Непрерывная функция в точке. Как исследовать функцию на непрерывность

На этом уроке будем учиться устанавливать непрерывность функции. Будем делать это с помощью пределов, причем односторонних - правого и левого, которые совсем не страшны, несмотря на то что записываются как и .

Но что такое вообще непрерывность функции? Пока мы не дошли до строгого определения, проще всего представить себе линию, которую можно начертить, не отрывая карандаш от бумаги. Если такая линия начерчена, то она непрерывна. Эта линия и является графиком непрерывной функции.

Графически функция непрерывна в точке , если её график не "разрывается" в этой точке. График такой непрерывной функции - показан на рисунке ниже.

Определение непрерывности функции через предел. Функция является непрерывной в точке при соблюдении трёх условий:

1. Функция определена в точке .

Если хотя бы одно из перечисленных условий не соблюдено, функция не является непрерывной в точке. При этом говорят, что функция терпит разрыв, а точки на графике, в которых график прерывается, называются точками разрыва функции. График такой функции , терпящей разрыв в точке x=2 - на рисунке ниже.

Пример 1. Функция f (x ) определена следующим образом:

Будет ли эта функция непрерывной в каждой из граничных точек её ветвей, то есть в точках x = 0 , x = 1 , x = 3 ?

Решение. Проверяем все три условия непрерывности функции в каждой граничной точке. Первое условие соблюдается, так как то, что функция определена в каждой из граничных точек, следует из определения функции. Осталось проверить остальные два условия.

Точка x = 0 . Найдём левосторонний предел в этой точке:

.

Найдём правосторонний предел:

x = 0 должны быть найдены при той ветви функции, которая включает в себя эту точку, то есть второй ветви. Находим их:

Как видим, предел функции и значение функции в точке x = 0 равны. Следовательно, функция является непрерывной в точке x = 0 .

Точка x = 1 . Найдём левосторонний предел в этой точке:

Найдём правосторонний предел:

Предел функции и значение функции в точке x = 1 должны быть найдены при той ветви функции, которая включает в себя эту точку, то есть второй ветви. Находим их:

.

Предел функции и значение функции в точке x = 1 равны. Следовательно, функция является непрерывной в точке x = 1 .

Точка x = 3 . Найдём левосторонний предел в этой точке:

Найдём правосторонний предел:

Предел функции и значение функции в точке x = 3 должны быть найдены при той ветви функции, которая включает в себя эту точку, то есть второй ветви. Находим их:

.

Предел функции и значение функции в точке x = 3 равны. Следовательно, функция является непрерывной в точке x = 3 .

Основной вывод: данная функция является непрерывной в каждой граничной точке.

Установить непрерывность функции в точке самостоятельно, а затем посмотреть решение

Непрерывное изменение функции можно определить как изменение постепенное, без скачков, при котором малое изменение аргумента влечёт малое изменение функции .

Проиллюстрируем это непрерывное изменение функции на примере.

Пусть над столом висит на нитке груз. Под действием этого груза нитка растягивается, поэтому расстояние l груза от точки подвеса нити является функцией массы груза m , то есть l = f (m ) , m ≥0 .

Если немного изменить массу груза, то расстояние l изменится мало: малым изменениям m соответствуют малые изменения l . Однако если масса груза близка к пределу прочности нити, то небольшое увеличение массы груза может вызвать разрыв нити: расстояние l скачкообразно увеличится и станет равным расстоянию от точки подвеса до поверхности стола. График функции l = f (m ) изображён на рисунке. На участке этот график является непрерывной (сплошной) линией, а в точке он прерывается. В результате получается график, состоящий из двух ветвей. Во всех точках, кроме , функция l = f (m ) непрерывна, а в точке она имеет разрыв.

Исследование функции на непрерывность может быть как самостоятельной задачей, так и одним из этапов полного исследования функции и построения её графика .

Непрерывность функции на промежутке

Пусть функция y = f (x ) определена в интервале ]a , b [ и непрерывна в каждой точке этого интервала. Тогда она называется непрерывной в интервале ]a , b [ . Аналогично определяется понятие непрерывности функции на промежутках вида ]- ∞, b [ , ]a , + ∞[ , ]- ∞, + ∞[ . Пусть теперь функция y = f (x ) определена на отрезке [a , b ] . Разница между интервалом и отрезком: граничные точки интервала не входят в интервал, а граничные точки отрезка входят в отрезок. Здесь следует упомянуть о так называемой односторонней непрерывности: в точке a , оставаясь на отрезке [a , b ] , мы можем приближаться только справа, а к точке b - только слева. Функция называется непрерывной на отрезке [a , b ] , если она непрерывна во всех внутренних точках этого отрезка, непрерывна справа в точке a и непрерывна слева в точке b .

Примером непрерывной функции может служить любая из элементарных функций. Каждая элементарная функция непрерывна на любом отрезке, на котором она определена. Например, функции и непрерывны на любом отрезке [a , b ] , функция непрерывна на отрезке [0 , b ] , функция непрерывна на любом отрезке, не содержащем точку a = 2 .

Пример 4. Исследовать функцию на непрерывность.

Решение. Проверяем первое условие. Функция не определена в точках - 3 и 3. По меньшей мере одно из условий непрерывности функции на всей числовой прямой не выполняется. Поэтому данная функция является непрерывной на интервалах

.

Пример 5. Определить, при каком значении параметра a непрерывна на всей области определения функция

Решение.

Найдём правосторонний предел при :

.

Очевидно, что значение в точке x = 2 должно быть равно ax :

a = 1,5 .

Пример 6. Определить, при каких значениях параметров a и b непрерывна на всей области определения функция

Решение.
Найдём левосторонний предел функции в точке :

.

Следовательно, значение в точке должно быть равно 1:

Найдём левосторонний функции в точке :

Очевидно, что значение функции в точке должно быть равно :

Ответ: функция непрерывна на всей области определения при a = 1; b = -3 .

Основные свойства непрерывных функций

К понятию непрерывной функции математика пришла, изучая в первую очередь различные законы движения. Пространство и время бесконечны, и зависимость, например, пути s от времени t , выраженная законом s = f (t ) , даёт пример непрерывной функции f (t ) . Непрерывно изменяется и температура нагреваемой воды, она также является непрерывной функцией от времени: T = f (t ) .

В математическом анализе доказаны некоторые свойства, которыми обладают непрерывные функции. Приведём важнейшие из этих свойств.

1. Если непрерывная на интервале функция принимает на концах интервала значения разных знаков, то в некоторой точке этого отрезка она принимает значение, равное нулю. В более формальном изложении это свойство дано в теореме, известной как первая теорема Больцано-Коши.

2. Функция f (x ) , непрерывная на интервале [a , b ] , принимает все промежуточные значения между значениями в концевых точках, то есть, между f (a ) и f (b ) . В более формальном изложении это свойство дано в теореме, известной как вторая теорема Больцано-Коши.

Рассмотрим две функции, графики которых изображены на рис. 1 и 2. График первой функции можно нарисовать, не отрывая карандаша от бумаги. Эту функцию можно назвать непрерывной. График другой функции так нарисовать нельзя. Он состоит из двух непрерывных кусков, а в точке имеет разрыв, и функцию мы назовем разрывной.

Такое наглядное определение непрерывности никак не может устроить математику, поскольку содержит совершенно нематематические понятия «карандаш» и «бумага». Точное математическое определение непрерывности дается на основе понятия предела и состоит в следующем.

Пусть функция определена на отрезке и - некоторая точка этого отрезка. Функция называется непрерывной в точке , если при стремлении к ( рассматривается только из отрезка ) значения функции стремятся к , т.е. если

. (1)

Функция называется непрерывной на отрезке, если она непрерывна в каждой его точке.

Если в точке равенство (1) не выполняется, функция называется разрывной в точке .

Как видим, математически свойство непрерывности функции на отрезке определяется через местное (локальное) свойство непрерывности в точке.

Величина называется приращением аргумента, разность значений функции называется приращением функции и обозначается . Очевидно, что при стремлении к приращение аргумента стремится к нулю: .

Перепишем равенство (1) в равносильном виде

.

Используя введенные обозначения, его можно переписать так:

Итак, если функция непрерывна, то при стремлении приращения аргумента к нулю приращение функции стремится к нулю. Говорят и иначе: малому приращению аргумента соответствует малое приращение функции. На рис. 3 приведен график непрерывной в точке функции, приращению соответствует приращение функции . На рис. 4 приращению соответствует такое приращение функции , которое, как бы мало ни было, не будет меньше половины длины отрезка ; функция разрывна в точке .

Наше представление о непрерывной функции как о функции, график которой можно нарисовать, не отрывая карандаша от бумаги, прекрасно подтверждается свойствами непрерывных функций, которые доказываются в математическом анализе. Отметим, например, такие их свойства.

1. Если непрерывная на отрезке функция принимает на концах отрезка значения разных знаков, то в некоторой точке этого отрезка она принимает значение, равное нулю.

2. Функция , непрерывная на отрезке , принимает все промежуточные значения между значениями в концевых точках, т.е. между и .

3. Если функция непрерывна на отрезке, то на этом отрезке она достигает своего наибольшего и своего наименьшего значения, т.е. если - наименьшее, а - наибольшее значения функции на отрезке , то найдутся на этом отрезке такие точки и , что и .

Геометрический смысл первого из этих утверждений совершенно ясен: если непрерывная кривая переходит с одной стороны оси на другую, то она пересекает эту ось (рис. 5). Разрывная функция этим свойством не обладает, что подтверждается графиком функции на рис. 2, а также свойствами 2 и 3. На рис. 2 функция не принимает значения , хотя оно заключено между и . На рис. 6 приведен пример разрывной функции (дробная часть числа ), которая не достигает своего наибольшего значения..

Сложение, вычитание, умножение непрерывных на одном и том же отрезке функций вновь приводят к непрерывным функциям. При делении двух непрерывных функций получится непрерывная функция, если знаменатель всюду отличен от нуля.

К понятию непрерывной функции математика пришла, изучая в первую очередь различные законы движения. Пространство и время непрерывны, и зависимость, например, пути от времени , выраженная законом , дает пример непрерывной функции .

С помощью непрерывных функций описывают состояния и процессы в твердых телах, жидкостях и газах. Изучающие их науки - теория упругости, гидродинамика и аэродинамика - объединяются одним названием - «механика сплошной среды».

Непрерывные функции образуют основной класс функций, с которыми оперирует математический анализ. Представление о непрерывной функции можно получить, если сказать, что график ее непрерывен, т.е. его можно начертить, не отрывая карандаша от бумаги.

Непрерывная функция математически выражает одно свойство, с которым нам приходится часто встречаться на практике, заключающееся в том, что малому приращению независимой переменной соответствует малое же приращение зависимой от нее переменной (функции). Прекрасными примерами непрерывной функции могут служить различные законы движения тел \(s=f(t)\) , выражающие зависимости пути \(s\) , пройденного телом, от времени \(t\) . Время и пространство непрерывны, при этом тот или иной закон движения тела \(s=f(t)\) устанавливает между ними определенную непрерывную связь, характеризующуюся тем, что малому приращению времени соответствует малое же приращение пути.

К абстракции непрерывности человек пришел, наблюдая окружающие его, так называемые сплошные среды - твердые, жидкие или газообразные, например металлы, воду, воздух. На самом деле, как теперь хорошо известно, всякая физическая среда представляет собой скопление большого числа отделенных друг от друга движущихся частиц. Однако эти частицы и расстояния между ними настолько малы по сравнению с объемами сред, с которыми приходится иметь дело в макроскопических физических явлениях, что многие такие явления можно достаточно хорошо изучать, если считать приближенно массу изучаемой среды без всяких просветов, непрерывно распределенной в занятом ею пространстве. На таком допущении базируются многие физические дисциплины, например гидродинамика, аэродинамика, теория упругости. Математическое понятие непрерывности играет, естественно, в этих дисциплинах, как и во многих других, большую роль.

Рассмотрим какую-либо функцию \(y=f(x)\) и вполне определенное значение независимой переменной \(x_0\) . Если наша функция отражает некоторый непрерывный процесс, то значениям \(x\) , мало отличающимся от \(x_0\) должны соответствовать значения функции \(f(x)\) мало отличающиеся от значения \(f(x_0)\) в точке \(x_0\) . Таким образом, если приращение \(x-x_0\) независимой переменной мало, то должно быть малым также и соответствующее приращение \(f(x)-f(x_0)\) функции. Иными словами, если приращение независимой переменной \(x-x_0\) стремится к нулю, то приращение \(f(x)-f(x_0)\) функции должно, в свою очередь, стремиться к нулю, что может быть записано следующим образом:

\(\lim_{x-x_0\to0}\Bigl=0.\)

Это соотношение и является математическим определением непрерывности функции в точке \(x_0\) .

Функция \(f(x)\) называется непрерывной в точке \(x_0\) , если выполняется равенство (1).

Дадим еще такое определение:

Функция называется непрерывной для всех значений, принадлежащих к данному отрезку, если она непрерывна в каждой точке \(x_0\) этого отрезка, т.е. в каждой такой точке выполняется равенство (1).

Таким образом, для того чтобы ввести математическое определение свойства функции, заключающегося в том, что график ее есть непрерывная (в обычном понимании этого термина) кривая, появилась необходимость определить сначала локальное, местное свойство непрерывности (непрерывность в точке \(x_0\) ), а затем на этой основе определить непрерывность функции на целом отрезке.

Приведенное определение, впервые указанное в начале прошлого столетия Коши, является общепринятым в современном математическом анализе. Проверка на многочисленных конкретных примерах показала, что это определение хорошо соответствует сложившемуся у нас практическому представлению о непрерывной функции, например представлению о непрерывном графике.

В качестве примеров непрерывных функций могут служить известные из школьной математики элементарные функции \(x^n,\) \(\sin{x},\) \(\cos{x},\) \(a^x,\) \(\lg{x},\) \(\arcsin{x},\) \(\arccos{x}\) . Все перечисленные функции непрерывны на отрезках изменения \(x\) , где они определены.

Если непрерывные функции складывать, вычитать, умножать и делить (при знаменателе, не равном нулю), то в результате мы снова придем к непрерывной функции. Однако при делении непрерывность, как правило, нарушается для тех значений \(x_0\) , при которых функция, стоящая в знаменателе, обращается в нуль. Результат деления представляет собой тогда разрывную в точке \(x_0\) функцию.

Функция \(y=\frac{1}{x}\) может служить примером разрывной в точке \(y=0\) функции. Ряд других примеров разрывных функций дают графики, изображенные на рис. 1.

Рекомендуем внимательно рассмотреть эти графики. Отметим, что разрывы функций бывают разные: иногда с приближением \(x\) к точке \(x_0\) , где функция претерпевает разрыв, предел \(f(x)\) существует, но отличен от \(f(x_0)\) , а иногда, как на рис. 1в, этого предела просто не существует. Бывает и так, что с приближением \(x\) к \(x_0\) с одной стороны \(f(x)-f(x_0)\to0\) , а если \(x\to x_0\) , приближаясь с другой стороны, то \(f(x)-f(x_0)\) уже не стремится к нулю. В этом случае, конечно, мы имеем разрыв функции, хотя про нее можно сказать, что она в этой точке «непрерывна с одной стороны». Все эти случаи можно проследить на приведенных графиках.

Определение непрерывности функции

1. Функция \(y=f(x)\) непрерывна в точке \(x=a\) , если пределы слева и справа равны и равны значению функции в этой точке, т. е.

\(\lim_{x\to a-0}f(x)=\lim_{x\to a+0}f(x)=f(a).\)

2. Функция \(y=f(x)\) непрерывна в точке \(x=a\) , если она определена в этой точке и если бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции, т. е. \(\lim_{\Delta x\to 0}\Delta y=0\) вблизи точки \(a\) .

Сумма, разность и произведение конечного числа непрерывных функций есть функция непрерывная.

Непрерывная на отрезке \(\) функция принимает любое промежуточное значение между ее наименьшим \(m\) и наибольшим \(M\) значением, то есть \(m\leqslant f(x)\leqslant M\) для всех \(x\in\) . Отсюда следует, что если в граничных точках отрезка \(\) функция имеет разные знаки, то внутри отрезка есть по крайней мере одно такое значение \(x=c\) , при котором функция обращается в ноль. Это свойство непрерывности функций позволяет находить приближенно корни многочленов.

Точки разрыва функции

Значения аргумента, которые не удовлетворяют условиям непрерывности, называются точками разрыва функции . При этом различают два рода точек разрыва функции.

Если при \(x\to a\) слева функция имеет конечный предел \(k_1\) , а при \(x\to a\) справа функция имеет конечный предел \(k_2\) и \(k_1\ne k_2\) , то говорят, что функция при \(x=a\) имеет разрыв первого рода . Разность \(|k_1-k_2|\) определяет скачок функции в точке \(x=a\) . Значение функции при \(x=a\) при этом может быть равно какому угодно числу \(k_3\) .

Если значение функции при \(x=a\) равно \(k_1\) , то говорят, что функция непрерывна слева; если же \(k_2\) , то говорят, что функция непрерывна справа.

Если \(k_1=k_2\ne k_3\) говорят, что функция имеет в точке \(a\) устранимый разрыв .

Если при \(x\to a\) справа или слева, предел функции не существует или равен бесконечности, то есть \(\lim_{x\to a}f(x)=\infty\) , то говорят, что при \(x=a\) функция имеет разрыв второго рода .

Пример 1. Найти множество значений \(x\) , при которых функция \(y=x^3-2x\) непрерывна.

Решение. Найдем приращение функции

\(\Delta y=(x+\Delta x)^3-2(x+\Delta x)-(x^3-2x)=\Delta x\,(\Delta x^2+3x\Delta x+3x^2-2).\)

При любых значениях переменной \(x\) приращение \(\Delta y\to0\) , если только \(\Delta x\to0\) поэтому функция непрерывна при всех действительных значениях переменной \(x\) .

Пример 2. Доказать непрерывность функции \(y=\frac{1}{x-1}\) в точке \(x=3\) .

Решение. Для доказательства найдем приращение функции \(y\) при переходе значения аргумента от \(x=3\) к \(x=3+\Delta x\)

\(\Delta y=\frac{1}{3+\Delta x-1}-\frac{1}{3-1}=\frac{1}{2+\Delta x}-\frac{1}{2}=\frac{2-2-\Delta x}{2(2+\Delta x)}=\frac{-\Delta x}{2(2+\Delta x)}.\)

Найдем предел приращения функции при \(\Delta x\to0\)

\(\lim_{\Delta x\to0}\Delta y=-\lim_{\Delta x\to0}\frac{\Delta x}{2(2+\Delta x)}=-\frac{0}{2(2+0)}=0.\)

Так как предел приращения функции при \(\Delta x\to0\) равен нулю, то функция при \(x\to3\) непрерывна.

Пример 3. Определить характер разрыва функций и построить графики:

\(\mathrm{a)}~y=\frac{1}{x-1}~\text{if}~x=1;\qquad\mathrm{b)}~y=\frac{x}{|x|}~\text{if}~x=0;\qquad\mathrm{c)}~y=\begin{cases}2x,&\text{if}~x\ne2,\\1,&\text{if}~x=2;\end{cases}\qquad\mathrm{d)}~y=a^{1/x}~(a>1);\qquad\mathrm{e)}~y=\operatorname{arctg}\frac{1}{x}.\)

Решение.

a) При \(x=1\) функция не определена, найдём односторонние пределы в этой точки:

\(\lim_{x\to1-0}\frac{1}{x-1}=-\infty;\quad\lim_{x\to1+0}\frac{1}{x-1}=+\infty.\)

Следовательно, в точке \(x=1\) функция имеет разрыв второго рода.

b) При \(x<0\) предел функции равен \(\lim_{0-0}\frac{x}{|x|}=-1=k_1\) . При \(x>0\) предел равен \(\lim_{0+0}\frac{x}{|x|}=1=k_2\) . Следовательно, в точке \(x=1\) функция \(y\) имеет разрыв первого рода и скачок функции равен \(|k_1-k_2|=|-1-1|=2\) .

c) Функция определена на всей числовой оси, неэлементарная, так как в точке \(x=2\) аналитическое выражение функции меняется. Исследуем непрерывность функции в точке \(x=2\) :

\(\lim_{x\to2-0}=4,\quad\lim_{x\to2+0}2x=4,\quad y(2)=1,\quad k_1=k_2\ne k_3.\)

Очевидно, что в точке \(x=2\) функция имеет устранимый разрыв.

d) Найдём левый и правый пределы функции в точке \(x=0\) :

\(y(+0)=\lim_{x\to+0}a^{1/x}=+\infty,\quad y(-0)=\lim_{x\to-0}a^{1/x}=0.\)

Итак, в точке \(x=0\) справа функция имеет разрыв второго рода, а слева – непрерывность.

e) Найдём односторонние пределы функции в точке \(x=0\) :

\(y(+0)=\lim_{x\to+0}\operatorname{arctg}\frac{1}{x}=\frac{\pi}{2},\quad y(-0)=\lim_{x\to-0}\operatorname{arctg}\frac{1}{x}=-\frac{\pi}{2}.\)

Итак, в точке \(x=0\) с обеих сторон у функции \(y=\operatorname{arctg}\frac{1}{x}\) скачки.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Определение непрерывности функции в точке
Функция f(x) называется непрерывной в точке x 0 окрестности U(x 0) этой точки, и если предел при x стремящемся к x 0 существует и равен значению функции в x 0 :
.

Здесь подразумевается, что x 0 - это конечная точка. Значение функции в ней может быть только конечным числом.

Определение непрерывности справа (слева)
Функция f(x) называется непрерывной справа (слева) в точке x 0 , если она определена на некоторой правосторонней (левосторонней) окрестности этой точки, и если правый (левый) предел в точке x 0 равен значению функции в x 0 :
.

Примеры

Пример 1

Используя определения по Гейне и Коши доказать, что функция непрерывна для всех x .

Пусть есть произвольное число. Докажем, что заданная функция непрерывна в точке . Функция определена для всех x . Поэтому она определена в точке и в любой ее окрестности.

Используем определение по Гейне

Используем . Пусть есть произвольная последовательность, сходящаяся к : . Применяя свойство предела произведения последовательностей имеем:
.
Поскольку есть произвольная последовательность, сходящаяся к , то
.
Непрерывность доказана.

Используем определение по Коши

Используем .
Рассмотрим случай . Мы вправе рассматривать функцию на любой окрестности точки . Поэтому будем считать, что
(П1.1) .

Применим формулу:
.
Учитывая (П1.1), сделаем оценку:

;
(П1.2) .

Применяя (П1.2), оценим абсолютную величину разности:
;
(П1.3) .
.
Согласно свойствам неравенств, если выполняется (П1.3), если и если , то .


.

Теперь рассмотрим точку . В этом случае
.
.


.
Это означает, что функция непрерывна в точке .

Аналогичным способом можно доказать, что функция , где n - натуральное число, непрерывна на всей действительной оси.

Пример 2

Используя доказать, что функция непрерывна для всех .

Заданная функция определена при . Докажем, что она непрерывна в точке .

Рассмотрим случай .
Мы вправе рассматривать функцию на любой окрестности точки . Поэтому будем считать, что
(П2.1) .

Применим формулу:
(П2.2) .
Положим . Тогда
.

Учитывая (П2.1), сделаем оценку:


.
Итак,
.

Применяя это неравенство, и используя (П2.2), оценим разность:

.
Итак,
(П2.3) .

Вводим положительные числа и , связав их соотношениями:
.
Согласно свойствам неравенств, если выполняется (П2.3), если и если , то .

Это означает, что для любого положительного всегда найдется . Тогда для всех x , удовлетворяющих неравенству , автоматически выполняется неравенство:
.
Это означает, что функция непрерывна в точке .

Теперь рассмотрим точку . Нам нужно показать, что заданная функция непрерывна в этой точке справа. В этом случае
.
Вводим положительные числа и :
.

Отсюда видно, что для любого положительного всегда найдется . Тогда для всех x , таких что , выполняется неравенство:
.
Это означает, что . То есть функция непрерывна справа в точке .

Аналогичным способом можно доказать, что функция , где n - натуральное число, непрерывна при .

Использованная литература:
О.И. Бесов. Лекции по математическому анализу. Часть 1. Москва, 2004.
Л.Д. Кудрявцев. Курс математического анализа. Том 1. Москва, 2003.
С.М. Никольский. Курс математического анализа. Том 1. Москва, 1983.

Определение
Функция f(x) называется непрерывной в точке x 0 окрестности этой точки, и если предел при x стремящемся к x 0 равен значению функции в x 0 :
.

Используя определения предела функции по Коши и по Гейне , можно дать развернутые определения непрерывности функции в точке .

Можно сформулировать понятие непрерывности в терминах приращений . Для этого мы вводим новую переменную , которая называется приращением переменной x в точке . Тогда функция непрерывна в точке , если
.
Введем новую функцию:
.
Ее называют приращением функции в точке . Тогда функция непрерывна в точке , если
.

Определение непрерывности справа (слева)
Функция f(x) называется непрерывной справа (слева) в точке x 0 , если она определена на некоторой правосторонней (левосторонней) окрестности этой точки, и если правый (левый) предел в точке x 0 равен значению функции в x 0 :
.

Теорема об ограниченности непрерывной функции
Пусть функция f(x) непрерывна в точке x 0 . Тогда существует такая окрестность U(x 0) , на которой функция ограничена.

Теорема о сохранении знака непрерывной функции
Пусть функция непрерывна в точке . И пусть она имеет положительное (отрицательное) значение в этой точке:
.
Тогда существует такая окрестность точки , на которой функция имеет положительное (отрицательное) значение:
при .

Арифметические свойства непрерывных функций
Пусть функции и непрерывны в точке .
Тогда функции , и непрерывны в точке .
Если , то и функция непрерывна в точке .

Свойство непрерывности слева и справа
Функция непрерывна в точке тогда и только тогда, когда она непрерывна в справа и слева.

Доказательства свойств приводятся на странице «Свойства непрерывных в точке функций ».

Непрерывность сложной функции

Теорема о непрерывности сложной функции
Пусть функция непрерывна в точке . И пусть функция непрерывна в точке .
Тогда сложная функция непрерывна в точке .

Предел сложной функции

Теорема о пределе непрерывной функции от функции
Пусть существует предел функции при , и он равен :
.
Здесь точка t 0 может быть конечной или бесконечно удаленной: .
И пусть функция непрерывна в точке .
Тогда существует предел сложной функции , и он равен :
.

Теорема о пределе сложной функции
Пусть функция имеет предел и отображает проколотую окрестность точки на проколотую окрестность точки . Пусть функция определена на этой окрестности и имеет на ней предел .
Здесь - конечные или бесконечно удаленные точки: . Окрестности и соответствующие им пределы могут быть как двусторонние, так и односторонние.
Тогда существует предел сложной функции и он равен :
.

Точки разрыва

Определение точки разрыва
Пусть функция определена на некоторой проколотой окрестности точки . Точка называется точкой разрыва функции , если выполняется одно из двух условий:
1) не определена в ;
2) определена в , но не является в этой точке.

Определение точки разрыва 1-го рода
Точка называется точкой разрыва первого рода , если является точкой разрыва и существуют конечные односторонние пределы слева и справа :
.

Определение скачка функции
Скачком Δ функции в точке называется разность пределов справа и слева
.

Определение точки устранимого разрыва
Точка называется точкой устранимого разрыва , если существует предел
,
но функция в точке или не определена, или не равна предельному значению: .

Таким образом, точка устранимого разрыва - это точка разрыва 1-го рода, в которой скачек функции равен нулю.

Определение точки разрыва 2-го рода
Точка называется точкой разрыва второго рода , если она не является точкой разрыва 1-го рода. То есть если не существует, хотя бы одного одностороннего предела, или хотя бы один односторонний предел в точке равен бесконечности.

Свойства функций, непрерывных на отрезке

Определение функции, непрерывной на отрезке
Функция называется непрерывной на отрезке (при ), если она непрерывна во всех точках открытого интервала (при ) и в точках a и b , соответственно.

Первая теорема Вейерштрасса об ограниченности непрерывной на отрезке функции
Если функция непрерывна на отрезке , то она ограничена на этом отрезке.

Определение достижимости максимума (минимума)
Функция достигает своего максимума (минимума) на множестве , если существует такой аргумент , для которого
для всех .

Определение достижимости верхней (нижней) грани
Функция достигает своей верхней (нижней) грани на множестве , если существует такой аргумент , для которого
.

Вторая теорема Вейерштрасса о максимуме и минимуме непрерывной функции
Непрерывная на отрезке функция достигает на нем своих верхней и нижней граней или, что тоже самое, достигает на отрезке своего максимума и минимума.

Теорема Больцано - Коши о промежуточном значении
Пусть функция непрерывна на отрезке . И пусть C есть произвольное число, находящееся между значениями функции на концах отрезка: и . Тогда существует точка , для которой
.

Следствие 1
Пусть функция непрерывна на отрезке . И пусть значения функции на концах отрезка имеют разные знаки: или . Тогда существует точка , значение функции в которой равно нулю:
.

Следствие 2
Пусть функция непрерывна на отрезке . И пусть . Тогда функция принимает на отрезке все значения из и только эти значения:
при .

Обратные функции

Определение обратной функции
Пусть функция имеет область определения X и множество значений Y . И пусть она обладает свойством:
для всех .
Тогда для любого элемента из множества Y можно поставить в соответствие только один элемент множества X , для которого . Такое соответствие определяет функцию, которая называется обратной функцией к . Обратная функция обозначается так:
.

Из определения следует, что
;
для всех ;
для всех .

Лемма о взаимной монотонности прямой и обратной функций
Если функция строго возрастает (убывает) , то существует обратная функция , которая также строго возрастает (убывает).

Свойство о симметрии графиков прямой и обратной функций
Графики прямой и обратной функций симметричны относительно прямой .

Теорема о существовании и непрерывности обратной функции на отрезке
Пусть функция непрерывна и строго возрастает (убывает) на отрезке . Тогда на отрезке определена и непрерывна обратная функция , которая строго возрастает (убывает).

Для возрастающей функции . Для убывающей - .

Теорема о существовании и непрерывности обратной функции на интервале
Пусть функция непрерывна и строго возрастает (убывает) на открытом конечном или бесконечном интервале . Тогда на интервале определена и непрерывна обратная функция , которая строго возрастает (убывает).

Для возрастающей функции .
Для убывающей: .

Аналогичным образом можно сформулировать теорему о существовании и непрерывности обратной функции на полуинтервале.

Свойства и непрерывность элементарных функций

Элементарные функции и обратные к ним непрерывны на своей области определения. Далее мы приводим формулировки соответствующих теорем и даем ссылки на их доказательства.

Показательная функция

Показательная функция f(x) = a x , с основанием a > 0 - это предел последовательности
,
где есть произвольная последовательность рациональных чисел, стремящаяся к x :
.

Теорема. Свойства показательной функции
Показательная функция имеет следующие свойства:
(П.0) определена, при , для всех ;
(П.1) при a ≠ 1 имеет множество значений ;
(П.2) строго возрастает при , строго убывает при , является постоянной при ;
(П.3) ;
(П.3*) ;
(П.4) ;
(П.5) ;
(П.6) ;
(П.7) ;
(П.8) непрерывна для всех ;
(П.9) при ;
при .

Логарифм

Логарифмическая функция, или логарифм, y = log a x , с основанием a - это функция, обратная к показательной функции с основанием a .

Теорема. Свойства логарифма
Логарифмическая функция с основанием a , y = log a x , имеет следующие свойства:
(Л.1) определена и непрерывна, при и , для положительных значений аргумента,;
(Л.2) имеет множество значений ;
(Л.3) строго возрастает при , строго убывает при ;
(Л.4) при ;
при ;
(Л.5) ;
(Л.6) при ;
(Л.7) при ;
(Л.8) при ;
(Л.9) при .

Экспонента и натуральный логарифм

В определениях показательной функции и логарифма фигурирует постоянная a , которая называется основанием степени или основанием логарифма. В математическом анализе, в подавляющем большинстве случаев, получаются более простые вычисления, если в качестве основания использовать число e :
.
Показательную функцию с основанием e называют экспонентой: , а логарифм по основанию e - натуральным логарифмом: .

Свойства экспоненты и натурального логарифма изложены на страницах
«Экспонента, е в степени х »,
«Натуральный логарифм, функция ln x »

Степенная функция

Степенная функция с показателем степени p - это функция f(x) = x p , значение которой в точке x равно значению показательной функции с основанием x в точке p .
Кроме этого, f(0) = 0 p = 0 при p > 0 .

Здесь мы рассмотрим свойства степенной функции y = x p при неотрицательных значениях аргумента . Для рациональных , при нечетных m , степенная функция определена и для отрицательных x . В этом случае, ее свойства можно получить, используя четность или нечетность.
Эти случаи подробно рассмотрены и проиллюстрированы на странице «Степенная функция, ее свойства и графики ».

Теорема. Свойства степенной функции (x ≥ 0)
Степенная функция, y = x p , с показателем p имеет следующие свойства:
(С.1) определена и непрерывна на множестве
при ,
при ».

Тригонометрические функции

Теорема о непрерывности тригонометрических функций
Тригонометрические функции: синус (sin x ), косинус (cos x ), тангенс (tg x ) и котангенс (ctg x

Теорема о непрерывности обратных тригонометрических функций
Обратные тригонометрические функции: арксинус (arcsin x ), арккосинус (arccos x ), арктангенс (arctg x ) и арккотангенс (arcctg x ), непрерывны на своих областях определения.

Использованная литература:
О.И. Бесов. Лекции по математическому анализу. Часть 1. Москва, 2004.
Л.Д. Кудрявцев. Курс математического анализа. Том 1. Москва, 2003.
С.М. Никольский. Курс математического анализа. Том 1. Москва, 1983.

Похожие публикации