани АВ закон преломления запишется как

. (13)

Соотношения 12 и 13 позволяют найти выражения для определения n . Однако экспериментально определить углы r 1 и i 1 достаточно сложно. На практике удобнее измерить угол отклонения луча призмой δ и преломляющий угол призмы φ.

Получим формулу для определения показателя преломления n через углы δ и φ .

Сначала воспользуемся известной в геометрии теоремой, что внешний угол треугольника равен сумме внутренних углов, не смежных с ним. Тогда из треугольника EDF получим

φ = r 1 + i 2 . (14)

Из треугольника EHF и, используя (14), получим:

δ =(i 1 – r 1 )+(r 2 – i 2 )= i 1 +r 2 –(r 1 + i 2 )= i 1 +r 2 + φ . (15)

Затем выразим угол δ через угол r 1 , используя законы преломления (12), (13) и (14), и определим условия минимальности δ :

i 1 = arcsin(n sin r 1);

r 2 = arcsin(n sin i 2 ) = arcsin(n sin (φ- r 1 ));

δ = arcsin(n sin r 1 ) +arcsin(n sin (φ- r 1 )).

Зависимость δ от r 1 имеет минимум, условие которого можно найти, приравняв производную δ от r 1 нулю:

Выражение (16) выполняется, если r 1 = φ - r 1. В соответствии с (14) имеем φ - r 1 = i 2 , поэтому r 1 = i 2 . Тогда из законов преломления (12) и (13) следует, что углы i 1 , r 2 также должны быть равны: i 1 = r 2 . Принимая во внимание (14) и (15), получим:

φ = 2 r 1 ; δ min =2 i 1 φ .

C учетом этих равенств окончательно получим:

и
.

Следовательно, при наименьшем угле отклонения луча призмой δ min показатель преломления вещества призмы может быть определен по формуле

. (17)

Таким образом, определение показателя преломления вещества сводится к измерению преломляющего угла призмы и угла наименьшего отклонения лучей .

Угол наименьшего отклонения δ образован двумя направлениями: направлением луча, падающего на призму S 1 и направлением луча, вышедшего из призмы S 2 . Если источник излучения не является монохроматическим, то из-за дисперсии вещества призмы направление преломленного луча Е F , а, следовательно, и направление вышедшего луча S 2 будут различными для разных длин волн, т.е. S 2 =f(λ ). Это приводит к тому, что δ и n для разных λ, будут различными.

Преломляющий угол призмы φ образован гранью призмы СА , на которую падает луч и гранью АВ , из которой выходит излучение, или перпендикулярами к этим граням А 1 и А 2 соответственно.

Источником излучения в работе служит ртутная лампа.

Похожие публикации