Что такое фрактал? Фракталы в природе. Введение во фракталы

Хаос - это порядок, который нужно расшифровать.

Жозе Сарамаго, «Двойник»

«Грядущим поколениям ХХ век будет памятен лишь благодаря созданию теорий относительности, квантовой механики и хаоса... теория относительности разделалась с иллюзиями Ньютона об абсолютном пространстве-времени, квантовая механика развеяла мечту о детерминизме физических событий, и, наконец, хаос развенчал Лапласову фантазию о полной предопределенности развития систем» . Эти слова известного американского историка и популяризатора науки Джеймса Глейка отражают огромную важность вопроса, который лишь вкратце освещается в статье, предлагаемой вниманию читателя. Наш мир возник из хаоса. Однако если бы хаос не подчинялся своим собственным законам, если бы в нем не было особой логики, он ничего не смог бы породить.

Новое - это хорошо забытое старое

Позволю себе еще одну цитату из Глейка:

Мысль о внутреннем подобии, о том, что великое может быть вложено в малое, издавна ласкает человеческую душу... По представлениям Лейбница, капля воды содержит в себе весь блистающий разноцветьем мир, где искрятся водяные брызги и живут другие неизведанные вселенные. «Увидеть мир в песчинке» - призывал Блейк, и некоторые ученые пытались следовать его завету. Первые исследователи семенной жидкости склонны были видеть в каждом сперматозоиде своего рода гомункулуса, т. е. крошечного, но уже полностью сформировавшегося человечка.

Ретроспективу подобных воззрений можно обратить гораздо дальше в глубь истории. Один из основных принципов магии - неотъемлемой ступени развития любого общества - состоит в постулате: часть подобна целому. Он проявлялся в таких действиях, как захоронение черепа животного вместо всего животного, модели колесницы вместо самой колесницы и т. д. Сохраняя череп предка, родственники считали, что он продолжает жить рядом с ними и принимать участие в их делах.

Еще древнегреческий философ Анаксагор рассматривал первичные элементы мироздания как частицы, подобные другим частицам целого и самому целому, «бесконечные и по множеству, и по малости». Аристотель характеризовал элементы Анаксагора прилагательным «подобочастные» .

А наш современник, американский кибернетик Рон Эглэш, исследуя культуру африканских племен и южноамериканских индейцев, сделал открытие: с древних времен некоторые из них использовали фрактальные принципы построения в орнаментах, узорах, наносимых на одежду и предметы быта, в украшениях, ритуальных обрядах и даже в архитектуре. Так, структура деревень некоторых африканских племен представляет собой круг, в котором находятся маленькие круги - дома, внутри которых еще более мелкие круги - дома духов. У иных племен вместо кругов элементами архитектуры служат другие фигуры, но они также повторяются в разных масштабах, подчиненных единой структуре. Причем эти принципы построения не были простым подражанием природе, но согласовывались с бытующим мировоззрением и социальной организацией .

Наша цивилизация, казалось бы, ушла далеко от первобытного существования. Однако мы продолжаем жить в том же мире, нас по-прежнему окружает природа, живущая по своим законам, несмотря на все попытки человека приспособить ее к своим нуждам. Да и сам человек (не будем забывать об этом) остается частью этой природы.

Герт Эйленбергер, немецкий физик, занявшийся изучением нелинейности, как-то заметил:

Почему силуэт согнувшегося под напором штормового ветра обнаженного дерева на фоне мрачного зимнего неба воспринимается как прекрасный, а очертания современного многофункционального здания, несмотря на все усилия архитектора, вовсе не кажутся такими? Сдается мне, что... наше чувство прекрасного «подпитывается» гармоничным сочетанием упорядоченности и беспорядка, которое можно наблюдать в естественных явлениях: облаках, деревьях, горных цепях или кристаллах снежинок. Все такие контуры суть динамические процессы, застывшие в физических формах, и для них типична комбинация устойчивости и хаотичности.

У истоков теории хаоса

Что мы понимаем под хаосом ? Невозможность предсказать поведение системы, беспорядочные скачки в разных направлениях, которые никогда не превратятся в упорядоченную последовательность.

Первым исследователем хаоса считается французский математик, физик и философ Анри Пуанкаре. Еще в конце XIX в. при изучении поведения системы с тремя телами, взаимодействующими гравитационно, он заметил, что могут быть непериодические орбиты, которые постоянно и не удаляются от конкретной точки, и не приближаются к ней.

Традиционные методы геометрии, широко используемые в естественных науках, основаны на аппроксимации структуры исследуемого объекта геометрическими фигурами, например линиями, плоскостями, сферами, метрическая и топологическая размерности которых равны между собой. В большинстве случаев свойства исследуемого объекта и его взаимодействие с окружающей средой описываются интегральными термодинамическими характеристиками, что приводит к утрате значительной части информации о системе и к замене ее на более или менее адекватную модель. Чаще всего подобное упрощение вполне оправдано, однако известны многочисленные ситуации, когда применение топологически неадекватных моделей недопустимо. Пример такого несоответствия привел в своей кандидатской диссертации (теперь уже доктор химических наук) Владимир Константинович Иванов: оно обнаруживается при измерении площади развитой (например, пористой) поверхности твердых тел с помощью сорбционных методов, регистрирующих изотермы адсорбции. Оказалось, что величина площади зависит от линейного размера молекул-«измерителей» не квадратично, чего следовало бы ожидать из простейших геометрических соображений, а с показателем степени, иногда вплотную приближающемся к трем .

Прогнозирование погоды - одна из проблем, над которой человечество бьется с древних времен. Существует известный анекдот на эту тему, где прогноз погоды передается по цепочке от шамана - оленеводу, затем геологу, потом редактору радиопередачи, и наконец круг замыкается, поскольку выясняется, что шаман узнал прогноз по радио. Описание такой сложной системы, как погода, со множеством переменных, невозможно свести к простым моделям. С данной задачи началось использование компьютеров для моделирования нелинейных динамических систем. Один из основоположников теории хаоса, американский метеоролог и математик Эдвард Нортон Лоренц много лет отдал проблеме прогнозирования погоды. Еще в 60-х годах прошлого века, пытаясь понять причины ненадежности прогнозов погоды, он показал, что состояние сложной динамической системы может сильно зависеть от начальных условий: незначительное изменение одного из многих параметров способно кардинально изменить ожидаемый результат. Лоренц назвал эту зависимость эффектом бабочки: «Сегодняшнее трепетание крыльев мотылька в Пекине через месяц может вызвать ураган в Нью-Йорке» . Ему принесла известность работа, посвященная общему круговороту атмосферы. Исследуя описывающую процесс систему уравнений с тремя переменными, Лоренц графически отобразил результаты своего анализа: линии графика представляют собой координаты точек, определяемых решениями в пространстве этих переменных (рис. 1). Полученная двойная спираль, названная аттрактор Лоренца (или «странный аттрактор»), выглядела как нечто бесконечно запутанное, но всегда расположенное в определенных границах и никогда не повторяющееся. Движение в аттракторе абстрактно (переменными могут быть скорость, плотность, температура и др.), и тем не менее оно передает особенности реальных физических явлений, таких как движение водяного колеса, конвекция в замкнутой петле, излучение одномодового лазера, диссипативные гармонические колебания (параметры которых играют роль соответствующих переменных).

Из тысяч публикаций, составивших специальную литературу по проблеме хаоса, вряд ли какая-либо цитировалась чаще, чем написанная Лоренцем в 1963 г. статья «Детерминистский непериодический поток» . Хотя благодаря компьютерному моделированию уже во времена этой работы предсказание погоды из «искусства превратилось в науку», долгосрочные прогнозы по-прежнему оставались недостоверными и ненадежными. Причина этого заключалась в том самом эффекте бабочки.

В тех же 60-х годах математик Стивен Смэйл из Калифорнийского университета собрал в Беркли исследовательскую группу из молодых единомышленников. Ранее он был удостоен медали Филдса за выдающиеся исследования в области топологии. Смэйл занимался изучением динамических систем, в частности нелинейных хаотических осцилляторов. Для воспроизведения всей неупорядоченности осциллятора ван дер Поля в фазовом пространстве он создал структуру, известную под названием «подкова» - пример динамической системы, имеющей хаотическую динамику.

«Подкова» (рис. 2) - точный и зримый образ сильной зависимости от начальных условий: никогда не угадаешь, где окажется начальная точка после нескольких итераций. Этот пример послужил толчком к изобретению русским математиком, специалистом по теории динамических систем и дифференциальных уравнений, дифференциальной геометрии и топологии Дмитрием Викторовичем Аносовым «диффеоморфизмов Аносова» . Позже из этих двух работ выросла теория гиперболических динамических систем. Прошло десятилетие, прежде чем результаты работы Смэйла удостоились внимания представителей других дисциплин. «Когда это все же случилось, физики поняли, что Смэйл повернул целый раздел математики лицом к реальному миру» .

В 1972 г. математик из Мэрилендского университета Джеймс Йорк прочитал вышеупомянутую статью Лоренца, которая поразила его. Йорк увидел в статье живую физическую модель и посчитал своей святой обязанностью донести до физиков то, чего они не разглядели в работах Лоренца и Смэйла. Он направил копию статьи Лоренца Смэйлу. Тот изумился, обнаружив, что безвестный метеоролог (Лоренц) десятью годами раньше обнаружил ту неупорядоченность, которую он сам посчитал однажды математически невероятной, и разослал копии всем своим коллегам.

Биолог Роберт Мэй, друг Йорка, занимался изучением изменений численности популяций животных. Мэй шел по стопам Пьера Ферхлюста, который еще в 1845 г. обратил внимание на непредсказуемость изменения численности животных и пришел к выводу, что коэффициент прироста популяции - величина непостоянная. Иными словами, процесс оказывается нелинейным. Мэй пытался уловить, что случается с популяцией в момент приближения колебаний коэффициента роста к некоторой критической точке (точке бифуркации). Варьируя значения этого нелинейного параметра, он обнаружил, что возможны коренные перемены в самой сущности системы: увеличение параметра означало возрастание степени нелинейности, что, в свою очередь, изменяло не только количественные, но и качественные характеристики результата. Подобная операция влияла как на конечное значение численности популяции, находившейся в равновесии, так и на ее способность вообще достигнуть последнего. При определенных условиях периодичность уступала место хаосу, колебаниям, которые никогда не затухали.

Йорк математически проанализировал описанные явления в своей работе, доказав, что в любой одномерной системе происходит следующее: если появляется регулярный цикл с тремя волнами (плавными подъемами и спадами значений какого-либо параметра), то в дальнейшем система начнет демонстрировать как правильные циклы любой другой продолжительности, так и полностью хаотичные. (Как выяснилось через несколько лет после опубликования статьи на международной конференции в восточном Берлине, советский (украинский) математик Александр Николаевич Шарковский несколько опередил Йорка в своих исследованиях ). Йорк написал статью для известного научного издания «Американский математический ежемесячник» . Однако Йорк достиг большего, чем просто математический результат: он продемонстрировал физикам, что хаос вездесущ, стабилен и структурирован. Он дал повод поверить в то, что сложные системы, традиционно описывающиеся трудными для решения дифференциальными уравнениями, могут быть представлены с помощью наглядных графиков.

Мэй пытался привлечь внимание биологов к тому, что популяции животных переживают не одни лишь упорядоченные циклы. На пути к хаосу возникает целый каскад удвоения периодов. Именно в точках бифуркации некоторое увеличение плодовитости особей могло привести, например, к смене четырехгодичного цикла популяции непарного шелкопряда восьмигодичным. Американец Митчел Фейгенбаум решил начать с подсчета точных значений параметра, порождавших такие изменения. Его расчеты показывали, что не имело значения, какова начальная популяция, - она все равно неуклонно приближалась к аттрактору. Затем, с первым удвоением периодов, аттрактор, подобно делящейся клетке, раздваивался. Потом происходило следующее умножение периодов, и каждая точка аттрактора вновь начинала делиться. Число - инвариант, полученный Фейгенбаумом, - позволило ему предугадывать, когда именно это произойдет. Ученый обнаружил, что может прогнозировать этот эффект для сложнейшего аттрактора - в двух, четырех, восьми точках... Говоря языком экологии, он мог прогнозировать действительную численность, которая достигается в популяциях во время ежегодных колебаний. Так Фейгенбаум открыл в 1976 г. «каскад удвоения периода», опираясь на работу Мэя и свои исследования турбулентности. Его теория отражала естественный закон, который относится ко всем системам, испытывающим переход от упорядоченного состояния к хаосу. Йорк, Мэй и Файгенбаум первыми на Западе в полной мере осознали важность удвоения периодов и сумели передать эту идею всему научному сообществу. Мэй заявлял, что хаос необходимо преподавать.

Советские математики и физики продвигались в своих исследованиях независимо от зарубежных коллег. Начало изучению хаоса положили работы А. Н. Колмогорова 50-х годов. Но и идеи зарубежных коллег не оставались без их внимания. Пионерами теории хаоса считаются советские математики Андрей Николаевич Колмогоров и Владимир Игоревич Арнольд и немецкий математик Юрген Мозер, построившие теорию хаоса, называемую КАМ (теория Колмогорова - Арнольда - Мозера). Другой наш выдающийся соотечественник, блестящий физик и математик Яков Григорьевич Синай, применил в термодинамике соображения, аналогичные «подкове Смейла». Едва в 70-х годах с работой Лоренца познакомились западные физики, как она приобрела известность и в СССР. В 1975 г., когда Йорк и Мэй еще прилагали немалые усилия к тому, чтобы добиться внимания коллег, Синай и его товарищи организовали в Горьком исследовательскую группу для изучения этой проблемы.

В прошлом веке, когда узкая специализация и разобщение между различными дисциплинами стали в науке нормой, математики, физики, биологи, химики, физиологи, экономисты бились над схожими задачами, не слыша друг друга. Идеи, требующие изменения привычного мировоззрения, всегда с трудом пробивают себе путь. Однако постепенно стало ясно, что такие вещи, как изменение популяций животных, колебания цен на рынке, перемена погоды, распределение небесных тел по размерам и многое, многое другое, - подчиняются одним закономерностям. «Осознание этого факта заставило менеджеров пересмотреть отношение к страховке, астрономов - под другим углом зрения взглянуть на Солнечную систему, политиков - изменить мнение о причинах вооруженных конфликтов» .

К середине 80-х годов ситуация сильно изменилась. Идеи фрактальной геометрии объединили ученых, озадаченных собственными наблюдениями и не знавшими, как их интерпретировать. Для исследователей хаоса математика стала экспериментальной наукой, компьютеры заменили собой лаборатории. Графические изображения приобрели первостепенную важность. Новая наука дала миру особый язык, новые понятия: фазовый портрет, аттрактор, бифуркация, сечение фазового пространства, фрактал...

Бенуа Мандельброт, опираясь на идеи и работы предшественников и современников, показал, что такими сложными процессами, как рост дерева, образование облаков, вариации экономических характеристик или численности популяций животных управляют сходные, по сути, законы природы. Это определенные закономерности, по которым живет хаос. С точки зрения природной самоорганизации они намного проще, чем искусственные формы, привычные цивилизованному человеку. Сложными их можно признать лишь в контексте евклидовой геометрии, поскольку фракталы определяются посредством задания алгоритма, и, следовательно, могут быть описаны с помощью небольшого объема информации.

Фрактальная геометрия природы

Давайте попробуем разобраться, что же такое фрактал и «с чем его едят». А съесть некоторые из них действительно можно, как, например, типичного представителя, показанного на фотографии.

Слово фрактал происходит от латинского fractus - дробленый, сломанный, разбитый на куски. Под фракталом подразумевается математическое множество, обладающее свойством самоподобия, т. е. масштабной инвариантности.

Термин «фрактал» был придуман Мандельбротом в 1975 г. и получил широкую популярность с выходом в 1977 г. его книги «Фрактальная геометрия природы» . «Дайте чудовищу какое-нибудь уютное, домашнее имя, и вы удивитесь, насколько легче будет его приручить!» - говорил Мандельброт. Это стремление сделать исследуемые объекты (математические множества) близкими и понятными привело к рождению новых математических терминов, таких как пыль , творог , сыворотка , наглядно демонстрирующих их глубинную связь с природными процессами.

Математическое понятие фрактала выделяет объекты, обладающие структурами различных масштабов, как больших, так и малых, и, таким образом, отражает иерархический принцип организации. Конечно, различные ветви дерева, например, не могут быть точно совмещены друг с другом, но их можно считать подобными в статистическом смысле. Точно так же формы облаков, очертания гор, линия морского берега, рисунок пламени, сосудистая система, овраги, молния, рассматриваемые при различных масштабах, выглядят подобными. Хотя эта идеализация и может оказаться упрощением действительности, она существенно увеличивает глубину математического описания природы.

Понятие «природный фрактал» Мандельброт ввел для обозначения естественных структур, которые могут быть описаны с помощью фрактальных множеств. Эти природные объекты включают в себя элемент случайности. Созданная Мандельбротом теория позволяет количественно и качественно описывать все те формы, которые ранее назывались спутанными, волнистыми, шероховатыми и т. д.

Динамические процессы, о которых шла речь выше, так называемые процессы с обратной связью, возникают в различных физических и математических задачах. Все они имеют одно общее - конкуренцию нескольких центров (получивших имя «аттракторы») за доминирование на плоскости. То состояние, в котором система оказалась после некоторого числа итераций, зависит от ее «места старта». Поэтому каждому аттрактору соответствует некоторая область начальных состояний, из которых система обязательно попадет в рассматриваемое конечное состояние. Таким образом, фазовое пространство системы (абстрактное пространство параметров, ассоциированных с конкретной динамической системой, точки в котором однозначно характеризуют все возможные ее состояния) разбивается на области притяжения аттракторов. Налицо своеобразный возврат к динамике Аристотеля, согласно которой каждое тело стремится к предназначенному ему месту . Простые границы между «сопредельными территориями» в результате такого соперничества возникают редко. Именно в этой пограничной области и происходит переход от одной формы существования к другой: от порядка к хаосу. Общий вид выражения для динамического закона очень прост: х n+1 → f х n C . Вся сложность состоит в нелинейной зависимости между начальным значением и результатом. Если начать итерационный процесс указанного вида с некоторого произвольного значения \(x_0 \), то результатом его будет последовательность \(x_1 \), \(x_2 \), ..., которая либо будет сходиться к некоторому предельному значению \(X \), стремясь к состоянию покоя, либо придет к некоторому циклу значений, которые будут повторяться вновь и вновь, либо будет все время вести себя беспорядочно и непредсказуемо . Именно такие процессы исследовали еще во время Первой мировой войны французские математики Гастон Жюлиа и Пьер Фато.

Изучая множества, открытые ими, Мандельброт в 1979 г. пришел к изображению на комплексной плоскости образа, который является, как будет ясно из дальнейшего, своего рода оглавлением целого класса форм, именующегося множествами Жюлиа. Множество Жюлиа - это множество точек, возникающее в результате итерирования квадратичного преобразования: х n → х n−1 2 + C , динамика в окрестности которых неустойчива по отношению к малым возмущениям начального положения. Каждое последовательное значение \(x \) получается из предыдущего; комплексное число \(C \) называется управляющим параметром . Поведение последовательности чисел зависит от параметра \(C \) и начальной точки \(x_0 \). Если зафиксировать \(C \) и изменять \(x_0 \) в поле комплексных чисел, мы получим множество Жюлиа. Если же зафиксировать \(x_0 \) = 0 и изменять \(C \), получим множество Мандельброта (\(M \)). Оно подсказывает нам, какого вида множества Жюлиа следует ожидать при конкретном выборе \(C \). Каждое комплексное число \(C \) либо принадлежит области \(M \) (черной на рис. 3), либо нет. \(C \) принадлежит \(M \) тогда и только тогда, когда «критическая точка» \(x_0 \) = 0 не стремится к бесконечности. Множество \(M \) состоит из всех точек \(C \), которые ассоциируются со связными множествами Жюлиа, если же точка \(C \) лежит вне множества \(M \), ассоциированное с ней множество Жюлиа несвязно. Граница множества \(M \) определяет момент математического фазового перехода для множеств Жюлиа х n → х n−1 2 + C . Когда параметр \(C \) покидает \(M \), множества Жюлиа теряют свою связность, образно говоря, взрываются и превращаются в пыль. Качественный скачок, происходящий на границе \(M \), влияет и на примыкающую к границе область. Сложную динамическую структуру пограничной области можно приближенно показать, окрашивая (условно) в разные цвета зоны с одинаковым временем «убегания в бесконечность начальной точки \(x_0 \) = 0». Те значения \(C \) (один оттенок), при которых критической точке требуется данное число итераций, чтобы оказаться вне круга радиусом \(N \), заполняют промежуток между двумя линиями. По мере приближения к границе \(M \) необходимое число итераций увеличивается. Точка все большее время вынуждена блуждать извилистыми путями вблизи множества Жюлиа. Множество Мандельброта воплощает в себе процесс перехода от порядка к хаосу.

Интересно проследить путь, которым Мандельброт шел к своим открытиям. Бенуа родился в Варшаве в 1924 г., в 1936 семья эмигрировала в Париж. Окончив Политехническую школу, а затем и университет в Париже, Мандельброт переехал в США, где отучился еще и в Калифорнийском технологическом институте. В 1958 г. он устроился в научно-исследовательский центр IBM в Йорктауне. Несмотря на чисто прикладную деятельность компании, занимаемая должность позволяла ему вести исследования в самых разных областях. Работая в области экономики, молодой специалист занялся изучением статистики цен на хлопок за большой период времени (более 100 лет). Анализируя симметрию длительных и кратковременных колебаний цен, он заметил, что эти колебания в течение дня казались случайными и непредсказуемыми, однако последовательность таких изменений не зависела от масштаба. Для решения этой задачи он впервые использовал свои разработки будущей фрактальной теории и графическое отображение исследуемых процессов.

Интересуясь самыми разными областями науки, Мандельброт обратился к математической лингвистике, затем наступил черед теории игр. Он также предложил собственный подход к экономике, указав на упорядоченность масштабов в распространении малых и больших городов. Изучая малоизвестную работу английского ученого Льюиса Ричардсона, вышедшую после смерти автора, Мандельброт столкнулся с феноменом береговой линии. В статье «Какова длина береговой линии Великобритании?» он подробно исследует этот вопрос, над которым мало кто задумывался до него, и приходит к неожиданным выводам: длина береговой линии равна... бесконечности! Чем точнее вы стараетесь ее измерить, тем большим получается ее значение!

Для описания подобных явлений Мандельброту пришло в голову отталкиваться от идеи размерности. Фрактальная размерность объекта служит количественной характеристикой одной из его особенностей, а именно - заполнения им пространства.

Определение понятия фрактальной размерности восходит к работе Феликса Хаусдорфа, опубликованной в 1919 г., и было окончательно сформулировано Абрамом Самойловичем Безиковичем. Фрактальная размерность - мера детализации, изломанности, неровности фрактального объекта. В евклидовом пространстве топологическая размерность всегда определяется целым числом (размерность точки - 0, линии - 1, плоскости - 2, объемного тела - 3). Если проследить, например, проекцию на плоскость движения броуновской частицы, которая вроде бы должна состоять из отрезков прямой, т. е. иметь размерность 1, очень скоро окажется, что след ее заполняет почти всю плоскость. Но размерность плоскости - 2. Расхождение между этими величинами и дает нам право отнести данную «кривую» к фракталам, а ее промежуточную (дробную) размерность называть фрактальной. Если рассмотреть хаотическое движение частицы в объеме, фрактальная размерность траектории окажется больше 2, но меньше 3. Артерии человека, например, имеют фрактальную размерность примерно 2,7. Упомянутые в начале статьи результаты Иванова, относящиеся к измерению площади пор силикагеля, которые не могут быть истолкованы в рамках обычных евклидовых представлений, при использовании теории фракталов находят разумное объяснение .

Итак, с математической точки зрения, фракталом называется множество, для которого размерность Хаусдорфа - Безиковича строго больше его топологической размерности и может быть (а чаще всего и является) дробной.

Необходимо особо подчеркнуть, что фрактальная размерность объекта не описывает его форму, и объекты, имеющие одинаковую размерность, но порожденные различными механизмами образования, зачастую совершенно не похожи друг на друга. Физические фракталы обладают скорее статистическим самоподобием.

Дробное измерение позволяет вычислять характеристики, которые не могут быть четко определены иным путем: степени неровности, прерывистости, шероховатости или неустойчивости какого-либо объекта. Например, извилистая береговая линия, несмотря на неизмеримость ее длины, обладает присущей только ей шероховатостью. Мандельброт указал пути расчета дробных измерений объектов окружающей действительности. Создавая свою геометрию, он выдвинул закон о неупорядоченных формах, которые встречаются в природе. Закон гласил: степень нестабильности постоянна при различных масштабах.

Особую разновидность фракталов составляют временные фракталы . В 1962 г. Мандельброт столкнулся с задачей по устранению шумов в телефонных линиях, которые вызвали проблемы для компьютерных модемов. Качество передачи сигнала зависит от вероятности возникновения ошибок. Инженеры бились над проблемой уменьшения шумов, придумывая головоломные и дорогостоящие приемы, но не получали впечатляющих результатов. Опираясь на работу основателя теории множеств Георга Кантора, Мандельброт показал, что возникновения шумов - порождения хаоса - невозможно избежать в принципе, поэтому предложенные способы борьбы с ними не принесут результата. В поисках закономерности возникновения шумов он получает «канторову пыль» - фрактальную последовательность событий. Интересно, что тем же закономерностям подчиняется распределение звезд в Галактике:

«Вещество», однородно распределенное вдоль инициатора (единичный отрезок временной оси), подвергается воздействию центробежного вихря, который «сметает» его к крайним третям интервала... Створаживанием можно называть любой каскад неустойчивых состояний, приводящий в итоге к сгущению вещества, а термин творог может определять объем, внутри которого некая физическая характеристика становится - в результате створаживания - чрезвычайно концентрированной.

Хаотические явления, такие как турбулентность атмосферы, подвижность земной коры и т. д., демонстрируют сходное поведение в различных временных масштабах подобно тому, как объекты, обладающие инвариантностью к масштабу, обнаруживают сходные структурные закономерности в различных пространственных масштабах.

В качестве примера приведем несколько характерных ситуаций, где полезно использовать представления о фрактальной структуре. Профессор Колумбийского университета Кристофер Шольц специализировался на изучении формы и строения твердого вещества Земли, он изучал землетрясения. В 1978 г. он прочитал книгу Мандельброта «Фракталы: форма, случайность и размерность» и попытался применить теорию к описанию, классификации и измерению геофизических объектов. Шольц выяснил, что фрактальная геометрия снабдила науку эффективным методом описания специфичного бугристого ландшафта Земли. Фрактальное измерение ландшафтов планеты открывает двери к постижению ее важнейших характеристик. Металлурги обнаружили то же самое на другом масштабном уровне - применительно к поверхностям различных типов стали. В частности, фрактальное измерение поверхности металла зачастую позволяет судить о его прочности. Огромное количество фрактальных объектов продуцирует явление кристаллизации. Самый распространенный тип фракталов, возникающих при росте кристаллов, - дендриты, они чрезвычайно широко распространены в живой природе. Ансамбли наночастиц часто демонстрируют реализацию «пыли Леви». Эти ансамбли в сочетании с абсорбированным растворителем образуют прозрачные компакты - стекла Леви, потенциально важные материалы фотоники .

Поскольку фракталы выражаются не в первичных геометрических формах, а в алгоритмах, наборах математических процедур, понятно, что такая область математики стала развиваться семимильными шагами вместе с появлением и развитием мощных компьютеров. Хаос, в свою очередь, вызвал к жизни новые компьютерные технологии, специальную графическую технику, которая способна воспроизводить удивительные структуры невероятной сложности, порождаемые теми или иными видами беспорядка. В век Интернета и персональных компьютеров то, что представляло значительную сложность во времена Мандельброта, стало легко доступным любому желающему. Но самым важным в его теории стало, разумеется, не создание красивых картинок, а вывод, что данный математический аппарат пригоден для описания сложных природных явлений и процессов, которые раньше не рассматривались в науке вообще. Репертуар алгоритмических элементов неисчерпаем.

Овладев языком фракталов, можно описать форму облака так же четко и просто, как архитектор описывает здание с помощью чертежей, в которых применяется язык традиционной геометрии. <...> Прошло всего несколько десятилетий с тех пор, как Бенуа Мандельброт заявил: «Геометрия природы фрактальна!», на сегодняшний день мы уже можем предположить намного больше, а именно что фрактальность - это первоочередной принцип построения всех без исключения природных объектов.

В заключение позвольте представить вашему вниманию набор фотографий, иллюстрирующих этот вывод, и фракталов, построенных с помощью компьютерной программы Fractal Explorer . А проблеме использования фракталов в физике кристаллов будет посвящена наша следующая статья.

Post Scriptum

С 1994 по 2013 г. в пяти томах вышел уникальный труд отечественных ученых «Атлас временных вариаций природных антропогенных и социальных процессов» - не имеющий аналогов источник материалов, который включает в себя данные мониторинга космоса, биосферы, литосферы, атмосферы, гидросферы, социальной и техногенной сфер и сферы, связанной со здоровьем и качеством жизни человека. В тексте подробно приводятся данные и результаты их обработки, сопоставляются особенности динамики временных рядов и их фрагментов. Унифицированное представление результатов дает возможность получить сопоставимые результаты для выявления общих и индивидуальных черт динамики процессов и причинно-следственных связей между ними. На экспериментальном материале показано, что процессы в разных сферах, во-первых, схожи, а во-вторых, в большей или меньшей степени связаны друг с другом.

Итак, атлас обобщил результаты междисциплинарных исследований и представил сравнительный анализ совершенно различных данных в широчайшем диапазоне времени и пространства. Книга показывает, что «протекающие в земных сферах процессы обусловлены большим числом взаимодействующих факторов, которые в разных областях (и в разное время) вызывают разную реакцию», что говорит о «необходимости комплексного подхода к анализу геодинамических, космических, социальных, экономических и медицинских наблюдений». Остается выразить надежду на то, что эти фундаментальные по значимости работы будут продолжены.

. Юргенс Х., Пайтген Х.-О., Заупе Д. Язык фракталов // В мире науки. 1990. № 10. С. 36–44.
. Атлас временных вариаций природных антропогенных и социальных процессов. Т. 1: Порядок и хаос в литосфере и других сферах. М., 1994; Т. 2: Циклическая динамика в природе и обществе. М., 1998; Т. 3: Природные и социальные сферы как части окружающей среды и как объекты воздействий. М., 2002; Т. 4: Человек и три окружающие его среды. М., 2009. Т. 5: Человек и три окружающие его среды. М., 2013.

Как стало ясно в последние десятилетия (в связи с развитием теории самоорганизации), самоподобие встречается в самых разных предметах и явлениях. Например, самоподобие можно наблюдать в ветках деревьев и кустарников, при делении оплодотворенной зиготы, снежинках, кристаллах льда, при развитии экономических систем, в строении горных систем, облаков.

Все перечисленные объекты и другие, подобные им по своей структуре являются фрактальными. То есть они обладают свойствами самоподобия, или масштабной инвариантности. А это значит, что некоторые фрагменты их структуры строго повторяются через определенные пространственные промежутки. Очевидно, что эти объекты могут иметь любую природу, причем их вид и форма остаются неизменными независимо от масштаба. И в природе, и в обществе на достаточно больших масштабах происходит самоповторение. Так, облако повторяет свою клочковатую структуру от 10 4 м (10 км) до 10 -4 м (0,1 мм). Ветвистость повторяется у деревьев от 10 -2 до 10 2 м. Разрушающиеся материалы, порождающие трещины, также повторяют свое самоподобие на нескольких масштабах. Снежинка, упавшая на руку, тает. В период таяния, перехода от одной фазы к другой снежинка-капля также - фрактал.

Фрактал- это объект, обладающий бесконечной сложностью, позволяющий вблизи рассмотреть не меньше деталей, чем издалека. Классический пример тому - Земля. Из космоса она выглядит как шар. Приближаясь к ней, мы обнаружим океаны, континенты, побережья и цепи гор. Позднее взору предстанут более мелкие детали: кусочек земли на поверхности горы, столь же сложный и неровный, как сама гора. Потом покажутся крошечные частички грунта, каждая из которых сама является фрактальным объектом

Фрактал является нелинейной структурой, сохраняющей самоподобие при бесконечном увеличении или уменьшении масштаба. Только на малых длинах нелинейность переходит в линейность. Это особенно ярко проявляется в математической процедуре дифференцирования.

Таким образом, можно сказать, что фракталы как модели применяются в том случае, когда реальный объект нельзя представить в виде классических моделей. А это значит, что мы имеем дело с нелинейными связями и недетерминированной природой данных. Нелинейность в мировоззренческом смысле означает многовариантность путей развития, наличие выбора из альтернатив путей и определенного темпа эволюции, а также необратимость эволюционных процессов. В математическом смысле нелинейность - это определенный вид математических уравнений (нелинейные дифференциальные уравнения), содержащих искомые величины в степенях, больше единицы или коэффициенты, зависящие от свойств среды. То есть, когда мы применяем классические модели (например, трендовые, регрессионные и т. д.), мы говорим, что будущее объекта однозначно детерминированное. И мы можем предсказать его, зная прошлое объекта (исходные данные для моделирования). А фракталы применяются в том случае, когда объект имеет несколько вариантов развития и состояние системы определяется положением, в котором она находится на данный момент. То есть мы пытаемся смоделировать хаотичное развитие.

Когда говорят о детерминированности некой системы, имеют в виду, что ее поведение характеризуется однозначной причинно-следственной связью. То есть, зная начальные условия и закон движения системы, можно точно предсказать ее будущее. Именно такое представление о движении во Вселенной характерно для классической, ньютоновской динамики. Хаос же, напротив, подразумевает беспорядочный, случайный процесс, когда ход событий нельзя ни предсказать, ни воспроизвести.

Хаос порождается собственной динамикой нелинейной системы - ее свойством экспоненциально быстро разводить сколь угодно близкие траектории. В результате форма траекторий очень сильно зависит от начальных условий. При исследовании систем, которые, на первый взгляд, развиваются хаотически, часто пользуются теорией фракталов, т.к. именно этот подход позволяет увидеть некую закономерность в возникновении "случайных" отклонений в развитии системы.

Изучение естественных фрактальных структур дает нам возможность глубже понять процессы самоорганизации и развития нелинейных систем. Мы уже выяснили, что естественные фракталы самых различных, извилистых линий встречаются повсюду вокруг нас. Это берег моря, деревья, облака, разряд молнии, структура металла, нервная или сосудистая система человека. Эти замысловатые линии и шероховатые поверхности оказались в поле зрения научных исследований, потому что природа демонстрировала нам совершенно другой уровень сложности, нежели в идеальных геометрических системах. Изучаемые структуры в пространственно-временном отношении оказались самоподобными. Они бесконечно самовоспроизводились и повторяли себя в различных масштабах длин и времени. Любой нелинейных процесс в конечном итоге приводит к развилке. Система в таком случае, в точке ветвления, выбирает тот или иной путь. Траектория развития системы будет выглядеть в виде фрактала, то есть ломаной линии, форма которой может быть описана в виде ветвистого, запутанного пути, имеющего свою логику и закономерность.

Ветвление системы можно сравнить с ветвлением дерева, где каждая ветвь соответствует трети всей системы. Ветвление позволяет линейной структуре заполнить объемное пространство или, говоря точнее: фрактальная структура согласовывает различные пространства. Фрактал может расти, заполняя окружающее пространство, так же, как растет кристалл в пересыщенном растворе. При этом характер ветвления будет связан не со случайностью, а с определенной закономерностью.

Фрактальная структура самоподобно повторяется и на других уровнях, на более высоком уровне организации жизни человека, например на уровне самоорганизации коллектива или команды. Самоорганизация сетей и форм переходит с микроуровня на макроуровень. В совокупности они представляют собой целостное единство, где по части можно судить о целом. В данной курсовой работе как пример рассматриваются фрактальные свойства социальных процессов, что говорит об универсальности теории фракталов и ее лояльности к разным областям науки.

Делается вывод, что фрактал - это способ организованного взаимодействия пространств различной размерности и природы. К вышесказанному следует добавить, что не только пространственного, но и временного. Тогда даже человеческий мозг и нейронные сети будут представлять собой фрактальную структуру.

Природа очень любит фрактальные формы. Фрактальный объект обладает расползающейся, разряженной структурой. При наблюдении таких объектов с возрастающим увеличением можно видеть, что они проявляют повторяющийся на разных уровнях рисунок. Мы уже говорили о том, что фрактальный объект может выглядеть совершенно одинаково независимо от того, наблюдаем ли мы его в метровом, миллиметровом или микронном (1:1 000 000 доли метра масштабе). Свойство симметрии фрактальных объектов проявляется в инвариантности по отношению к масштабу. Фракталы симметричны относительно центра растяжения или изменения масштаба так же, как круглые тела симметричны относительно оси вращения.

Обожаемый образ нелинейной динамики - фрактальные структуры, у которых с изменением масштаба описание строится по одному и тому же правилу. В реальной жизни реализация этого принципа возможна с небольшими вариациями. Например, в физике при переходе с уровня на уровень (от атомных процессов к ядерным, от ядерных к элементарным частицам) меняются закономерности, модели, способы описания. То же самое мы наблюдаем в биологии (уровень популяции организма, ткани, клетки и т.д.) Будущее синергетики зависит от того, в какой мере нелинейной науке удастся помочь в описании этой структурной неоднородности и разных "межуровневых" явлений. В настоящее время большинство научных дисциплин не имеет надежных фрактальных концептуальных моделей.

Сегодня разработки в рамках теории фракталов ведутся в любой частной науке - физике, социологии, психологии, лингвистике и т.п. Тогда и общество, и социальные институты, и язык, и даже мысль - фракталы.

В дискуссиях, развернувшихся в последние годы среди ученых и философов вокруг концепции фракталов, наиболее спорный вопрос состоит в следующем: можно ли говорить об универсальности фракталов, о том, что каждый объект природы содержит фрактал или проходит фрактальную стадию? Сложились две группы ученых, отвечающих на данный вопрос прямо противоположным образом. Первая группа ("радикалы", новаторы) поддерживает тезис об универсальности фракталов. Вторая группа ("консерваторы") отрицает этот тезис, но все же утверждает, что не каждый объект Природы имеет фрактал, но в каждой области Природы можно найти фрактал.

Современная наука достаточно успешно адаптировала теорию фракталов для разных областей знания. Так, в экономике теория фракталов используется при техническом анализе финансовых рынков, которые существуют в развитых странах мира уже не одну сотню лет. Впервые возможность прогнозировать дальнейшее поведение цены на акции, если известно ее направление за какой-то последний период, заметил Ч. Доу. В девяностых годах XIX в, опубликовав ряд статей, Доу заметил, что цены на акции подвержены циклическим колебаниям: после продолжительного роста следует продолжительное падение, потом опять рост и падение.

В середине XX века, когда весь научный мир увлекался только что появившейся теорией фракталов, другой известный американский финансист Р. Эллиот предложил свою теорию поведения цен на акции, которая была основана на использовании теории фракталов. Эллиот исходил из того, что геометрия фракталов имеет место быть не только в живой природе, но и в общественных процессах. К общественным процессам он относил и торговлю акциями на бирже.

Основой теории служит так называемая волновая диаграмма. Эта теория позволяет прогнозировать дальнейшее поведение тренда цены, основываясь на знании предыстории его поведения и следуя правилам развития массового психологического поведения.

Теория фракталов нашла применение и в биологии. Фрактальную природу, некоторое ее подобие, имеют многие, если не все, биологические структуры и системы растений, животных и человека: нервная система, система легких, кровеносная и лимфатическая системы и т.д. Появились данные, что развитие злокачественной опухоли так же идет по фрактальному принципу. Учитывая принцип самоафинности и конгруэнтности фрактала можно объяснить ряд трудноразрешимых проблем эволюции органического мира. Для фрактальных объектов так же характерна такая особенность, как проявление комплементарности. Комплементарность в биохимии -- взаимное соответствие в химическом строении двух макромолекул, обеспечивающее их взаимодействие -- спаривание двух нитей ДНК, соединение фермента с субстратом, антигена с антителом. Комплементарные структуры подходят друг к другу как ключ к замку (Энциклопедия Кирилла и Мефодия). Этим свойством обладают полинуклеотидные цепи ДНК.

Одни из наиболее мощных приложений фракталов лежат в компьютерной графике. Во-первых, это фрактальное сжатие изображений, и во-вторых построение ландшафтов, деревьев, растений и генерирование фрактальных текстур. При этом для сжатия, записи информации необходимо самоподобное увеличение фрактала, а для ее считывания соответственно - самоподобное увеличение.

Достоинства алгоритмов фрактального сжатия изображений - очень маленький размер упакованного файла и малое время восстановления картинки. Фрактально упакованные картинки можно масштабировать без появления пикселизации. Но процесс сжатия занимает продолжительное время и иногда длится часами. Алгоритм фрактальной упаковки с потерей качества позволяет задать степень сжатия, аналогично формату jpeg. В основе алгоритма лежит поиск больших частей изображения подобных некоторым маленьким частям. И в выходной файл записывается только информация о подобии одной части другой. При сжатии обычно используют квадратную сетку (кусочки - квадраты), что приводит к небольшой угловатости при восстановлении картинки, шестиугольная сетка лишена такого недостатка.

Среди литературных произведений находят такие, которые обладают текстуальной, структурной или семантической фрактальной природой. В текстуальных фракталах потенциально бесконечно повторяются элементы текста. К текстуальным фракталам относятся неразветвляющееся бесконечное дерево, тождественные самим себе с любой итерации ("У попа была собака…", "Притча о философе, которому снится, что он бабочка, которой снится, что она философ, которому снится…", "Ложно утверждение, что истинно утверждение, что ложно утверждение…"); неразветвляющиеся бесконечные тексты с вариациями ("У Пегги был веселый гусь…") и тексты с наращениями ("Дом, который построил Джек").

В структурных фракталах схема текста потенциально фрактальна. Тексты, обладающие такой структурой, стрятся по следующим принципам: венок сонетов (15 стихотворений), венок венков сонетов (211 стихотворений), венок венков венков сонетов (2455 стихотворений); "рассказы в рассказе" ("Книга тысячи и одной ночи", Я.Потоцкий "Рукопись, найденная в Сарагоссе"); предисловия, скрывающие авторство (У.Эко "Имя розы").

Что общего у дерева, берега моря, облака или кровеносных сосудов у нас в руке? На первый взгляд может показаться, что все эти объекты ничто не объединяет. Однако на самом деле существует одно свойство структуры, присущее всем перечисленным предметам: они самоподобны. От ветки, как и от ствола дерева, отходят отростки поменьше, от них — еще меньшие, и т. д. , то есть ветка подобна всему дереву. Подобным же образом устроена и кровеносная система: от артерий отходят артериолы, а от них — мельчайшие капилляры, по которым кислород поступает в органы и ткани. Посмотрим на космические снимки морского побережья: мы увидим заливы и полуострова; взглянем на него же, но с высоты птичьего полета: нам будут видны бухты и мысы; теперь представим себе, что мы стоим на пляже и смотрим себе под ноги: всегда найдутся камешки, которые дальше выдаются в воду, чем остальные. То есть береговая линия при увеличении масштаба остается похожей на саму себя. Это свойство объектов американский (правда, выросший во Франции) математик Бенуа Мандельброт назвал фрактальностью, а сами такие объекты — фракталами (от латинского fractus — изломанный).

У этого понятия нет строгого определения. Поэтому слово «фрактал» не является математическим термином. Обычно фракталом называют геометрическую фигуру, которая удовлетворяет одному или нескольким из следующих свойств: Обладает сложной структурой при любом увеличении масштаба (в отличие от, например, прямой, любая часть которой является простейшей геометрической фигурой — отрезком). Является (приближенно) самоподобной. Обладает дробной хаусдорфовой (фрактальной) размерностью, которая больше топологической. Может быть построена рекурсивными процедурами.

Геометрия и алгебра

Изучение фракталов на рубеже XIX и XX веков носило скорее эпизодический, нежели систематический характер, потому что раньше математики в основном изучали «хорошие» объекты, которые поддавались исследованию при помощи общих методов и теорий. В 1872 году немецкий математик Карл Вейерштрасс строит пример непрерывной функции, которая нигде не дифференцируема. Однако его построение было целиком абстрактно и трудно для восприятия. Поэтому в 1904 году швед Хельге фон Кох придумал непрерывную кривую, которая нигде не имеет касательной, причем ее довольно просто нарисовать. Оказалось, что она обладает свойствами фрактала. Один из вариантов этой кривой носит название «снежинка Коха».

Идеи самоподобия фигур подхватил француз Поль Пьер Леви, будущий наставник Бенуа Мандельброта. В 1938 году вышла его статья «Плоские и пространственные кривые и поверхности, состоящие из частей, подобных целому», в которой описан еще один фрактал — С-кривая Леви. Все эти вышеперечисленные фракталы можно условно отнести к одному классу конструктивных (геометрических) фракталов.


Другой класс — динамические (алгебраические) фракталы, к которым относится и множество Мандельброта. Первые исследования в этом направлении начались в начале XX века и связаны с именами французских математиков Гастона Жулиа и Пьера Фату. В 1918 году вышел почти двухсотстраничный мемуар Жулиа, посвященный итерациям комплексных рациональных функций, в котором описаны множества Жулиа — целое семейство фракталов, близко связанных с множеством Мандельброта. Этот труд был удостоен приза Французской академии, однако в нем не содержалось ни одной иллюстрации, так что оценить красоту открытых объектов было невозможно. Несмотря на то что это работа прославила Жулиа среди математиков того времени, о ней довольно быстро забыли. Вновь внимание к ней обратилось лишь полвека спустя с появлением компьютеров: именно они сделали видимыми богатство и красоту мира фракталов.

Фрактальные размерности

Как известно, размерность (число измерений) геометрической фигуры — это число координат, необходимых для определения положения лежащей на этой фигуре точки.
Например, положение точки на кривой определяется одной координатой, на поверхности (не обязательно плоскости) двумя координатами, в трёхмерном пространстве тремя координатами.
С более общей математической точки зрения, можно определить размерность таким образом: увеличение линейных размеров, скажем, в два раза, для одномерных (с топологической точки зрения) объектов (отрезок) приводит к увеличению размера (длины) в два раза, для двумерных (квадрат) такое же увеличение линейных размеров приводит к увеличению размера (площади) в 4 раза, для трехмерных (куб) — в 8 раз. То есть «реальную» (т.н. Хаусдорфову) размерность можно подсчитать в виде отношения логарифма увеличения «размера» объекта к логарифму увеличения его линейного размера. То есть для отрезка D=log (2)/log (2)=1, для плоскости D=log (4)/log (2)=2, для объема D=log (8)/log (2)=3.
Подсчитаем теперь размерность кривой Коха, для построения которой единичный отрезок делят на три равные части и заменяют средний интервал равносторонним треугольником без этого сегмента. При увеличении линейных размеров минимального отрезка в три раза длина кривой Коха возрастает в log (4)/log (3)~1,26. То есть размерность кривой Коха — дробная!

Наука и искусство

В 1982 году вышла книга Мандельброта «Фрактальная геометрия природы», в которой автор собрал и систематизировал практически всю имевшуюся на тот момент информацию о фракталах и в легкой и доступной манере изложил ее. Основной упор в своем изложении Мандельброт сделал не на тяжеловесные формулы и математические конструкции, а на геометрическую интуицию читателей. Благодаря иллюстрациям, полученным при помощи компьютера, и историческим байкам, которыми автор умело разбавил научную составляющую монографии, книга стала бестселлером, а фракталы стали известны широкой публике. Их успех среди нематематиков во многом обусловлен тем, что с помощью весьма простых конструкций и формул, которые способен понять и старшеклассник, получаются удивительные по сложности и красоте изображения. Когда персональные компьютеры стали достаточно мощными, появилось даже целое направление в искусстве — фрактальная живопись, причем заниматься ею мог практически любой владелец компьютера. Сейчас в интернете можно легко найти множество сайтов, посвященных этой теме.


Схема получения кривой Коха

Война и мир

Как уже отмечалось выше, один из природных объектов, имеющих фрактальные свойства, — это береговая линия. С ним, а точнее, с попыткой измерить его длину, связана одна интересная история, которая легла в основу научной статьи Мандельброта, а также описана в его книге «Фрактальная геометрия природы». Речь идет об эксперименте, который поставил Льюис Ричардсон — весьма талантливый и эксцентричный математик, физик и метеоролог. Одним из направлений его исследований была попытка найти математическое описание причин и вероятности возникновения вооруженного конфликта между двумя странами. В числе параметров, которые он учитывал, была протяженность общей границы двух враждующих стран. Когда он собирал данные для численных экспериментов, то обнаружил, что в разных источниках данные об общей границе Испании и Португалии сильно отличаются. Это натолкнуло его на следующее открытие: длина границ страны зависит от линейки, которой мы их измеряем. Чем меньше масштаб, тем длиннее получается граница. Это происходит из-за того, что при большем увеличении становится возможным учитывать все новые и новые изгибы берега, которые раньше игнорировались из-за грубости измерений. И если при каждом увеличении масштаба будут открываться ранее не учтенные изгибы линий, то получится, что длина границ бесконечна! Правда, на самом деле этого не происходит — у точности наших измерений есть конечный предел. Этот парадокс называется эффектом Ричардсона.


Конструктивные (геометрические) фракталы

Алгоритм построения конструктивного фрактала в общем случае таков. Прежде всего нам нужны две подходящие геометрические фигуры, назовем их основой и фрагментом. На первом этапе изображается основа будущего фрактала. Затем некоторые ее части заменяются фрагментом, взятым в подходящем масштабе, — это первая итерация построения. Затем у полученной фигуры снова некоторые части меняются на фигуры, подобные фрагменту, и т. д. Если продолжить этот процесс до бесконечности, то в пределе получится фрактал.

Рассмотрим этот процесс на примере кривой Коха (см. врезку на предыдущей странице). За основу кривой Коха можно взять любую кривую (для «снежинки Коха» это треугольник). Но мы ограничимся простейшим случаем — отрезком. Фрагмент — ломаная, изображенная сверху на рисунке. После первой итерации алгоритма в данном случае исходный отрезок совпадет с фрагментом, затем каждый из составляющих его отрезков сам заменится на ломаную, подобную фрагменту, и т. д. На рисунке показаны первые четыре шага этого процесса.


Языком математики: динамические (алгебраические) фракталы

Фракталы этого типа возникают при исследовании нелинейных динамических систем (отсюда и название). Поведение такой системы можно описать комплексной нелинейной функцией (многочленом) f (z). Возьмем какую-нибудь начальную точку z0 на комплексной плоскости (см. врезку). Теперь рассмотрим такую бесконечную последовательность чисел на комплексной плоскости, каждое следующее из которых получается из предыдущего: z0, z1=f (z0), z2=f (z1), … zn+1=f (zn). В зависимости от начальной точки z0 такая последовательность может вести себя по‑разному: стремиться к бесконечности при n -> ∞; сходиться к какой-то конечной точке; циклически принимать ряд фиксированных значений; возможны и более сложные варианты.

Комплексные числа

Комплексное число — это число, состоящее из двух частей — действительной и мнимой, то есть формальная сумма x + iy (x и y здесь — вещественные числа). i — это т.н. мнимая единица, то есть то есть число, удовлетворяющее уравнению i^ 2 = -1. Над комплексными числами определены основные математические операции — сложение, умножение, деление, вычитание (не определена только операция сравнения). Для отображения комплексных чисел часто используется геометрическое представление — на плоскости (ее называют комплексной) по оси абсцисс откладывают действительную часть, а по оси ординат — мнимую, при этом комплексному числу будет соответствовать точка с декартовыми координатами x и y.

Таким образом, любая точка z комплексной плоскости имеет свой характер поведения при итерациях функции f (z), а вся плоскость делится на части. При этом точки, лежащие на границах этих частей, обладают таким свойством: при сколь угодно малом смещении характер их поведения резко меняется (такие точки называют точками бифуркации). Так вот, оказывается, что множества точек, имеющих один конкретный тип поведения, а также множества бифуркационных точек часто имеют фрактальные свойства. Это и есть множества Жулиа для функции f (z).

Семейство драконов

Варьируя основу и фрагмент, можно получить потрясающее разнообразие конструктивных фракталов.
Более того, подобные операции можно производить и в трехмерном пространстве. Примерами объемных фракталов могут служить «губка Менгера», «пирамида Серпинского» и другие.
К конструктивным фракталам относят и семейство драконов. Иногда их называют по имени первооткрывателей «драконами Хейвея-Хартера» (своей формой они напоминают китайских драконов). Существует несколько способов построения этой кривой. Самый простой и наглядный из них такой: нужно взять достаточно длинную полоску бумаги (чем тоньше бумага, тем лучше), и согнуть ее пополам. Затем снова согнуть ее вдвое в том же направлении, что и в первый раз. После нескольких повторений (обычно через пять-шесть складываний полоска становится слишком толстой, чтобы ее можно было аккуратно гнуть дальше) нужно разогнуть полоску обратно, причем стараться, чтобы в местах сгибов образовались углы в 90˚. Тогда в профиль получится кривая дракона. Разумеется, это будет лишь приближение, как и все наши попытки изобразить фрактальные объекты. Компьютер позволяет изобразить гораздо больше шагов этого процесса, и в результате получается очень красивая фигура.

Множество Мандельброта строится несколько иначе. Рассмотрим функцию fc (z) = z 2 +с, где c — комплексное число. Построим последовательность этой функции с z0=0, в зависимости от параметра с она может расходиться к бесконечности или оставаться ограниченной. При этом все значения с, при которых эта последовательность ограничена, как раз и образуют множество Мандельброта. Оно было детально изучено самим Мандельбротом и другими математиками, которые открыли немало интересных свойств этого множества.

Видно, что определения множеств Жулиа и Мандельброта похожи друг на друга. На самом деле эти два множества тесно связаны. А именно, множество Мандельброта — это все значения комплексного параметра c, при которых множество Жулиа fc (z) связно (множество называется связным, если его нельзя разбить на две непересекающиеся части, с некоторыми дополнительными условиями).


Фракталы и жизнь

В наши дни теория фракталов находит широкое применение в различных областях человеческой деятельности. Помимо чисто научного объекта для исследований и уже упоминавшейся фрактальной живописи, фракталы используются в теории информации для сжатия графических данных (здесь в основном применяется свойство самоподобия фракталов — ведь чтобы запомнить небольшой фрагмент рисунка и преобразования, с помощью которых можно получить остальные части, требуется гораздо меньше памяти, чем для хранения всего файла). Добавляя в формулы, задающие фрактал, случайные возмущения, можно получить стохастические фракталы, которые весьма правдоподобно передают некоторые реальные объекты — элементы рельефа, поверхность водоемов, некоторые растения, что с успехом применяется в физике, географии и компьютерной графике для достижения большего сходства моделируемых предметов с настоящими. В радиоэлектронике в последнее десятилетие начали выпускать антенны, имеющие фрактальную форму. Занимая мало места, они обеспечивают вполне качественный прием сигнала. Экономисты используют фракталы для описания кривых колебания курсов валют (это свойство было открыто Мандельбротом более 30 лет назад). На этом мы завершим эту небольшую экскурсию в удивительный по красоте и разнообразию мир фракталов.


Для чтобы представить все многообразие фракталов удобно прибегнуть к их общепринятой классификации .

2.1 Геометрические фракталы

Фракталы этого класса самые наглядные. В двухмерном случае их получают с помощью некоторой ломаной (или поверхности в трехмерном случае), называемой генератором . За один шаг алгоритма каждый из отрезков, составляющих ломаную, заменяется на ломаную-генератор, в соответствующем масштабе. В результате бесконечного повторения этой процедуры, получается геометрический фрактал.

Рис 1. Построение триадной кривой Кох.

Рассмотрим один из таких фрактальных объектов - триадную кривую Кох . Построение кривой начинается с отрезка единичной длины (рис.1) - это 0-е поколение кривой Кох. Далее каждое звено (в нулевом поколении один отрезок) заменяется на образующий элемент , обозначенный на рис.1 через n=1 . В результате такой замены получается следующее поколение кривой Кох. В 1-ом поколении - это кривая из четырех прямолинейных звеньев, каждое длиной по 1/3 . Для получения 3-го поколения проделываются те же действия - каждое звено заменяется на уменьшенный образующий элемент. Итак, для получения каждого последующего поколения, все звенья предыдущего поколения необходимо заменить уменьшенным образующим элементом. Кривая n -го поколения при любом конечном n называется предфракталом . На рис.1 представлены пять поколений кривой. При n стремящемся к бесконечности кривая Кох становится фрактальным обьектом .


Рис 2. Построение "дракона" Хартера-Хейтуэя.

Для получения другого фрактального объекта нужно изменить правила построения. Пусть образующим элементом будут два равных отрезка, соединенных под прямым углом. В нулевом поколении заменим единичный отрезок на этот образующий элемент так, чтобы угол был сверху. Можно сказать, что при такой замене происходит смещение середины звена. При построении следующих поколений выполняется правило: самое первое слева звено заменяется на образующий элемент так, чтобы середина звена смещалась влево от направления движения, а при замене следующих звеньев, направления смещения середин отрезков должны чередоваться. На рис.2 представлены несколько первых поколений и 11-е поколение кривой, построенной по вышеописанному принципу. Предельная фрактальная кривая (при n стремящемся к бесконечности) называется драконом Хартера-Хейтуэя .

В машинной графике использование геометрических фракталов необходимо при получении изображений деревьев, кустов, береговой линии. Двухмерные геометрические фракталы используются для создания объемных текстур (рисунка на поверхности обьекта) .

2.2 Алгебраические фракталы

Это самая крупная группа фракталов. Получают их с помощью нелинейных процессов в n -мерных пространствах. Наиболее изучены двухмерные процессы. Интерпретируя нелинейный итерационный процесс, как дискретную динамическую систему, можно пользоватся терминологией теории этих систем: фазовый портрет , установившийся процесс , аттрактор и т.д.

Известно, что нелинейные динамические системы обладают несолькими устойчивыми состояниями. То состояние, в котором оказалась динамическая система после некоторого числа итераций, зависит от ее начального состояния. Поэтому каждое устойчивое состояние (или как говорят - аттрактор) обладает некоторой областью начальных состояний, из которых система обязательно попадет в рассматриваемые конечные состояния. Таким образом фазовое пространство системы разбивается на области притяжения аттракторов. Если фазовым является двухмерное пространство, то окрашивая области притяжения различными цветами, можно получить цветовой фазовый портрет этой системы (итерационного процесса). Меняя алгоритм выбора цвета, можно получить сложные фрактальные картины с причудливыми многоцветными узорами. Неожиданностью для математиков стала возможность с помощью примитивных алгоритмов порождать очень сложные нетривиальные структуры.


Рис 3. Множество Мандельброта.

В качестве примера рассмотрим множество Мандельброта (см. pис.3 и рис.4). Алгоритм его построения достаточно прост и основан на простом итеративном выражении:

Z = Z [i] * Z [i] + C ,

где Z i и C - комплексные переменные. Итерации выполняются для каждой стартовой точки C прямоугольной или квадратной области - подмножестве комплексной плоскости. Итерационный процесс продолжается до тех пор, пока Z [i] не выйдет за пределы окружности радиуса 2, центр которой лежит в точке (0,0), (это означает, что аттрактор динамической системы находится в бесконечности), или после достаточно большого числа итераций (например 200-500) Z [i] сойдется к какой-нибудь точке окружности. В зависимости от количества итераций, в течении которых Z [i] оставалась внутри окружности, можно установить цвет точки C (если Z [i] остается внутри окружности в течение достаточно большого количества итераций, итерационный процесс прекращается и эта точка растра окрашивается в черный цвет).


Рис 4. Участок границы множества Мандельброта, увеличенный в 200 pаз.

Вышеописанный алгоритм дает приближение к так называемому множеству Мандельброта. Множеству Мандельброта принадлежат точки, которые в течение бесконечного числа итераций не уходят в бесконечность (точки имеющие черный цвет). Точки принадлежащие границе множества (именно там возникает сложные структуры) уходят в бесконечность за конечное число итераций, а точки лежащие за пределами множества, уходят в бесконечность через несколько итераций (белый фон).

2.3 Стохастические фракталы

Еще одним известным классом фракталов являются стохастические фракталы, которые получаются в том случае, если в итерационном процессе случайным образом менять какие-либо его параметры. При этом получаются объекты очень похожие на природные - несимметричные деревья, изрезанные береговые линии и т.д. Двумерные стохастические фракталы используются при моделировании рельефа местности и поверхности моря .

Существуют и другие классификации фракталов, например деление фракталов на детерминированные (алгебраические и геометрические) и недетерминированные (стохастические).

Самоподобные множества с необычными свойствами в математике

Начиная с конца XIX века, в математике появляются примеры самоподобных объектов с патологическими с точки зрения классического анализа свойствами. К ним можно отнести следующие:

  • множество Кантора - нигде не плотное несчётное совершенное множество. Модифицировав процедуру, можно также получить нигде не плотное множество положительной длины;
  • треугольник Серпинского («скатерть») и ковёр Серпинского - аналоги множества Кантора на плоскости;
  • губка Менгера - аналог множества Кантора в трёхмерном пространстве;
  • примеры Вейерштрасса и Ван дер Вардена нигде не дифференцируемой непрерывной функции ;
  • кривая Коха - несамопересекающаяся непрерывная кривая бесконечной длины, не имеющая касательной ни в одной точке;
  • кривая Пеано - непрерывная кривая, проходящая через все точки квадрата;
  • траектория броуновской частицы также с вероятностью 1 нигде не дифференцируема. Её хаусдорфова размерность равна двум [ ] .

Рекурсивная процедура получения фрактальных кривых

Фракталы как неподвижные точки сжимающих отображений

Свойство самоподобия можно математически строго выразить следующим образом. Пусть - сжимающие отображения плоскости. Рассмотрим следующее отображение на множестве всех компактных (замкнутых и ограниченных) подмножеств плоскости: Ψ : K ↦ ∪ i = 1 n ψ i (K) {\displaystyle \Psi \colon K\mapsto \cup _{i=1}^{n}\psi _{i}(K)}

Можно показать, что отображение Ψ {\displaystyle \Psi } является сжимающим отображением на множестве компактов с метрикой Хаусдорфа . Следовательно, по теореме Банаха , это отображение имеет единственную неподвижную точку. Эта неподвижная точка и будет нашим фракталом.

Рекурсивная процедура получения фрактальных кривых, описанная выше, является частным случаем данной конструкции. В ней все отображения ψ i , i = 1 , … , n {\displaystyle \psi _{i},\,i=1,\dots ,n} - отображения подобия, а n {\displaystyle n} - число звеньев генератора.

Популярно создание красивых графических образов на основе комплексной динамики путём раскрашивания точек плоскости в зависимости от поведения соответствующих динамических систем. Например, для дополнения множества Мандельброта можно раскрасить точки в зависимости от скорости стремления z n {\displaystyle z_{n}} к бесконечности (определяемой, скажем, как наименьший номер n {\displaystyle n} , при котором | z n | {\displaystyle |z_{n}|} превысит фиксированную большую величину A {\displaystyle A} ).

Биоморфы - фракталы, построенные на основе комплексной динамики и напоминающие живые организмы.

Стохастические фракталы

Природные объекты часто имеют фрактальную форму. Для их моделирования могут применяться стохастические (случайные) фракталы. Примеры стохастических фракталов:

  • траектория броуновского движения на плоскости и в пространстве;
  • граница траектории броуновского движения на плоскости. В 2001 году Лоулер, Шрамм и Вернер доказали предположение Мандельброта о том, что её размерность равна 4/3.
  • эволюции Шрамма-Лёвнера - конформно-инвариантные фрактальные кривые, возникающие в критических двумерных моделях статистической механики , например, в модели Изинга и перколяции .
  • различные виды рандомизированных фракталов, то есть фракталов, полученных с помощью рекурсивной процедуры, в которую на каждом шаге введён случайный параметр. Плазма - пример использования такого фрактала в компьютерной графике.

Природные объекты, обладающие фрактальными свойствами

Природные объекты (квазифракталы ) отличаются от идеальных абстрактных фракталов неполнотой и неточностью повторений структуры. Большинство встречающихся в природе фракталоподобных структур (границы облаков, линия берега, деревья, листья растений, кораллы , …) являются квазифракталами, поскольку на некотором малом масштабе фрактальная структура исчезает. Природные структуры не могут быть идеальными фракталами из-за ограничений, накладываемых размерами живой клетки и, в конечном итоге, размерами молекул .

  • В живой природе:
    • Морские звезды и ежи
    • Цветы и растения (брокколи , капуста)
    • Кроны деревьев и листья растений
    • Плоды (ананас)
    • Система кровообращения и бронхи людей и животных
  • В неживой природе:
    • Границы географических объектов (стран, областей, городов)
    • Морозные узоры на оконных стёклах
    • Сталактиты , сталагмиты , геликтиты .

Применение

Естественные науки

В физике фракталы естественным образом возникают при моделировании нелинейных процессов, таких как турбулентное течение жидкости, сложные процессы диффузии -адсорбции , пламя, облака и тому подобное. Фракталы используются при моделировании пористых материалов, например, в нефтехимии. В биологии они применяются для моделирования популяций и для описания систем внутренних органов (система кровеносных сосудов). После создания кривой Коха было предложено использовать её при вычислении протяжённости береговой линии.

Радиотехника

Фрактальные антенны

Использование фрактальной геометрии при проектировании

Похожие публикации