Откуда берётся электричество? Кто и как открыл электричество

Электричество было известно людям с самых давних времен. Правда практически измерять электричество человек научился только в начале 19 века. Потом понадобилось еще 70 лет до того момента, когда в 1872 году русский ученый А.Н.Лодыгин изобрел первую в мире электрическую лампочку накаливания. Но знания о таком явлении как электричество были у людей уже много тысяч лет назад. Ведь ещё древний человек заметил удивительное свойство натертой янтарём шерсти притягивать нитки, пыль и другие мелкие предметы. Гораздо позже данное свойство было замечено и за другими веществами, такими как сера, сургуч и стекло. И по причине того, что «янтарь» по-гречески звучал как «электрон», эти свойства начали называться электрическими.

А причина возникновения электричества заключается в том, что при трении заряд делится на положительные и отрицательные заряды. Соответственно, заряды с одним знаком отталкиваются друг от друга, а с разными - притягиваются. Двигаясь по металлической проволоке, которая является проводником, эти заряды и создают электричество.
Без электричества в наше время просто невозможно представить нормальную цивилизованную жизнь. Оно светит, греет, даёт нам возможность общаться на огромных расстояниях друг от друга и т. п. Электрический ток приводит в действие самые различные агрегаты и приборы - от маленького будильника до огромного прокатного стана. Поэтому если представить, что однажды электричество может исчезнуть одновременно на всей планете, жизнь человека резко изменит свое направление. Мы уже не можем обходиться без электрического тока, ведь он питает и заставляет работать практически все механизмы и приборы, придуманные человеком. И если посмотреть вокруг себя, то можно увидеть, что в любой квартире, хотя бы в одну из розеток будет воткнута штепсельная вилка, от которой идет провод в магнитофон, телевизор, микроволновую печь или в другие приборы, которые мы ежедневно используем дома или на работе.
Сегодня без электричества не сможет прожить ни одна цивилизованная страна. Каким же образом добывается такое огромное количество электроэнергии, которое может обеспечить потребности миллиардов людей, живущих на Земле?
Для этих целей созданы электростанции . На них при помощи генераторов и создаётся электроэнергия, которая затем передаётся на огромные расстояния по линиям электропередач. Электростанции бывают разных видов. Одни для получения электричества используют энергию воды, они называются гидроэлектростанции. Другие получают энергию от сгорания топлива (газа, дизельного топлива или угля). Это тепловые электростанции, которые вырабатывают не только электрический ток, но и могут одновременно нагревать воду, которая затем поступает в отопительные трубы, греющие помещения домов или цехов заводов. А есть ещё атомные электростанции, ветровые, приливные, солнечные и многие другие.
В гидроэлектростанции (ГЭС) поток воды вращает турбины генератора, который вырабатывает электроэнергию. В тепловых электростанциях (ТЭС) эта обязанность возложена на водяной пар, который образуется в результате нагрева воды от сгорания топлива. Водяной пар под очень большим давлением врывается в турбины генератора, где расположено множество вертящихся частей снабженных специальными лепестками, напоминающими пропеллеры самолета. Пар, проходя через лепестки, вращает рабочие агрегаты генератора, благодаря чему и вырабатывается электрический ток.
Похожий принцип используется и в атомной электростанции (АЭС), только там топливом служат радиоактивные материалы - уран и плутоний. Благодаря особым свойствам урана и плутония они выделяют очень большое количество тепла, которое используется для нагрева воды и добывания водяного пара. Потом нагретый пар поступает в турбину и происходит выработка электрического тока. Интересно, что всего десять граммов подобного топлива заменяет целый вагон угля.

В основном электростанции не работают сами по себе. Они связаны между собой линиями электропередач. С их помощью электроэнергия направляется туда, где она больше всего нужна. Линии электропередач протянулись по всей нашей необъятной стране, поэтому тот ток, который мы используем у себя дома может вырабатываться очень далеко, за сотни километров от нашей квартиры. Но где бы ни стояла электростанция, благодаря линиям электропередачи каждый человек сможет воткнуть вилку и розетку и включить любой необходимый ему прибор или устройство.

Этот термин в основном используется для описания электрической энергии, электрической силы и электричества самого по себе. Электрическая – это наиболее разносторонне применяемый тип энергий из всех используемых человечеством. Она используется для освещения, обогрева, охлаждения, передвижения, связи и других повседневных целей.

Электричество наиболее просто описать с помощью теории атомного строения материи. Согласно ей, наименьшей структурной единицей вещества является . В центре атома находится ядро, которое в свою очередь состоит из протонов и нейтронов. Протоны обладают энергией, которую принято называть положительной. Нейтрона не обладают зарядом и остаются нейтрально заряженными. Вокруг ядра вращаются , которые имеют отрицательный заряд. Количество электронов равно количеству протонов, поэтому атом в сумме имеет нейтральный заряд. Однако в некоторых ситуациях атом может получать дополнительные электроны или терять их. В этом случае он становится положительно или отрицательно заряженным и тогда он будет называться .

Электрический заряд (ион) помещенный рядом с одним или несколькими другими будет испытывать электрические силы. Один из основных законов электричества состоит в притяжении разно заряженных зарядов и отталкивании одноименно заряженных зарядов. Область пространства, в котором заряды взаимодействуют друг с другом называют . Обычно электрическое поле изображается в виде линий, которые носят название силовых . Эта линия показывает направление, по которому следовал бы положительный заряд к отрицательному.

Когда , которые образуют какой-либо материальный объект теряют свои электроны, объект становится отрицательно заряженным. В этом случае он будет отталкиваться от отрицательно заряженных объектов и притягиваться к положительно заряженным.
Существует термин «статическое электричество», которое возникает, когда объект имеет положительный или отрицательный заряд, но не втекают и не вытекают из него. Если такой объект прикоснется к другому объекту, который нейтрально заряжен, либо положительно заряжен, то он потеряет часть или весь свой заряд.
Электрический ток возникает, когда есть поток электрически заряженных . В качестве таких частиц чаще всего выступают электроны. Некоторые электрические токи состоят из отрицательных и положительных ионов. По всеобщему соглашению направлением электрического тока называется направление, противоположное движению электронов. обладает энергией, которая может быть преобразована в тепловую, световую или другой вид энергии.
Электрический ток в металлическом проводнике представляет собой движение от отрицательного полюса к положительному. В повседневно используемых электрических устройствах протекают миллиарды и миллиарды электронов каждую секунду. Однако отдельные электроны преодолевают расстояние со скоростью лишь около 14 см в час. Основная их сила в их числе!
Существую два основных вида тока: постоянный и переменный. Постоянный ток течет в одном постоянном направлении. Переменный ток течет попеременно в каждую сторону. В бытовой электрической сети течет переменный ток и направление его движения меняется 50 раз в секунду.
Переменный ток обладает рядом преимуществ: его параметры могут быть легко изменены, т.е. его легко трансформировать. Кроме того, устройства для переменного тока сделать и спроектировать гораздо проще, чем для постоянного. В тоже время постоянный проще хранить, поэтому те устройства которые питаются от батареек и аккумуляторов работают преимущественно на постоянном токе.
по некоторым материалам течет более легко, чем по другим. Другими словами разные материалы обладают разным электрическим сопротивлением. Материалы с небольшим сопротивлением называются проводниками. Практически все металлы являются проводниками, так как их легко теряют и принимают . , которые также обладают низким сопротивлением, называют электролитами.
Наряду с проводниками существуют диэлектрики, которые имеют высокое электрическое сопротивление. К ним относятся резина, бумага, древесина и мн. др. Несмотря на то что диэлектрики плохо проводят ток, они также широко используются в электрической технике. Например диэлектрики используются для изоляции проводов.
Материалы с сопротивлением между проводниками и диэлектриками называются полупроводниками. Они широко используются при построении электронных схем.

Физика электричества - это то, с чем приходится сталкиваться каждому из нас. В статье мы рассмотрим основные понятия, связанные с ней.

Что такое электричество? Для человека непосвященного оно ассоциируется со вспышкой молнии или с энергией, питающей телевизор и стиральную машину. Он знает, что электропоезда используют О чем еще он может рассказать? О нашей зависимости от электричества ему напоминают линии электропередач. Кто-то сможет привести и несколько других примеров.

Однако с электричеством связано немало других, не столь очевидных, но повседневных явлений. Со всеми ними нас знакомит физика. Электричество (задачи, определения и формулы) мы начинаем изучать еще в школе. И узнаем много интересного. Оказывается, бьющееся сердце, бегущий спортсмен, спящий ребенок и плавающая рыба - все вырабатывает электрическую энергию.

Электроны и протоны

Определим основные понятия. С точки зрения ученого, физика электричества связана с движением электронов и других заряженных частиц в различных веществах. Поэтому научное понимание природы интересующего нас явления зависит от уровня знаний об атомах и составляющих их субатомных частицах. Ключом к этому пониманию служит крошечный электрон. Атомы любого вещества содержат один или более электронов, движущихся по различным орбитам вокруг ядра подобно тому, как планеты вращаются вокруг Солнца. Обычно в атоме равно количеству протонов в ядре. Однако протоны, будучи значительно тяжелее электронов, можно считать как бы закрепленными в центре атома. Этой предельно упрощенной модели атома вполне достаточно, чтобы объяснить основы такого явления, как физика электричества.

О чем еще необходимо знать? Электроны и протоны имеют одинаковый по величине (но разного знака), поэтому они притягиваются друг к другу. Заряд протона является положительным, а электрона - отрицательным. Атом, имеющий электронов больше или меньше, чем обычно, называется ионом. Если в атоме их недостаточно, то он называется положительным ионом. Если же он содержит их избыток, то его называют отрицательным ионом.

Когда электрон покидает атом, тот приобретает некоторый положительный заряд. Электрон, лишенный своей противоположности - протона, либо движется к другому атому, либо возвращается к прежнему.

Почему электроны покидают атомы?

Это объясняется несколькими причинами. Наиболее общая состоит в том, что под воздействием импульса света или какого-то внешнего электрона движущийся в атоме электрон может быть выбит со своей орбиты. Тепло заставляет атомы колебаться быстрее. Это означает, что электроны могут вылететь из своего атома. При химических реакциях они также перемещаются от атома к атому.

Хороший пример взаимосвязи химической и электрической активности дают нам мышцы. Их волокна сокращаются при воздействии электрического сигнала, поступающего из нервной системы. Электрический ток стимулирует химические реакции. Они-то и приводят к сокращению мышцы. Внешние электрические сигналы нередко используются для искусственного стимулирования мышечной активности.

Проводимость

В некоторых веществах электроны под действием внешнего электрического поля движутся более свободно, чем в других. Говорят, что такие вещества обладают хорошей проводимостью. Их называют проводниками. К ним относится большинство металлов, нагретые газы и некоторые жидкости. Воздух, резина, масло, полиэтилен и стекло плохо проводят электричество. Их называют диэлектриками и используют для изоляции хороших проводников. Идеальных изоляторов (абсолютно не проводящих тока) не существует. При определенных условиях электроны можно удалить из любого атома. Однако обычно эти условия столь трудно выполнить, что с практической точки зрения подобные вещества можно считать непроводящими.

Знакомясь с такой наукой, как "Электричество"), мы узнаем, что существует особая группа веществ. Это полупроводники. Они ведут себя отчасти как диэлектрики, а отчасти - как проводники. К ним, в частности, относятся: германий, кремний, окись меди. Благодаря своим свойствам полупроводник находит множество применений. Например, он может служить электрическим вентилем: подобно клапану велосипедной шины он позволяет зарядам двигаться только в одном направлении. Такие устройства называются выпрямителями. Они используются и в миниатюрных радиоприемниках, и на больших электростанциях для преобразования переменного тока в постоянный.

Тепло представляет собой хаотичную форму движения молекул или атомов, а температура - мера интенсивности этого движения (у большинства металлов с понижением температуры движение электронов становится более свободным). Это означает, что сопротивление свободному движению электронов падает с уменьшением температуры. Другими словами, проводимость металлов возрастает.

Сверхпроводимость

В некоторых веществах при очень низких температурах сопротивление потоку электронов исчезает полностью, и электроны, начав движение, продолжают его неограниченно. Это явление называется сверхпроводимостью. При температуре несколько градусов выше абсолютного нуля (— 273 °С) она наблюдается в таких металлах, как олово, свинец, алюминий и ниобий.

Генераторы Ван де Граафа

В школьную программу входят различные опыты с электричеством. Существует можество видов генераторов, об одном из которых нам хотелось бы подробнее рассказать. Генератор Ван де Граафа используется для получения сверхвысоких напряжений. Если предмет, содержащий избыток положительных ионов, поместить внутрь контейнера, то на внутренней поверхности последнего появятся электроны, а на внешней - такое же количество положительных ионов. Если теперь коснуться внутренней поверхности заряженным предметом, то на него перейдут все свободные электроны. На внешней же положительные заряды останутся.

В положительные ионы от источника наносятся на ленту конвейера, проходящего внутри металлической сферы. Лента связана с внутренней поверхностью сферы с помощью проводника в виде гребня. Электроны стекают с внутренней поверхности сферы. На внешней же стороне ее появляются положительные ионы. Эффект можно усилить, используя два генератора.

Электрический ток

В школьный курс физики входит и такое понятие, как электрический ток. Что же это такое? Электрический ток обусловлен движением электрических зарядов. Когда электрическая лампа, соединенная с батареей, включена, ток течет по проводу от одного полюса батареи к лампе, затем через ее волосок, вызывая его свечение, и возвращается назад по второму проводу к другому полюсу батареи. Если выключатель повернуть, то цепь разомкнется - движение тока прекратится, и лампа погаснет.

Движение электронов

Ток в большинстве случаев представляет собой упорядоченное движение электронов в металле, служащем проводником. Во всех проводниках и некоторых других веществах всегда происходит какое-то случайное их движение, даже если ток не протекает. Электроны в веществе могут быть относительно свободны или сильно связаны. Хорошие проводники имеют свободные электроны, способные перемещаться. А вот в плохих проводниках, или изоляторах, большинство этих частиц достаточно прочно связано с атомами, что препятствует их движению.

Иногда естественным или искусственным путем в проводнике создается движение электронов в определенном направлении. Этот поток и называют электрическим током. Он измеряется в амперах (А). Носителями тока могут служить также ионы (в газах или растворах) и «дырки» (нехватка электронов в некоторых видах полупроводников. Последние ведут себя как положительно заряженные носители электрического тока. Чтобы заставить электроны двигаться в том или ином направлении, необходима некая сила. В природе ее источниками могут быть: воздействие солнечного света, магнитные эффекты и химические реакции. Некоторые из них используются для получения электрического тока. Обычно для этой цели служат: генератор, использующий магнитные эффекты, и элемент (батарея), действие которого обусловлено химическими реакциями. Оба устройства, создавая заставляют электроны двигаться в одном направлении по цепи. Величина ЭДС измеряется в вольтах (В). Таковы основные единицы измерения электричества.

Величина ЭДС и сила тока связаны между собой, как давление и поток в жидкости. Водопроводные трубы всегда заполнены водой под определенным давлением, но вода начинает течь, только когда открывают кран.

Аналогично может быть соединена с источником ЭДС, но ток в ней не потечет до тех пор, пока не будет создан путь, по которому могут двигаться электроны. Им может быть, скажем, электрическая лампа или пылесос, выключатель здесь играет роль крана, «выпускающего» ток.

Соотношение между током и напряжением

По мере роста напряжения в цепи растет и ток. Изучая курс физики, мы узнаем, что электрические цепи состоят из нескольких различных участков: обычно это выключатель, проводники и прибор - потребитель электричества. Все они, соединенные вместе, создают сопротивление электрическому току, которое (при условии постоянства температуры) для этих компонентов не изменяется со временем, но для каждого из них различно. Поэтому, если одно и то же напряжение применить к лампочке и к утюгу, то поток электронов в каждом из приборов будет различен, поскольку различны их сопротивления. Следовательно, сила тока, протекающего через определенный участок цепи, определяется не только напряжением, но и сопротивлением проводников и приборов.

Закон Ома

Величина электрического сопротивления измеряется в омах (Ом) в такой науке, как физика. Электричество (формулы, определения, опыты) - обширная тема. Мы не будем выводить сложные формулы. Для первого знакомства с темой достаточно того, что было сказано выше. Однако одну формулу все-таки стоит вывести. Она совсем несложная. Для любого проводника или системы проводников и приборов соотношение между напряжением, током и сопротивлением задается формулой: напряжение = ток х сопротивление. Это математическое выражение закона Ома, названного так в честь Георга Ома (1787-1854 гг.), который первым установил взаимосвязь этих трех параметров.

Физика электричества - очень интересный раздел науки. Мы рассмотрели лишь основные понятия, связанные с ней. Вы узнали, что такое электричество, как оно образуется. Надеемся, эта информация вам пригодится.

Многие пользуются электричеством, но далеко не многие знают в чём заключается его суть. Электричество, как явление природы, было и будет всегда. Но люди, в силу своих познавательных способностей, могут лишь отрывать те или иные явления. И в силу своих человеческих особенностей могут порой забывать, терять, скрывать знания о них. Суть электричества в наше время раскрывается в научных теориях тех учёных, которые в своё время вели усердную работу над познанием этой невидимой силы. В разные периоды были сделаны определённые открытия, в последствии порождающие новые вопросы, на которые были очередные попытки на них ответить.

Итак, суть электричества заключается в том, что существуют так называемые элементарные частицы такие как электроны и протоны, входящие в состав атомов и молекул различных веществ. Напомню, модель атома следующая (похожая на солнечную систему): внутри располагается ядро, состоящее из протонов и нейтронов.

Протоны имеют положительный заряд, который проявляет себя в виде силы (по средствам существующего поля вокруг частиц), действующие на другой заряд другой частицы отталкивая её или притягивая. Нейроны, как бы, нейтральны, с точки зрения зарядов. Электроны вращаются на очень большой скорости вокруг ядра атома, и имеют отрицательный заряд. Количество элементарных частиц в атоме может быть разным в зависимости от конкретного вещества.

Именно эти заряды (полевые силы, действующие друг на друга) и являются основой, сутью электричества, поскольку именно эта сила и порождает различные явления, связанные с проявлением электричества в мире. Когда суммарное количество положительного заряда протонов равно отрицательному заряду электронов, входящих в состав атома вещества, то в целом атом будет электрически нейтральным, по отношению к другим атомам. Но вот если в силу тех или иных причин в атоме начнёт преобладать тот или иной вид заряда, то тут уже появятся силы, которые будут стремиться выровнять этот дисбаланс электрического заряда.

Но различные вещества по разному ведут себя, с точки зрения перераспределения электрических зарядов. У одних электроны настолько сильно притягиваются к своим ядрам атома, что не в силах сорваться со своей орбиты вращения. У других же веществ эти электроны достаточно легко отрываютя от атомов и начинают блуждать по соседним атомам данного вещества. В первом случае вещества называют диэлектриками, в другом же случае (где электроны свободно блуждают) вещества называют проводниками электричества. То есть, эти электрические заряды перетекают из одного места в другое, тем самым образуя электрический ток.

Дальнейшая суть электричества уже связана именно с различными движениями этих электронов в различных средах, в различных материалах и различных условиях. В итоге и получаем всё то разнообразие электрических явлений, процессов и взаимодействий. К примеру, обычная батарейка. В ней находятся различные химические вещества, которые взаимодействуя друг с другом с одного своего состояния переходят в другое, а сопутствующим процессом будет перераспределение электронов между изменяющимися веществами внутри. Если есть дисбаланс электрических зарядов, значит есть и сила, стремящаяся выровнять его. Эту самую силу и используют в батарейке для питания различных электрических устройств.

Металлы служат проводником этих самых электронов (заряженных частиц). Они легко перетекают по проводнику с одного участка в другой. Пока же совершается движение электронов, происходят параллельные физические явления. К примеру, когда много электронов упорядоченно движутся через тонкий проводник, они сталкиваются с атомами, неподвижно стоящих на своих местах в кристаллической решётки вещества. В результате таких столкновений энергия движения электронов переходит в энергию тепла атома, с которым было столкновение. То есть, энергия движения электронов частично перешла в энергию тепла, произведя нагрев данного вещества.

Другим примером, проявляющим суть электричества, может служить взаимодействие электромагнитных полей. Напомню, что вокруг неподвижных заряженных частиц существует электрическое поле, а вокруг движущихся электрических частиц ещё возникает и магнитное поле. В итоге, когда заряженные частицы движутся вокруг них образуется общее электромагнитное поле, способное действовать на другие такие же поля других заряженных частиц. Так работает электродвигатель. Именно магнитные поля заставляют вращаться электрический мотор, когда по его обмоткам совершается перетекание электрических зарядов с одного полюса на другой.

P.S. - вот мы и разобрались в общих чертах о сути электричества и его явлениях. Для лучшего понимания просто представляйте, как очень маленькие частички очень быстро перетекают с одного места на другое по своей электрической цепи. Если есть разность потенциалов (в одном месте возникло скопление одного вида зарядов, а в другом, противоположного вида), то при появлении пути (соединение цепи) начинается процесс выравнивания этих самых потенциалов. Бежит электрический ток. Вот и всё.

Или электрическим током называют направленно движущийся поток заряженных частиц, например электронов. Также электричеством называется энергия, получаемая в результате такого движения заряженных частиц, и освещение, которое получают на основе этой энергии. Термин «электричество» был введён английским учёным Уильямом Гилбертом в 1600 году в его сочинении «О магните, магнитных телах и о большом магните-Земле».

Гилберт проводил опыты с янтарём, который в результате трения о сукно получил возможность притягивать другие лёгкие тела, то есть приобрёл некий заряд. А так как янтарь переводится с греческого как электрон, то наблюдаемое ученым явление получило название «электричество».

Электрический ток

Немного теории об электричестве

Электричество способно создавать вокруг проводников электрического тока или заряженных тел электрическое поле. Посредством электрического поля можно оказывать воздействие на другие тела, обладающие электрическим зарядом.fv

Электрические заряды, как всем известно, делятся на положительные и отрицательные. Этот выбор является условным, однако из-за того, что он уже давно сделан исторически, то только поэтому за каждым зарядом закреплён определённый знак.

Тела, которые заряжены одним видом знака, отталкиваются друг от друга, а которые имеют разные заряды-наоборот притягиваются.

Во время движения заряженных частиц, то есть существования электричества, также помимо электрического поля возникает и магнитное поле. Это позволяет установить родство между электричеством и магнетизмом .

Интересно, что существуют тела, которые проводят электрический ток или тела с очень большим сопротивлением.. Это было открыто английским учёным Стивеном Греем в 1729 году.

Изучением электричества, наиболее полно и фундаментально, занимается такая наука, как термодинамика. Однако квантовые свойства электромагнитных полей и заряженных частиц изучаются уже совсем другой наукойm – квантовой термодинамикой, однако некоторую часть квантовых явлений можно довольно просто объяснить обычными квантовыми теориями.

Основы электричества

История открытия электричества

Для начала необходимо сказать, что нет такого учёного, который может считаться открывателем электричества, так как с древнейших времен до наших дней многие учёные изучают его свойства и узнают что-то новое об электричестве.

  • Первым, кто заинтересовался электричеством, был древнегреческий философ Фалес. Он обнаружил, что янтарь, который потереть о шерсть приобретает свойство притягивать другие лёгкие тела.
  • Затем другой древнегреческий ученый Аристотель занимался изучением некоторых угрей, которые поражали врагов, как мы теперь знаем, электрическим разрядом.
  • В 70 году нашей эры римский писатель Плиний изучал электрические свойства смолы.
  • Однако затем долгое время об электричестве не было получено никаких знаний.
  • И только в 16 веке придворный врач английской королевы Елизаветы 1 Вильям Жильбер занялся изучением электрических свойств и сделал ряд интересных открытий. После этого началось буквально «электрическое помешательство».
  • Только в 1600 году появился термин «электричество», введённый английским ученым Уильямом Гилбертом.
  • В 1650 году, благодаря бургомистру Магдебурга Отто фон Герике, который изобрёл электростатическую машину, появилась возможность наблюдать эффект отталкивания тел под действием электричества.
  • В 1729 году английский учёный Стивен Грей, проводя опыты по передачи электрического тока на расстояние, случайно обнаружил, что не все материалы обладают свойством одинаково передавать электричество.
  • В 1733 году французский ученый Шарль Дюфе открыл существование двух типов электричества, которые он назвал стеклянным и смоляным. Эти названия они получили из-за того, что выявлялись при трении стекла о шёлк и смолы о шерсть.
  • Первый конденсатор, то есть накопитель электричества, изобрёл голландец Питер ванн Мушенбрук в 1745 году. Этот конденсатор получил название Лейденская банка.
  • В 1747 году американец Б.Франклин создал первую в мире теорию электричества. По франклину электричество – это нематериальная жидкость или флюид. Другая заслуга Франклина перед наукой заключается в том, что он изобрёл громоотвод и с помощью него доказал, что молния имеет электрическую природу возникновения. Также он ввёл такие понятия как положительный и отрицательный заряды, но не открывал заряды. Это открытие сделал учёный Симмер, который доказал существование полюсов зарядов: положительного и отрицательного.
  • Изучение свойств электричества перешло к точным наукам после того как в 1785 году Кулон открыл закон о силе взаимодействия, происходящей между точечными электрическими зарядами, который получил название Закон Кулона.
  • Затем, в 1791 году итальянский учёный Гальвани публикует трактат о том, что в мышцах животных, при их движении возникает электрический ток.
  • Изобретение батареи другим итальянским учёным – Вольтом в 1800, привело к бурному развитию науки об электричестве и к последовавшему ряду важных открытий в этой области.
  • Затем последовали открытия Фарадея, Максвелла и Ампера, которые произошли всего за 20 лет.
  • В 1874 году российский инженер А.Н.Лодыгин получил патент, на изобретённую в 1872 году лампу накаливания с угольным стержнем. Затем в лампе стал использоваться стержень из вольфрама. А в 1906 году он продал свой патент компании Томаса Эдисона.
  • В 1888 году Герц регистрирует электромагнитные волны.
  • В 1879 году Джозеф Томсон открывает электрон, который является материальным носителем электричества.
  • В 1911 году француз Жорж Клод изобрёл первую в мире неоновую лампу.
  • Двадцатый век дал миру теорию Квантовой электродинамики.
  • В 1967 году был сделан еще один шаг на пути изучения свойств электричества. В этом году была создана теория электрослабых взаимодействий.

Однако это только основные открытия, сделанные учёными, и способствовавшие применению электричества. Но исследования продолжаются и сейчас, и каждый год происходят открытия в области электричества.

Все уверенны что самым великим и могущественным в плане открытий связанных с электричеством, был Никола Тесла. Сам он родился в Австрийской империи, теперь это территория Хорватии. В его багаже изобретений и научных работ: переменный ток, теория полей, эфир, радио, резонанс и многое другое. Некоторые допускают возможность что явление “Тунгусского метеорита”, это ни что иное как работа рук самого Николы Теслы, а именно взрыв огромной мощности на территории Сибири.

Властелин мира - Никола Тесла

Какое-то время считалось, что электричество в природе не существует. Однако после того как Б.Франклин установил, что молнии имеют электрическую природу возникновения, это мнение перестало существовать.

Значение электричества в природе, как и в жизни человека достаточно огромно. Ведь именно молнии привели к синтезу аминокислот и, следовательно, к появлению жизни на земле .

Процессы в нервной системе человека и животных, например, движение и дыхание, происходят благодаря нервному импульсу, который возникает из-за электричества, существующего в тканях живых существ.

Некоторые виды рыб использую электричество, а точнее электрические разряды для защиты от врагов, поиска пищи под водой и её добывания. Такими рыбами являются: угри, миноги, электрические скаты и даже некоторые акулы. Все эти рыбы имеют специальный электрический орган, который работает по принципу конденсатора, то есть накапливает достаточно большой электрический заряд, а затем разряжает его на жертву, прикоснувшуюся к такой рыбе. Также такой орган работает с частотой в несколько сотен герц и имеет напряжение несколько вольт. Сила тока электрического органа рыб меняется с возрастом: чем старше становится рыба, тем сила тока больше. Также благодаря электрическому току рыбы, обитающие на большой глубине, ориентируются в воде. Электрическое поле искажается под действие предметов, находящихся в воде. А эти искажения и помогают рыбам ориентироваться.

Смертельные опыты. Электричество

Получение электричества

Для получения электричества были специально созданы электростанции. На электростанциях при помощи генераторов, создается электроэнергия, которая после передается в места потребления по линиям электропередач. Электрический ток создается благодаря переходу механической или внутренней энергии в электрическую энергию. Электростанции делятся на: гидроэлектростанции или ГЭС, тепловые атомные, ветровые, приливные, солнечные и другие электростанции.

В гидроэлектростанциях турбины генератора, движущиеся под действием потока воды, вырабатывают электрический ток. В тепловых электростанциях или по-другому ТЭЦ электрический ток образуется также, но только вместо воды используется водяной пар, возникающий в процессе нагрева воды при сгорании топлива, например, угля.

Очень похожий принцип работы используется в атомной станции или АЭС. Только в АЭС используется другой вид топлива – радиоактивные материалы, например, уран или плутоний. Происходит деление их ядер, благодаря чему выделяется очень большое количество теплоты, используемое для нагревания воды и превращения её в водяной пар, который затем поступает в турбину, вырабатывающую электрический ток. Для работы таких станций требуется очень мало топлива. Так десять граммов урана вырабатывает такое же количество электричества, как и вагон угля.

Использование электричества

В наше время жизнь без электричества становится невозможной. Оно достаточно плотно вошло в жизнь людей двадцать первого века. Часто электричество используют для освещения, например, используя электрическую или неоновую лампу, и для передачи всевозможной информации с помощью телефона, телевидения и радио, а в прошлом и телеграфа. Также еще в двадцатом веке появилась новая область применения электричества: источник питания электрических двигателей трамваев, поездов в метро, троллейбусов и электричек. Электричество необходимо для работы различных бытовых приборов, которые значительно улучшают жизнь современного человека.

Сегодня электричество также применяется для получения качественных материалов и их обработки. С помощью электрогитар, работающих благодаря электричеству, можно создавать музыку. Также электричество продолжает использоваться, как гуманный способ умерщвления преступников (электрический стул), в странах, в которых разрешена смертная казнь.

Также учитывая то, что жизнь современного человека становится практически невозможной без компьютеров и сотовых телефонов, для работы которых необходимо электричество, то важность электричества будет достаточно сложно переоценить.

Электричество в мифологии и искусстве

В мифологии почти всех народов есть боги, которые способны метать молнии, то есть умеющие использовать электричество. Например, у греков таким богом был Зевс, у индусов-Агни, который умел превращаться в молнию, у славян – это Перун, а у скандинавских народов-Тор.

В мультфильмах также есть электричество. Так в диснеевском мультфильме Черный плащ есть антигерой Мегавольт, который способен повелевать электричеством. В японской анимации электричеством владеет покемон Пикачу.

Заключение

Изучение свойств электричества началось ещё в глубокой древности и продолжается до сих пор. Узнав, основные свойства электричества и, научившись их правильно использовать, люди значительно облегчили свою жизнь. Электричество также используется на заводах, фабриках и тд., то есть с помощью него можно получать другие блага. Значение электричества, как в природе, так и в жизни современного человека огромно. Без такого электрического явления как молния на земле не зародилась бы жизнь, а без нервных импульсов, возникающих также благодаря электричеству, не возможно было бы обеспечить согласованную работу между всеми частями организмов.

Люди всегда были благодарны электричеству, даже когда не знали об его существовании. Они наделяли своих главных богов возможностью метать молнии.

Современный человек также не забывает об электричестве, но возможно ли о нем забыть? Он наделяет электрическими способностями героев мультфильмов и фильмов, строит электростанции, чтобы получать электричество и делает многое другое.

Таким образом, электричество величайший дар, данный нам самой природой и которым мы, к счастью, научились пользоваться.

Похожие публикации