Теория вероятности. Вероятность события, случайные события (теория вероятности). Независимые и несовместные события в теории вероятности. Вероятность события. Определение вероятности события

«Читатель уже заметил в нашем изложении частое употребление понятия «вероятность».

Это характерная черта современной логики в противовес античной и средневековой логике. Современный логик понимает, что всё наше знание только в большей или меньшей степени вероятностно, а не достоверно, как привыкли думать философы и теологи. Он не слишком беспокоится из-за того, что индуктивный вывод придаёт лишь вероятность его заключению, поскольку он не ожидает ничего большего. Однако он задумается, если обнаружит причину сомневаться даже в вероятности своего заключения.

Таким образом, две проблемы получили в современной логике гораздо большую важность, чем в прежние времена. Во-первых, это природа вероятности, а во-вторых, значимость индукции. Обсудим вкратце эти проблемы.

Существует, соответственно, два вида вероятности - определённая и неопределённая.

Вероятность определённого вида имеет место в математической теории вероятности, где обсуждаются задачи типа метания костей или подбрасывания монет. Она имеет место везде, где существует несколько возможностей, и ни одну из них нельзя предпочесть другой. Если вы подбрасываете монету, она должна упасть или орлом, или решкой, но и то и другое представляется равновероятным. Следовательно, шансы у орла и решки равны 50%, единица принимается за достоверность. Сходным образом, если вы бросаете кость, она может упасть вверх любой из шести граней, и нет оснований для предпочтения одной из них, следовательно, шанс каждой равен 1/6. Такого рода вероятность используют в своей работе страховые кампании. Они не знают, какое именно здание сгорит, но знают, какой процент зданий сгорает ежегодно. Они не знают, как долго будет жить конкретный человек, но знают среднюю продолжительность жизни в любой данный период. Во всех подобных случаях оценка вероятности сама по себе не является просто вероятной, за исключением того смысла, в котором всё знание лишь вероятно. Оценка вероятности сама по себе может обладать высокой степенью вероятности. Иначе страховые кампании разорились бы.

Большие усилия были приложены для того, чтобы повысить вероятность индукции, но есть основания полагать, что все эти попытки были напрасны. Вероятность, характерная для индуктивных заключений, практически всегда носит, как я сказал выше, неопределённый характер.

Теперь я поясню, что это такое.

Стало тривиальным утверждение, что всё человеческое знание ошибочно. Очевидно то, что ошибки бывают разными. Если я скажу, что Будда жил в VI в. до Рождества Христова, вероятность ошибки будет очень велика. Если я скажу, что Цезарь был убит, вероятность ошибки будет мала.

Если я скажу, что сейчас идёт великая война, то вероятность ошибки столь мала, что её наличие может допустить лишь философ или логик. Эти примеры касаются исторических событий, но сходная градация существует и в отношении научных законов. Некоторые из них имеют явный характер гипотез, которым никто не придаст более серьезного статуса в виду отсутствия эмпирических данных в их пользу, в то время как другие представляются настолько определёнными, что со стороны учёных практически нет сомнений в их истинности. (Когда я говорю «истина», я имею в виду «приблизительная истина», поскольку каждый научный закон подвержен некоторым поправкам.)

Вероятность - это нечто находящееся между тем, в чем мы уверены, и тем, что мы более или менее склонны допустить, если это слово понимать в смысле математической теории вероятности.

Правильнее было бы говорить о степенях несомненности или о степенях надёжности . Это более широкая концепция того, что я назвал «определённой вероятностью», которая к тому же является и более важной».

Бертран Рассел, Искусство делать выводы / Искусство мыслить, М., «Дом интеллектуальной книги», 1999 г., с. 50-51.

Важные замечания!
1. Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь:
2. Прежде чем на начнешь читать статью, обрати внимание на наш навигатор по самым полезным ресурса для

Что такое вероятность?

Столкнувшись с этим термином первый раз, я бы не понял, что это такое. Поэтому попытаюсь объяснить доступно.

Вероятность - это шанс того, что произойдет нужное нам событие.

Например, ты решил зайти к знакомому, помнишь подъезд и даже этаж на котором он живет. А вот номер и расположение квартиры забыл. И вот стоишь ты на лестничной клетке, а перед тобой двери на выбор.

Каков шанс (вероятность) того, что если ты позвонишь в первую дверь, тебе откроет твой друг? Всего квартиры, а друг живет только за одной из них. С равным шансом мы можем выбрать любую дверь.

Но каков этот шанс?

Дверей, нужная дверь. Вероятность угадать, позвонив в первую дверь: . То есть один раз из трех ты точно угадаешь.

Мы хотим узнать, позвонив раз, как часто мы будем угадывать дверь? Давай рассмотри все варианты:

  1. Ты позвонил в дверь
  2. Ты позвонил в дверь
  3. Ты позвонил в дверь

А теперь рассмотрим все варианты, где может находиться друг:

а. За 1ой дверью
б. За 2ой дверью
в. За 3ей дверью

Сопоставим все варианты в виде таблицы. Галочкой обозначены варианты, когда твой выбор совпадает с местоположением друга, крестиком - когда не совпадает.

Как видишь всего возможно вариантов местоположения друга и твоего выбора, в какую дверь звонить.

А благоприятных исходов всего . То есть раза из ты угадаешь, позвонив в дверь раз, т.е. .

Это и есть вероятность - отношение благоприятного исхода (когда твой выбор совпал с местоположение друга) к количеству возможных событий.

Определение - это и есть формула. Вероятность принято обозначать p, поэтому:

Такую формулу писать не очень удобно, поэтому примем за - количество благоприятных исходов, а за - общее количество исходов.

Вероятность можно записывать в процентах, для этого нужно умножить получившийся результат на:

Наверное, тебе бросилось в глаза слово «исходы». Поскольку математики называют различные действия (у нас такое действие - это звонок в дверь) экспериментами, то результатом таких экспериментов принято называть исход.

Ну а исходы бывают благоприятные и неблагоприятные.

Давай вернемся к нашему примеру. Допустим, мы позвонили в одну из дверей, но нам открыл незнакомый человек. Мы не угадали. Какова вероятность, что если позвоним в одну из оставшихся дверей, нам откроет наш друг?

Если ты подумал, что, то это ошибка. Давай разбираться.

У нас осталось две двери. Таким образом, у нас есть возможные шаги:

1) Позвонить в 1-ую дверь
2) Позвонить во 2-ую дверь

Друг, при всем этом, точно находится за одной из них (ведь за той, в которую мы звонили, его не оказалось):

а) Друг за 1-ой дверью
б) Друг за 2-ой дверью

Давай снова нарисуем таблицу:

Как видишь, всего есть варианта, из которых - благоприятны. То есть вероятность равна.

А почему не?

Рассмотренная нами ситуация - пример зависимых событий. Первое событие - это первый звонок в дверь, второе событие - это второй звонок в дверь.

А зависимыми они называются потому что влияют на следующие действия. Ведь если бы после первого звонка в дверь нам открыл друг, то какова была бы вероятность того, что он находится за одной из двух других? Правильно, .

Но если есть зависимые события, то должны быть и независимые ? Верно, бывают.

Хрестоматийный пример - бросание монетки.

  1. Бросаем монетку раз. Какова вероятность того, что выпадет, например, орел? Правильно - , ведь вариантов всего (либо орел, либо решка, пренебрежем вероятностью монетки встать на ребро), а устраивает нас только.
  2. Но выпала решка. Ладно, бросаем еще раз. Какова сейчас вероятность выпадения орла? Ничего не изменилось, все так же. Сколько вариантов? Два. А сколько нас устраивает? Один.

И пусть хоть тысячу раз подряд будет выпадать решка. Вероятность выпадения орла на раз будет все также. Вариантов всегда, а благоприятных - .

Отличить зависимые события от независимых легко:

  1. Если эксперимент проводится раз (раз бросают монетку, 1 раз звонят в дверь и т.д.), то события всегда независимые.
  2. Если эксперимент проводится несколько раз (монетку бросают раз, в дверь звонят несколько раз), то первое событие всегда независимое. А дальше, если количество благоприятных или количество всех исходов меняется, то события зависимые, а если нет - независимые.

Давай немного потренируемся определять вероятность.

Пример 1.

Монетку бросают два раза. Какова вероятность того, что два раза подряд выпадет орел?

Решение:

Рассмотрим все возможные варианты:

  1. Орел-орел
  2. Орел-решка
  3. Решка-орел
  4. Решка-решка

Как видишь, всего варианта. Из них нас устраивает только. То есть вероятность:

Если в условии просят просто найти вероятность, то ответ нужно давать в виде десятичной дроби. Если было бы указано, что ответ нужно дать в процентах, тогда мы умножили бы на.

Ответ:

Пример 2.

В коробке конфет все конфеты упакованы в одинаковую обертку. Однако из конфет - с орехами, с коньяком, с вишней, с карамелью и с нугой.

Какова вероятность, взяв одну конфету, достать конфету с орехами. Ответ дайте в процентах.

Решение:

Сколько всего возможных исходов? .

То есть, взяв одну конфету, она будет одной из, имеющихся в коробке.

А сколько благоприятных исходов?

Потому что в коробке только конфет с орехами.

Ответ:

Пример 3.

В коробке шаров. из них белые, - черные.

  1. Какова вероятность вытащить белый шар?
  2. Мы добавили в коробку еще черных шаров. Какова теперь вероятность вытащить белый шар?

Решение:

а) В коробке всего шаров. Из них белых.

Вероятность равна:

б) Теперь шаров в коробке стало. А белых осталось столько же - .

Ответ:

Полная вероятность

Вероятность всех возможных событий равна ().

Допустим, в ящике красных и зеленых шаров. Какова вероятность вытащить красный шар? Зеленый шар? Красный или зеленый шар?

Вероятность вытащить красный шар

Зеленый шар:

Красный или зеленый шар:

Как видишь, сумма всех возможных событий равна (). Понимание этого момента поможет тебе решить многие задачи.

Пример 4.

В ящике лежит фломастеров: зеленых, красных, синих, желтых, черный.

Какова вероятность вытащить НЕ красный фломастер?

Решение:

Давай посчитаем количество благоприятных исходов.

НЕ красный фломастер, это значит зеленый, синий, желтый или черный.

Вероятность того, что событие не произойдет, равна минус вероятность того, что событие произойдет.

Правило умножения вероятностей независимых событий

Что такое независимые события ты уже знаешь.

А если нужно найти вероятность того, что два (или больше) независимых события произойдут подряд?

Допустим мы хотим знать, какова вероятность того, что бросая монетку раза, мы два раза увидим орла?

Мы уже считали - .

А если бросаем монетку раза? Какова вероятность увидеть орла раза подряд?

Всего возможных вариантов:

  1. Орел-орел-орел
  2. Орел-орел-решка
  3. Орел-решка-орел
  4. Орел-решка-решка
  5. Решка-орел-орел
  6. Решка-орел-решка
  7. Решка-решка-орел
  8. Решка-решка-решка

Не знаю как ты, но я раза ошибся, составляя этот список. Ух! А подходит нам только вариант (первый).

Для 5 бросков можешь составить список возможных исходов сам. Но математики не столь трудолюбивы, как ты.

Поэтому они сначала заметили, а потом доказали, что вероятность определенной последовательности независимых событий каждый раз уменьшается на вероятность одного события.

Другими словами,

Рассмотрим на примере все той же, злосчастной, монетки.

Вероятность выпадения орла в испытании? . Теперь мы бросаем монетку раз.

Какова вероятность выпадения раз подряд орла?

Это правило работает не только, если нас просят найти вероятность того, что произойдет одно и то же событие несколько раз подряд.

Если бы мы хотели найти последовательность РЕШКА-ОРЕЛ-РЕШКА, при бросках подряд, мы поступили бы также.

Вероятность выпадения решка - , орла - .

Вероятность выпадения последовательности РЕШКА-ОРЕЛ-РЕШКА-РЕШКА:

Можешь проверить сам, составив таблицу.

Правило сложения вероятностей несовместных событий.

Так стоп! Новое определение.

Давай разбираться. Возьмем нашу изношенную монетку и бросим её раза.
Возможные варианты:

  1. Орел-орел-орел
  2. Орел-орел-решка
  3. Орел-решка-орел
  4. Орел-решка-решка
  5. Решка-орел-орел
  6. Решка-орел-решка
  7. Решка-решка-орел
  8. Решка-решка-решка

Так вот несовместные события, это определенная, заданная последовательность событий. - это несовместные события.

Если мы хотим определить, какова вероятность двух (или больше) несовместных событий то мы складываем вероятности этих событий.

Нужно понять, что выпадение орла или решки - это два независимых события.

Если мы хотим определить, какова вероятность выпадения последовательности) (или любой другой), то мы пользуемся правилом умножения вероятностей.
Какова вероятность выпадения при первом броске орла, а при втором и третьем решки?

Но если мы хотим узнать, какова вероятность выпадения одной из нескольких последовательностей, например, когда орел выпадет ровно раз, т.е. варианты и, то мы должны сложить вероятности этих последовательностей.

Всего вариантов, нам подходит.

То же самое мы можем получить, сложив вероятности появления каждой последовательности:

Таким образом, мы складываем вероятности, когда хотим определить вероятность некоторых, несовместных, последовательностей событий.

Есть отличное правило, помогающее не запутаться, когда умножать, а когда складывать:

Возвратимся к примеру, когда мы подбросили монетку раза, и хотим узнать вероятность увидеть орла раз.
Что должно произойти?

Должны выпасть:
(орел И решка И решка) ИЛИ (решка И орел И решка) ИЛИ (решка И решка И орел).
Вот и получается:

Давай рассмотрим несколько примеров.

Пример 5.

В коробке лежит карандашей. красных, зеленых, оранжевых и желтых и черных. Какова вероятность вытащить красный или зеленый карандаши?

Решение:

Пример 6.

Игральную кость бросают дважды, какова вероятность того, что в сумме выпадет 8 очков?

Решение.

Как мы можем получить очков?

(и) или (и) или (и) или (и) или (и).

Вероятность выпадения одной (любой) грани - .

Считаем вероятность:

Тренировка.

Думаю, теперь тебе стало понятно, когда нужно как считать вероятности, когда их складывать, а когда умножать. Не так ли? Давай немного потренируемся.

Задачи:

Возьмем карточную колоду, в которой карты, из них пик, червей, 13 треф и 13 бубен. От до туза каждой масти.

  1. Какова вероятность вытащить трефы подряд (первую вытащенную карту мы кладем обратно в колоду и перемешиваем)?
  2. Какова вероятность вытащить черную карту (пики или трефы)?
  3. Какова вероятность вытащить картинку (вальта, даму, короля или туза)?
  4. Какова вероятность вытащить две картинки подряд (первую вытащенную карту мы убираем из колоды)?
  5. Какова вероятность, взяв две карты, собрать комбинацию - (валет, дама или король) и туз Последовательность, в которой будут вытащены карты, не имеет значения.

Ответы:

Если ты смог сам решить все задачи, то ты большой молодец! Теперь задачи на теорию вероятностей в ЕГЭ ты будешь щелкать как орешки!

ТЕОРИЯ ВЕРОЯТНОСТЕЙ. СРЕДНИЙ УРОВЕНЬ

Рассмотрим пример. Допустим, мы бросаем игральную кость. Что это за кость такая, знаешь? Так называют кубик с цифрами на гранях. Сколько граней, столько и цифр: от до скольки? До.

Итак, мы бросаем кость и хотим, чтобы выпало или. И нам выпадает.

В теории вероятностей говорят, что произошло благоприятное событие (не путай с благополучным).

Если бы выпало, событие тоже было бы благоприятным. Итого может произойти всего два благоприятных события.

А сколько неблагоприятных? Раз всего возможных событий, значит, неблагоприятных из них события (это если выпадет или).

Определение:

Вероятностью называется отношение количества благоприятных событий к количеству всех возможных событий . То есть вероятность показывает, какая доля из всех возможных событий приходится на благоприятные.

Обозначают вероятность латинской буквой (видимо, от английского слова probability - вероятность).

Принято измерять вероятность в процентах (см. тему , ) . Для этого значение вероятности нужно умножать на. В примере с игральной костью вероятность.

А в процентах: .

Примеры (реши сам):

  1. С какой вероятностью при бросании монетки выпадет орел? А с какой вероятностью выпадет решка?
  2. С какой вероятностью при бросании игральной кости выпадет четное число? А с какой - нечетное?
  3. В ящике простых, синих и красных карандашей. Наугад тянем один карандаш. Какова вероятность вытащить простой?

Решения:

  1. Сколько всего вариантов? Орел и решка - всего два. А сколько из них благоприятных? Только один - орел. Значит, вероятность

    С решкой то же самое: .

  2. Всего вариантов: (сколько сторон у кубика, столько и различных вариантов). Благоприятных из них: (это все четные числа:).
    Вероятность. С нечетными, естественно, то же самое.
  3. Всего: . Благоприятных: . Вероятность: .

Полная вероятность

Все карандаши в ящике зеленые. Какова вероятность вытащить красный карандаш? Шансов нет: вероятность (ведь благоприятных событий -).

Такое событие называется невозможным .

А какова вероятность вытащить зеленый карандаш? Благоприятных событий ровно столько же, сколько событий всего (все события - благоприятные). Значит, вероятность равна или.

Такое событие называется достоверным .

Если в ящике зеленых и красных карандашей, какова вероятность вытащить зеленый или красный? Опять же. Заметим такую вещь: вероятность вытащить зеленый равна, а красный - .

В сумме эти вероятности равны ровно. То есть, сумма вероятностей всех возможных событий равна или.

Пример:

В коробке карандашей, среди них синих, красных, зеленых, простых, желтый, а остальные - оранжевые. Какова вероятность не вытащить зеленый?

Решение:

Помним, что все вероятности в сумме дают. А вероятность вытащить зеленый равна. Значит, вероятность не вытащить зеленый равна.

Запомни этот прием: вероятность того, что событие не произойдет равна минус вероятность того, что событие произойдет.

Независимые события и правило умножения

Ты кидаешь монетку раза, и хочешь, чтобы оба раза выпал орел. Какова вероятность этого?

Давай переберем все возможные варианты и определим, сколько их:

Орел-Орел, Решка-Орел, Орел-Решка, Решка-Решка. Какие еще?

Всего варианта. Из них нам подходит только один: Орел-Орел. Итого, вероятность равна.

Хорошо. А теперь кидаем монетку раза. Посчитай сам. Получилось? (ответ).

Ты мог заметить, что с добавлением каждого следующего броска вероятность уменьшается в раза. Общее правило называется правилом умножения :

Вероятности независимых событий переменожаются.

Что такое независимые события? Все логично: это те, которые не зависят друг от друга. Например, когда мы бросаем монетку несколько раз, каждый раз производится новый бросок, результат которого не зависит от всех предыдущих бросков. С таким же успехом мы можем бросать одновременно две разные монетки.

Еще примеры:

  1. Игральную кость бросают дважды. Какова вероятность, что оба раза выпадет?
  2. Монетку бросают раза. Какова вероятность, что в первый раз выпадет орел, а потом два раза решка?
  3. Игрок бросает две кости. Какова вероятность, что сумма чисел на них будет равна?

Ответы:

  1. События независимы, значит, работает правило умножения: .
  2. Вероятность орла равна. Вероятность решки - тоже. Перемножаем:
  3. 12 может получиться только, если выпадут две -ки: .

Несовместные события и правило сложения

Несовместными называются события, которые дополняют друг друга до полной вероятности. Из названия видно, что они не могут произойти одновременно. Например, если бросаем монетку, может выпасть либо орел, либо решка.

Пример.

В коробке карандашей, среди них синих, красных, зеленых, простых, желтый, а остальные - оранжевые. Какова вероятность вытащить зеленый или красный?

Решение .

Вероятность вытащить зеленый карандаш равна. Красный - .

Благоприятных событий всего: зеленых + красных. Значит, вероятность вытащить зеленый или красный равна.

Эту же вероятность можно представить в таком виде: .

Это и есть правило сложения: вероятности несовместных событий складываются.

Задачи смешанного типа

Пример.

Монетку бросают два раза. Какова вероятность того, что результат бросков будет разный?

Решение .

Имеется в виду, что если первым выпал орел, второй должна быть решка, и наоборот. Получается, что здесь две пары независимых событий, и эти пары друг с другом несовместны. Как бы не запутаться, где умножать, а где складывать.

Есть простое правило для таких ситуаций. Попробуй описать, что должно произойти, соединяя события союзами «И» или «ИЛИ». Например, в данном случае:

Должны выпасть (орел и решка) или (решка и орел).

Там где стоит союз «и», будет умножение, а там где «или» - сложение:

Попробуй сам:

  1. С какой вероятностью при двух бросаниях монетки оба раза выпадет одно и та же сторона?
  2. Игральную кость бросают дважды. Какова вероятность, что в сумме выпадет очков?

Решения:

Еще пример:

Бросаем монетку раза. Какова вероятность, что хотя-бы один раз выпадет орел?

Решение:

ТЕОРИЯ ВЕРОЯТНОСТЕЙ. КОРОТКО О ГЛАВНОМ

Вероятность - это отношение количества благоприятных событий к количеству всех возможных событий.

Независимые события

Два события независимы если при наступлении одного вероятность наступления другого не изменяется.

Полная вероятность

Вероятность всех возможных событий равна ().

Вероятность того, что событие не произойдет, равна минус вероятность того, что событие произойдет.

Правило умножения вероятностей независимых событий

Вероятность определенной последовательности независимых событий, равна произведению вероятностей каждого из событий

Несовместные события

Несовместными называются события, которые никак не могут произойти одновременно в результате эксперимента. Ряд несовместных событий образуют полную группу событий.

Вероятности несовместных событий складываются.

Описав что должно произойти, используя союзы «И» или «ИЛИ», вместо «И» ставим знак умножения, а вместо «ИЛИ» — сложения.

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время .

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой доступ ко всем скрытым задачам в этой статье -
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - Купить учебник - 499 руб

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Доступ ко всем скрытым задачам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!

  • Вероя́тность - степень (относительная мера, количественная оценка) возможности наступления некоторого события. Когда основания для того, чтобы какое-нибудь возможное событие произошло в действительности, перевешивают противоположные основания, то это событие называют вероятным, в противном случае - маловероятным или невероятным. Перевес положительных оснований над отрицательными, и наоборот, может быть в различной степени, вследствие чего вероятность (и невероятность) бывает большей либо меньшей. Поэтому часто вероятность оценивается на качественном уровне, особенно в тех случаях, когда более или менее точная количественная оценка невозможна или крайне затруднительна. Возможны различные градации «уровней» вероятности.

    Исследование вероятности с математической точки зрения составляет особую дисциплину - теорию вероятностей. В теории вероятностей и математической статистике понятие вероятности формализуется как числовая характеристика события - вероятностная мера (или её значение) - мера на множестве событий (подмножеств множества элементарных событий), принимающая значения от

    {\displaystyle 0}

    {\displaystyle 1}

    Значение

    {\displaystyle 1}

    Соответствует достоверному событию. Невозможное событие имеет вероятность 0 (обратное вообще говоря не всегда верно). Если вероятность наступления события равна

    {\displaystyle p}

    То вероятность его ненаступления равна

    {\displaystyle 1-p}

    В частности, вероятность

    {\displaystyle 1/2}

    Означает равную вероятность наступления и ненаступления события.

    Классическое определение вероятности основано на понятии равновозможности исходов. В качестве вероятности выступает отношение количества исходов, благоприятствующих данному событию, к общему числу равновозможных исходов. Например, вероятность выпадения «орла» или «решки» при случайном подбрасывании монетки равна 1/2, если предполагается, что только эти две возможности имеют место и они являются равновозможными. Данное классическое «определение» вероятности можно обобщить на случай бесконечного количества возможных значений - например, если некоторое событие может произойти с равной вероятностью в любой точке (количество точек бесконечно) некоторой ограниченной области пространства (плоскости), то вероятность того, что оно произойдет в некоторой части этой допустимой области равна отношению объёма (площади) этой части к объёму (площади) области всех возможных точек.

    Эмпирическое «определение» вероятности связано с частотой наступления события исходя из того, что при достаточно большом числе испытаний частота должна стремиться к объективной степени возможности этого события. В современном изложении теории вероятностей вероятность определяется аксиоматически, как частный случай абстрактной теории меры множества. Тем не менее, связующим звеном между абстрактной мерой и вероятностью, выражающей степень возможности наступления события, является именно частота его наблюдения.

    Вероятностное описание тех или иных явлений получило широкое распространение в современной науке, в частности в эконометрике, статистической физике макроскопических (термодинамических) систем, где даже в случае классического детерминированного описания движения частиц детерминированное описание всей системы частиц не представляется практически возможным и целесообразным. В квантовой физике сами описываемые процессы имеют вероятностную природу.

Краткая теория

Для количественного сравнения событий по степени возможности их появления вводится числовая мера, которая называется вероятностью события. Вероятностью случайного события называется число, являющееся выражением меры объективной возможности появления события.

Величины, определяющие, насколько значительны объективные основания рассчитывать на появление события, характеризуются вероятностью события. Необходимо подчеркнуть, что вероятность есть объективная величина, существующая независимо от познающего и обусловленная всей совокупностью условий, которые способствуют появлению события.

Объяснения, которые мы дали понятию вероятности, не являются математическим определением, так как они не определяют это понятие количественно. Существует несколько определений вероятности случайного события, которые широко применяются при решении конкретных задач (классическое, геометрическое определение вероятности , статистическое и т. д.).

Классическое определение вероятности события сводит это понятие к более элементарному понятию равновозможных событий, которое уже не подлежит определению и предполагается интуитивно ясным. Например, если игральная кость - однородный куб, то выпадения любой из граней этого куба будут равновозможными событиями.

Пусть достоверное событие распадается на равновозможных случаев , сумма которых дает событие . То есть случаи из , на которые распадается , называются благоприятствующими для события , так как появление одного из них обеспечивает наступление .

Вероятность события будем обозначать символом .

Вероятность события равна отношению числа случаев , благоприятствующих ему, из общего числа единственно возможных, равновозможных и несовместных случаев к числу , т. е.

Это есть классическое определение вероятности. Таким образом, для нахождения вероятности события необходимо, рассмотрев различные исходы испытания, найти совокупность единственно возможных, равновозможных и несовместных случаев, подсчитать общее их число n, число случаев m, благоприятствующих данному событию, и затем выполнить расчет по вышеприведенной формуле.

Вероятность события, равная отношению числа благоприятных событию исходов опыта к общему числу исходов опыта называется классической вероятностью случайного события.

Из определения вытекают следующие свойства вероятности:

Свойство 1. Вероятность достоверного события равна единице.

Свойство 2. Вероятность невозможного события равна нулю.

Свойство 3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

Свойство 4. Вероятность наступления событий, образующих полную группу, равна единице.

Свойство 5. Вероятность наступления противоположного события определяется так же, как и вероятность наступления события A.

Число случаев, благоприятствующих появлению противоположного события . Отсюда вероятность наступления противоположного события равна разнице между единицей и вероятностью наступления события A:

Важное достоинство классического определения вероятности события состоит в том, что с его помощью вероятность события можно определить, не прибегая к опыту, а исходя из логических рассуждений.

При выполнении комплекса условий достоверное событие обязательно произойдет, а невозможное обязательно не произойдет. Среди событий, которые при создании комплекса условий могут произойти, а могут не произойти, на появление одних можно рассчитывать с большим основанием, на появление других с меньшим основанием. Если, например, в урне белых шаров больше, чем черных, то надеяться на появление белого шара при вынимании из урны наудачу больше оснований, чем на появление черного шара.

На соседней странице рассматривается .

Пример решения задачи

Пример 1

В ящике находится 8 белых, 4 черных и 7 красных шаров. Наудачу извлечены 3 шара. Найти вероятности следующих событий: – извлечен по крайней мере 1 красный шар, – есть по крайней мере 2 шара одного цвета, – есть по крайней мере 1 красный и 1 белый шар.

Решение задачи

Общее число исходов испытания найдем как число сочетаний из 19 (8+4+7) элементов по 3:

Найдем вероятность события – извлечен по крайней мере 1 красный шар (1,2 или 3 красных шара)

Искомая вероятность:

Пусть событие – есть по крайней мере 2 шара одного цвета (2 или 3 белых шара, 2 или 3 черных шара и 2 или 3 красных шара)

Число исходов, благоприятствующих событию:

Искомая вероятность:

Пусть событие – есть по крайней мере один красный и 1 белый шар

(1 красный, 1 белый, 1 черный или 1 красный, 2 белых или 2 красных, 1 белый)

Число исходов, благоприятствующих событию:

Искомая вероятность:

Ответ: P(A)=0.773;P(C)=0.7688; P(D)=0.6068

Пример 2

Брошены две игральные кости. Найти вероятность того, что сумма очков не меньше 5.

Решение

Пусть событие – сумма очков не меньше 5

Воспользуемся классическим определением вероятности:

Общее число возможных исходов испытания

Число испытаний, благоприятствующих интересующему нас событию

На выпавшей грани первого игрального кубика может появиться одно очко, два очка…, шесть очков. аналогично шесть исходов возможны при бросании второго кубика. Каждый из исходов бросания первой кости может сочетаться с каждым из исходов второй. Таким образом, общее число возможных элементарных исходов испытания равно числу размещений с повторениями (выбор с размещениями 2 элементов из совокупнности объема 6):

Найдем вероятность противоположного события – сумма очков меньше 5

Благоприятствовать событию будут следующие сочетания выпавших очков:

1-я кость 2-я кость 1 1 1 2 1 2 3 2 1 4 3 1 5 1 3

Средняя стоимость решения контрольной работы 700 - 1200 рублей (но не менее 300 руб. за весь заказ). На цену сильно влияет срочность решения (от суток до нескольких часов). Стоимость онлайн-помощи на экзамене/зачете - от 1000 руб. за решение билета.

Заявку можно оставить прямо в чате, предварительно скинув условие задач и сообщив необходимые вам сроки решения. Время ответа - несколько минут.

Примеры близких по теме задач

Формула полной вероятности. Формула Байеса
На примере решения задачи рассмотрены формула полной вероятности и формула Байеса, а также рассказывается, что такое гипотезы и условные вероятности.

Все на свете происходит детерминировано или случайно…
Аристотель

Вероятность: основные правила

Теория вероятностей вычисляет вероятности различных событий. Основным в теории вероятностей является понятие случайного события.

Например, вы бросаете монету, она случайным образом падает на герб или решку. Заранее вы не знаете, на какую сторону монета упадет. Вы заключаете договор страхования, заранее вы не знаете, будут или нет проводиться выплаты.

В актуарных расчетах нужно уметь оценивать вероятность различных событий, поэтому теория вероятностей играет ключевую роль. Ни одна другая область математики не может оперировать с вероятностями событий.

Рассмотрим более подробно подбрасывание монеты. Имеется 2 взаимно исключающих исхода: выпадение герба или выпадение решки. Исход бросания является случайным, так как наблюдатель не может проанализировать и учесть все факторы, которые влияют на результат. Какова вероятность выпадения герба? Большинство ответит ½, но почему?

Пусть формально А обозначает выпадение герба. Пусть монета бросается n раз. Тогда вероятность события А можно определить как долю тех бросков, в результате которых выпадает герб:

где n общее количество бросков, n(A) число выпадений герба.

Отношение (1) называется частотой события А в длинной серии испытаний.

Оказывается, в различных сериях испытаний соответствующая частота при больших n группируется около некоторой постоянной величины Р(А) . Эта величина называется вероятностью события А и обозначается буквой Р - сокращение от английского слова probability - вероятность .

Формально имеем:

(2)

Этот закон называется законом больших чисел.

Если монета правильная (симметричная), то вероятность выпадения герба равняется вероятности выпадения решки и равняется ½.

Пусть А и В некоторые события, например, произошел или нет страховой случай. Объединением двух событий называется событие, состоящее в выполнении события А , события В , или обоих событий вместе. Пересечением двух событий А и В называется событие, состоящее в осуществлении как события А , так и события В .

Основные правила исчисления вероятностей событий следующие:

1. Вероятность любого события заключена между нулем и единицей:

2. Пусть А и В два события, тогда:

Читается так: вероятность объединения двух событий равна сумме вероятностей этих событий минус вероятность пересечения событий. Если события являются несовместными или непересекающимися, то вероятность объединения (суммы) двух событий равна сумме вероятностей. Этот закон называется законом сложения вероятностей .

Мы говорим, что события является достоверным, если его вероятность равна 1. При анализе тех или иных явлений возникает вопрос, как влияет наступление события В на наступление события А . Для этого вводится условная вероятность :

(4)

Читается так: вероятность наступления А при условии В равняется вероятности пересечения А и В , деленной на вероятность события В .
В формуле (4) предполагается, что вероятность события В больше нуля.

Формулу (4) можно записать также в виде:

(5)

Это формула умножения вероятностей.

Условную вероятность называют также апостериорной вероятностью события А - вероятность наступления А после наступления В .

В этом случае саму вероятность называют априорной вероятностью. Имеется еще несколько важных формул, которые интенсивно используются в актуарных расчетах.

Формула полной вероятности

Допустим, что проводится опыт, об условиях которого можно заранее сделать взаимно исключающие друг друга предположения (гипотезы):

Мы предполагаем, что имеет место либо гипотеза , либо … либо. Вероятности этих гипотез известны и равны:

Тогда имеет место формула полной вероятности :

(6)

Вероятность наступления события А равна сумме произведений вероятности наступления А при каждой гипотезе на вероятность этой гипотезы.

Формула Байеса

Формула Байеса позволяет пересчитывать вероятность гипотез в свете новой информации, которую дал результат А .

Формула Байеса в известном смысле является обратной к формуле полной вероятности.

Рассмотрим следующую практическую задачу.

Задача 1

Предположим, произошла авиакатастрофа и эксперты заняты исследованием ее причин. Заранее известны 4 причины, по которым произошла катастрофа: либо причина, либо , либо , либо . По имеющейся статистике эти причины имеют следующие вероятности:



При осмотре места катастрофы найдены следы воспламенения горючего, согласно статистике вероятность этого события при тех или иных причинах такая:




Вопрос: какая причина катастрофы наиболее вероятна?

Вычислим вероятности причин при условия наступления события А .



Отсюда видно, что наиболее вероятной является первая причина, так как ее вероятность максимальна.

Задача 2

Рассмотрим посадку самолета на аэродром.

При посадке погодные условия могут быть такими: низкой облачности нет (), низкая облачность есть (). В первом случае вероятность благополучной посадки равна P1 . Во втором случае - Р2 . Ясно, что P1>P2 .

Приборы, обеспечивающие слепую посадку, имеют вероятность безотказной работы Р . Если есть низкая облачность и приборы слепой посадки отказали, вероятность удачного приземления равна Р3 , причем Р3<Р2 . Известно, что для данного аэродрома доля дней в году с низкой облачностью равна .

Найти вероятность благополучной посадки самолета.

Нужно найти вероятность .

Имеются два взаимно исключающих варианта: приборы слепой посадки действуют, приборы слепой посадки отказали, поэтому имеем:

Отсюда по формуле полной вероятности:

Задача 3

Страховая компания занимается страхованием жизни. 10% застрахованных в этой компании являются курильщиками. Если застрахованный не курит, вероятность его смерти на протяжении года равна 0.01 Если же он курильщик, то эта вероятность равна 0.05.

Какова доля курильщиков среди тех застрахованных, которые умерли в течение года?

Варианты ответов: (А) 5%, (Б) 20%, (В) 36 %, (Г) 56%, (Д) 90%.

Решение

Введём события:

Условие задачи означает, что

Кроме того, поскольку события и образуют полную группу попарно несовместимых событий, то .
Интересующая нас вероятность - это .

Используя формулу Байеса, мы имеем:

поэтому верным является вариант (В ).

Задача 4

Страховая компания продаёт договора страхования жизни трёх категорий: стандартные, привилегированные и ультрапривилегированные.

50% всех застрахованных являются стандартными, 40% - привилегированными и 10% - ультрапривилегированными.

Вероятность смерти в течение года для стандартного застрахованного равна 0.010, для привилегированного - 0.005, а для ультра привилегированного - 0.001.

Чему равна вероятность того, что умерший застрахованный является ультрапривилегированным?

Решение

Введем в рассмотрение следующие события:

В терминах этих событий интересующая нас вероятность - это . По условию:

Поскольку события , , образуют полную группу попарно несовместимых событий, используя формулу Байеса мы имеем:

Случайные величины и их характеристики

Пусть некоторая случайная величина, например, ущерб от пожара или величина страховых выплат.
Случайная величина полностью характеризуется своей функцией распределения.

Определение. Функция называется функцией распределения случайной величины ξ .

Определение. Если существует такая функция , что для произвольных a выполнено

то говорят, что случайная величина ξ имеет плотность распределения вероятности f(x) .

Определение. Пусть . Для непрерывной функции распределения F теоретической α-квантилью называется решение уравнения .

Такое решение может быть не единственным.

Квантиль уровня ½ называется теоретической медианой , квантили уровней ¼ и ¾ - нижней и верхней квартилями соответственно.

В актуарных приложениях важную роль играет неравенство Чебышева:

при любом

Символ математического ожидания.

Читается так: вероятность того, что модуль больше меньше или равняется математическому ожиданию величины модуль , деленному на .

Время жизни как случайная величина

Неопределенность момента смерти является основным фактором риска при страховании жизни.

Относительно момента смерти отдельного человека нельзя сказать ничего определенного. Однако если мы имеем дело с большой однородной группой людей и не интересуемся судьбой отдельных людей из этой группы, то мы находимся в рамках теории вероятностей как науки о массовых случайных явлениях, обладающих свойством устойчивости частот.

Соответственно, мы можем говорить о продолжительности жизни как о случайной величине Т.

Функция выживания

В теории вероятностей описывают стохастическую природу любой случайной величины Т функцией распределения F (x), которая определяется как вероятность того, что случайная величина Т меньше, чем число x :

.

В актуарной математике приятно работать не с функцией распределения, а с дополнительной функцией распределения . Применительно к продолжительной жизни - это вероятность того, что человек доживет до возраста x лет.

называется функцией выживания (survival function ):

Функция выживания обладает следующими свойствами:

В таблицах продолжительности жизни обычно считают, что существует некоторый предельный возраст (limiting age ) (как правило, лет) и соответственно при x >.

При описании смертности аналитическими законами обычно считают, что время жизни неограниченно, однако подбирают вид и параметры законов так, чтобы вероятность жизни свыше некоторого возраста была пренебрежимо мала.

Функция выживания имеет простой статистический смысл.

Допустим, что мы наблюдаем за группой из новорожденных (как правило, ), которых мы наблюдаем и можем фиксировать моменты их смерти.

Обозначим число живых представителей этой группы в возрасте через . Тогда:

.

Символ E здесь и ниже используется для обозначения математического ожидания.

Итак, функция выживания равна средней доле доживших до возраста из некоторой фиксированной группы новорожденных.

В актуарной математике часто работают не с функцией выживания , а с только что введенной величиной (зафиксировав начальный размер группы ).

Функция выживания может быть восстановлена по плотности:

Характеристики продолжительности жизни

С практической точки зрения важны следующие характеристики:

1 . Среднее время жизни

,
2 . Дисперсия времени жизни

,
где
,

Похожие публикации