К какому семейству относится плутоний. Интегральный быстрый реактор

Родители мальчишек должны быть готовы к различным чрезвычайным ситуациям со своими чадами, не помешает даже знать, что делать, если ваш сын нашел плутоний.

Как выглядит плутоний

Для начала нужно представить, как будет выглядеть то, что предстоит найти вашему сыну. Это очень-очень тяжелый металл серебристого цвета в виде порошка, который ослепительно блестит, если его почистить. Но благодаря своим электроотрицательным свойствам, блестящим он остается недолго: сначала тускнеет, затем покрывается светло-желтой пленкой, которая постепенно превращается в темно-пурпурную.

Подумать, что еще может выглядеть примерно так же, как серебристо-белый порошок, потому что нельзя найти плутоний возле качелей или горки. И даже если лазить по стройке, то мальчишка скорее станет хозяином куска проволоки или гвоздя, чем горсти плутония.

Если все же ребенок принес домой то, что по вашим представлениям и является описанным тяжелым металлом, нужно срочно звонить в полицию или местный отдел МЧС, ведь вещество это радиоактивное, опасное, которое необходимо быстрее изъять и спрятать подальше.

Реагировать на “находку” нужно мгновенно. Это не та жизненная ситуация, в которой можно позвонить подруге и узнать, . Ведь огурцы, даже прокисшие, опасны как максимум острой диареей. А если хватит ума не есть их после того, как сорвало крышку, то и вообще здоровью они не помеха.

Влияние плутония на организм человека

Плутоний (Pu) не так безобиден, как прокисшие огурцы. Он является тяжелым металлом, следовательно, должен быть химически токсичным веществом. Однако это его свойство описано мало, поскольку основная опасность кроется в радиотоксичности. Токсичность его обусловлена альфа-радиоактивностью.

Альфа-частица опасна для организма, только в случае, когда ее источник находится в теле человека. Проще говоря, чтобы проявилось радиоактивное действие, металл этот нужно проглотить. Снаружи Pu действует на человека нейтронами и гамма-лучами, но сильного вреда не причиняет из-за их малого уровня.

Альфа-частицы в человеческом теле повреждают только те ткани, с которыми непосредственно контактируют. При высоком уровне облучения развивается острое отравление и сразу проявляется токсический эффект. Низкий уровень облучения повреждает организм постепенно, формируя предрасположенность к раковым заболеваниям.

В пищеварительном тракте Pu всасывается плохо. Даже если принять металл в виде растворимой соли, то она не стремится всасываться, а перемешивается с кишечным содержимым. Из загрязненной воды много плутония в организм не попадет, он осаждается из водных растворов, образуя нерастворимые соединения.

Чтобы умереть от острого облучения за несколько дней или неделю, нужно съесть 500 мг Pu. При этом он должен быть в хорошо измельченном виде. Смерть от отека легких в срок до 10 дней грозит индивидуумам, вдохнувшим 100 мг плутония в легкие. Меньшие дозы Pu в организме создают благодатную почву для появления и прогрессирования раковых болезней.

А нужен ли людям

Изотоп 239Pu применяют в виде ядерного топлива для энергетических реакторов, которые работают на быстрых и тепловых нейтронах. Незаменим изотоп 239Pu и при производстве ядерного оружия.

Атомные электростанции, разбросанные по земному шару, производят около 15% всей производимой в мире электроэнергии.

Атомные электрические батарейки, содержащие Pu-236, имеют срок службы до 5 лет. Медики используют такие батарейки в кардиостимуляторах, которые вшиваются в грудную клетку больных и заставляют сердце сокращаться.
Pu-238 – незаменимый источник питания для космических аппаратов, которые люди используют для изучения космоса.

Увлекательные факты

Любознательным мальчишкам можно рассказать запоминающиеся факты про плутоний, который им вряд ли посчастливится найти в реальной жизни.

Сильно накапливают этот элемент морские организмы, накапливающая способность уменьшается в ряду смешанный планктон – водоросли – желудок рыб – морские звезды – кости рыб.

Pu-244 – это долгожитель среди изотопов трансурановых элементов. Его период полураспада составляет 82,8 миллиона лет!

Если добавить плутоний в сплав, получается отливка без единой трещинки. Это свойство активно используют металлурги.

Заряды ядерных бомб делают из плутония. Металл настолько тяжелый, что маленький шарик из плутония, который можно спрятать в кубике 10*10 см, весит 5-6 килограмм.

Каждому родителю хочется пожелать, чтобы их сын плутоний не находил и домой не приносил, а мирно играл с более безобидными игрушками.

Видео: Плутоний-239 из РИД-1

Химия

Плутоний Pu - элемент № 94 связаны очень большие надежды и очень большие опасения человечества. В наши дни это один из самых важных, стратегически важных, элементов. Это самый дорогой из технически важных металлов - он намного дороже серебра, золота и платины. Он поистине драгоценен.


Предыстория и история

Вначале были протоны - галактический водород . В результате его сжатия и последовавших затем ядерных реакций образовались самые невероятные «слитки» нуклонов. Среди них, этих «слитков», были, по-видимому, и содержащие по 94 протона. Оценки теоретиков позволяют считать, что около 100 нуклонных образований, в состав которых входят 94 протона и от 107 до 206 нейтронов, настолько стабильны, что их можно считать ядрами изотопов элемента № 94.
Но все эти изотопы - гипотетические и реальные - не настолько стабильны, чтобы сохраниться до наших дней с момента образования элементов солнечной системы. Период полураспада самого долгоживущего изотопа элемента №94 - 81 млн. лет. Возраст Галактики измеряется миллиардами лет. Следовательно, у «первородного» плутония не было шансов дожить до наших дней. Если он и образовывался при великом синтезе элементов Вселенной, то те давние его атомы давно «вымерли», подобно тому как вымерли динозавры и мамонты.
В XX в. новой эры, нашей эры, этот элемент был воссоздан. Из 100 возможных изотопов плутония синтезированы 25. У 15 из них изучены ядерные свойства. Четыре нашли практическое применение. А открыли его совсем недавно. В декабре 1940 г. при облучении урана ядрами тяжелого водорода группа американских радиохимиков во главе с Гленном Т. Сиборгом обнаружила неизвестный прежде излучатель альфа-частиц с периодом полураспада 90 лет. Этим излучателем оказался изотоп элемента № 94 с массовым числом 238. В том же году, но несколькими месяцами раньше Э.М. Макмиллан и Ф. Эйбельсон получили первый элемент, более тяжелый, чем уран, - элемент № 93. Этот элемент назвали нептунием , а 94-й - плутонием. Историк определенно скажет, что названия эти берут начало в римской мифологии, но в сущности происхождение этих названий скорее не мифологическое, а астрономическое.
Элементы № 92 и 93 названы в честь далеких планет солнечной системы - Урана и Нептуна, но и Нептун в солнечной системе - не последний, еще дальше пролегает орбита Плутона - планеты, о которой до сих пор почти ничего не известно... Подобное же построение наблюдаем и на «левом фланге» менделеевской таблицы: uranium - neptunium - plutonium, однако о плутонии человечество знает намного больше, чем о Плутоне. Кстати, Плутон астрономы открыли всего за десять лет до синтеза плутония - почти такой же отрезок времени разделял открытия Урана - планеты и урана - элемента.


Загадки для шифровальщиков

Первый изотоп элемента № 94 - плутоний-238 в наши дни нашел практическое применение. Но в начале 40-х годов об этом и не думали. Получать плутоний-238 в количествах, представляющих практический интерес, можно, только опираясь на мощную ядерную промышленность. В то время она лишь зарождалась. Но уже было ясно, что, освободив энергию, заключенную в ядрах тяжелых радиоактивных элементов, можно получить оружие невиданной прежде силы. Появился Манхэттенский проект, не имевший ничего, кроме названия, общего с известным районом Нью-Йорка. Это было общее название всех работ, связанных с созданием в США первых атомных бомб. Руководителем Манхэттенского проекта был назначен не ученый, а военный - генерал Гровс, «ласково» величавший своих высокообразованных подопечных «битыми горшками».
Руководителей «проекта» плутоний-238 не интересовал. Его ядра, как, впрочем, ядра всех изотопов плутония с четными массовыми числами, нейтронами низких энергий не делятся, поэтому он не мог служить ядерной взрывчаткой. Тем не менее первые не очень внятные сообщения об элементах № 93 и 94 попали в печать лишь весной 1942 г.
Чем это объяснить? Физики понимали: синтез изотопов плутония с нечетными массовыми числами - дело времени, и недалекого. От нечетных изотопов ждали, что, подобно урану-235, они смогут поддерживать цепную ядерную реакцию. В них, еще не полученных, кое-кому виделась потенциальная ядерная взрывчатка. И эти надежды плутоний , к сожалению, оправдывал.
В шифровках того времени элемент № 94 именовался не иначе, как... медью . А когда возникла необходимость в самой меди (как конструкционном материале для каких-то деталей), то в шифровках наряду с «медью» появилась «подлинная медь».

«Древо познания добра и зла»

В 1941 г. был открыт важнейший изотоп плутония - изотоп с массовым числом 239. И почти сразу же подтвердилось предсказание теоретиков: ядра плутония-239 делились тепловыми нейтронами. Более того, в процессе их деления рождалось не меньшее число нейтронов, чем при делении урана-235. Тотчас же были намечены пути получения этого изотопа в больших количествах...
Прошли годы. Теперь уже ни для кого не секрет, что ядерные бомбы, хранящиеся в арсеналах, начинены плутонием-239 и что их, этих бомб, достаточно, чтобы нанести непоправимый ущерб всему живому на Земле.
Распространено мнение, что с открытием цепной ядерной реакции (неизбежным следствием которого стало создание ядерной бомбы) человечество явно поторопилось. Можно думать по-другому или делать вид, что думаешь по-другому, - приятнее быть оптимистом. Но и перед оптимистами неизбежно встает вопрос об ответственности ученых. Мы помним триумфальный июньский день 1954 г., день, когда дала ток первая атомная электростанция в Обнинске. Но мы не можем забыть и августовское утро 1945 г. - «утро Хиросимы», «черный день Альберта Эйнштейна»... Помним первые послевоенные годы и безудержный атомный шантаж - основу американской политики тех лет. А разве мало тревог пережило человечество в последующие годы? Причем эти тревоги многократно усиливались сознанием, что, если вспыхнет новая мировая война, ядерное оружие будет пущено в ход.
Здесь можно попробовать доказать, что открытие плутония не прибавило человечеству опасений, что, напротив, оно было только полезно.
Допустим, случилось так, что по какой-то причине или, как сказали бы в старину, по воле божьей, плутоний оказался недоступен ученым. Разве уменьшились бы тогда наши страхи и опасения? Ничуть не бывало. Ядерные бомбы делали бы из урана-235 (и в не меньшем количестве, чем из плутония), и эти бомбы «съедали» бы еще большие, чем сейчас, части бюджетов.
Зато без плутония не существовало бы перспективы мирного использования ядерной энергии и больших масштабах. Для «мирного атома» просто не хватило бы урана-235. Зло, нанесенное человечеству открытием ядерной энергии, не уравновешивалось бы, пусть даже частично, достижениями «доброго атома».

Как измерить, с чем сравнить

Когда ядро плутония-239 делится нейтронами на два осколка примерно равной массы, выделяется около 200 Мэв энергии. Это в 50 млн. раз больше энергии, освобождающейся в самой известной экзотермической реакции С + O 2 = СO 2 . «Сгорая» в ядерном реакторе, грамм плутония дает 2 107 ккал. Чтобы не нарушать традиции (а в популярных статьях энергию ядерного горючего принято измерять внесистемными единицами - тоннами угля, бензина, тринитротолуола и т. д.), заметим и мы: это энергия, заключенная в 4 т угля. А в обычный наперсток помещается количество плутония, энергетически эквивалентное сорока вагонам хороших березовых дров.
Такая же энергия выделяется и при делении нейтронами ядер урана-235. Но основную массу природного урана (99,3%!) составляет изотоп 238 U, который можно использовать, только превратив уран в плутоний...

Энергия камней

Оценим энергетические ресурсы, заключенные в природных запасах урана.
Уран - рассеянный элемент, и практически он есть всюду. Каждому, кто побывал, к примеру, в Карелии, наверняка запомнились гранитные валуны и прибрежные скалы. Но мало кто знает, что в тонне гранита до 25 г урана. Граниты составляют почти 20% веса земной коры. Если считать только уран-235, то в тонне гранита заключено 3,5-105 ккал энергии. Это очень много, но...
На переработку гранита и извлечение из него урана нужно затратить еще большее количество энергии - порядка 106-107 ккал/т. Вот если бы удалось в качестве источника энергии использовать не тол ко уран-235, а и уран-238, тогда гранит можно было бы рассматривать хотя бы как потенциальное энергетическое сырье. Тогда энергия, полученная из тонны камня, составила бы уже от 8-107 до 5-108 ккал. Это равноценно 16-100 т угля. И в этом случае гранит мог бы дать людям почти в миллион раз больше энергии, чем все запасы химического топлива на Земле.
Но ядра урана-238 нейтронами не делятся. Для атомной энергетики этот изотоп бесполезен. Точнее, был бы бесполезен, если бы его не удалось превратить в плутоний-239. И что особенно важно: на это ядерное превращение практически не нужно тратить энергию - напротив, в этом процессе энергия производится!
Попробуем разобраться, как это происходит, но вначале несколько слов о природном плутонии.

В 400 тысяч раз меньше, чем радия

Уже говорилось, что изотопы плутония не сохранились со времени синтеза элементов при образовании нашей планеты. Но это не означает, что плутония в Земле нет.
Он все время образуется в урановых рудах. Захватывая нейтроны космического излучения и нейтроны, образующиеся при самопроизвольном (спонтанном) делении ядер урана-238, некоторые - очень немногие - атомы этого изотопа превращаются в атомы урана-239. Эти ядра очень нестабильны, они испускают электроны и тем самым повышают свой заряд. Образуется нептуний - первый трансурановый элемент. Нептуний-239 тоже весьма неустойчив, и его ядра испускают электроны. Всего за 56 часов половина нептуния-239 превращается в плутоний-239, период полураспада которого уже достаточно велик - 24 тыс. лет.
Почему не добывают плутоний из урановых руд ? Мала, слишком мала концентрация. «В грамм добыча - в год труды» - это о радии , а плутония в рудах содержится в 400 тыс. раз меньше, чем радия. Поэтому не только добыть - даже обнаружить «земной» плутоний необыкновенно трудно. Сделать это удалось только после того, как были изучены физические и химические свойства плутония, полученного в атомных реакторах.
Накапливают плутоний в ядерных реакторах. В мощных потоках нейтронов происходит та же реакция, что и в урановых рудах, но скорость образования и накопления плутония в реакторе намного выше - в миллиард миллиардов раз. Для реакции превращения балластного урана-238 в энергетический плутоний-239 создаются оптимальные (в пределах допустимого) условия.
Если реактор работает на тепловых нейтронах (напомним, что их скорость - порядка 2000 м в секунду, а энергия - доли электронвольта), то из естественной смеси изотопов урана получают количество плутония, немногим меньшее, чем количество «выгоревшего» урана-235. Немногим, но меньшее, плюс неизбежные потери плутония при химическом выделении его из облученного урана. К тому же цепная ядерная реакция подцеживается в природной смеси изотопов урана только до тех пор, пока не израсходована незначительная доля урана-235. Отсюда закономерен вывод: «тепловой» реактор на естественном уране - основной тип ныне действующих реакторов - не может обеспечить расширенного воспроизводства ядерного горючего. Но что же тогда перспективно? Для ответа на этот вопрос сравним ход цепной ядерной реакции в уране-235 и плутонии-239 и введем в наши рассуждения еще одно физическое понятие.
Важнейшая характеристика любого ядерного горючего - среднее число нейтронов, испускаемых после того, как ядро захватило один нейтрон. Физики называют его эта-числом и обозначают греческой буквой ц. В «тепловых» реакторах на уране наблюдается такая закономерность: каждый нейтрон порождает в среднем 2,08 нейтрона (η=2,08). Помещенный в такой реактор плутоний под действием тепловых нейтронов дает η=2,03. Но есть еще реакторы, работающие на быстрых нейтронах. Естественную смесь изотопов урана в такой реактор загружать бесполезно: цепная реакция не пойдет. Но если обогатить «сырье» ураном-235, она сможет развиваться и в «быстром» реакторе. При этом ц будет равно уже 2,23. А плутоний, помещенный под обстрел быстрыми нейтронами, даст η равное 2,70. В наше распоряжение поступит «лишних полнейтрона». И это совсем не мало.


Проследим, на что тратятся полученные нейтроны. В любом реакторе один нейтрон нужен для поддержания цепной ядерной реакции. 0,1 нейтрона поглощается конструкционными материалами установки. «Избыток» идет на накопление плутония-239. В одном случае «избыток» равен 1,13, в другом - 1,60. После «сгорания» килограмма плутония в «быстром» реакторе выделяется колоссальная энергия и накапливается 1,6 кг плутония. А уран и в «быстром» реакторе даст туже энергию и 1,1 кг нового ядерного горючего. И в том и в другом случае налицо расширенное воспроизводство. Но нельзя забывать об экономике.
В силу ряда технических причин цикл воспроизводства плутония занимает несколько лет. Допустим, что пять лет. Значит, в год количество плутония увеличится только на 2%, если η=2,23, и на 12%, если η=2,7! Ядерное горючее - капитал, а всякий капитал должен давать, скажем, 5% годовых. В первом случае налицо большие убытки, а во втором - большая прибыль. Этот примитивный пример иллюстрирует «вес» каждой десятой числа в ядерной энергетике.
Важно и другое. Ядерная энергетика должна поспевать за ростом потребности в энергии. Расчеты показывают: его условие выполнимо в будущем только тогда, когда η приближается к трем. Если же развитие ядерных энергетических источников будет отставать от потребностей общества в энергии, то останется два пути: либо «затормозить прогресс», либо брать энергию из каких-то других источников. Они известны: термоядерный синтез, энергия аннигиляции вещества и антивещества, но пока еще технически недоступны. И не известно, когда они будут реальными источниками энергии для человечества. А энергия тяжелых ядер уже давно стала для нас реальностью, и сегодня у плутония как главного «поставщика» энергии атома нет серьезных конкурентов, кроме, может быть, урана-233.


Сумма многих технологий

Когда в результате ядерных реакций в уране накопится необходимое количество плутония, его необходимо отделить не только от самого урана, но и от осколков деления - как урана, так и плутония, выгоревших в цепной ядерной реакции. Кроме того, в урано-плутониевой массе есть и некоторое количество нептуния. Сложнее всего отделить плутоний от нептуния и редкоземельных элементов (лантаноидов). Плутонию как химическому элементу в какой-то мере не повезло. С точки зрения химика, главный элемент ядерной энергетики - всего лишь один из четырнадцати актиноидов. Подобно редкоземельным элементам, все элементы актиниевого ряда очень близки между собой по химическим свойствам, строение внешних электронных оболочек атомов всех элементов от актиния до 103-го одинаково. Еще неприятнее, что химические свойства актиноидов подобны свойствам редкоземельных элементов, а среди осколков деления урана и плутония лантаноидов хоть отбавляй. Но зато 94-й элемент может находиться в пяти валентных состояниях, и это «подслащивает пилюлю» - помогает отделить плутоний и от урана, и от осколков деления.
Валентность плутония меняется от трех до семи. Химически наиболее стабильны (а следовательно, наиболее распространены и наиболее изучены) соединения четырехвалентного плутония.
Разделение близких по химическим свойствам актиноидов - урана, нептуния и плутония - может быть основано на разнице в свойствах их четырех- и шестивалентных соединений.


Нет нужды подробно описывать все стадии химического разделения плутония и урана. Обычно разделение их начинают с растворения урановых брусков в азотной кислоте, после чего содержащиеся в растворе уран, нептуний, плутоний и осколочные элементы «разлучают», применяя для этого уже традиционные радиохимические методы - осаждение, экстракцию, ионный обмен и другие. Конечные плутонийсодержащие продукты этой многостадийной технологии - его двуокись PuO 2 или фториды - PuF 3 или PuF 4 . Их восстанавливают до металла парами бария , кальция или лития . Однако полученный в этих процессах плутоний не годится на роль конструкционного материала - тепловыделяющих элементов энергетических ядерных реакторов из него не сделать, заряда атомной бомбы не отлить. Почему? Температура плавления плутония - всего 640°С - вполне достижима.
При каких бы «ультращадящих» режимах ни отливали детали из чистого плутония, в отливках при затвердевании всегда появятся трещины. При 640°С твердеющий плутоний образует кубическую кристаллическую решетку. По мере уменьшения температуры плотность металла постепенно растет. Но вот температура достигла 480°С, и тут неожиданно плотность плутония резко падает. До причин этой аномалии докопались довольно быстро: при этой температуре атомы плутония перестраиваются в кристаллической решетке. Она становится тетрагональной и очень «рыхлой». Такой плутоний может плавать в собственном расплаве, как лед на воде.
Температура продолжает падать, вот она достигла 451°С, и атомы снова образовали кубическую решетку, но расположились на большем, чем в первом случае, расстоянии друг от друга. При дальнейшем охлаждении решетка становится сначала орторомбической, затем моноклинной. Всего плутоний образует шесть различных кристаллических форм! Две из них отличаются замечательным свойством - отрицательным коэффициентом температурного расширения: с ростом температуры металл не расширяется, а сжимается.
Когда температура достигает 122°С и атомы плутония в шестой раз перестраивают свои ряды, плотность меняется особенно сильно - от 17,77 до 19,82 г/см 3 . Больше, чем на 10%!
Соответственно уменьшается объем слитка. Если против напряжений, возникавших на других переходах, металл еще мог устоять, то в этот момент разрушение неизбежно.
Как же тогда изготовить детали из этого удивительного металла? Металлурги легируют плутоний (добавляют в него незначительные количества нужных элементов) и получают отливки без единой трещины. Из них и делают плутониевые заряды ядерных бомб. Вес заряда (он определяется прежде всего критической массой изотопа) 5-6 кг. Он без труда поместился бы в кубике с размером ребра 10 см.

Тяжелые изотопы плутония

В плутонии-239 в незначительном количестве содержатся и высшие изотопы этого элемента - с массовыми числами 240 и 241. Изотоп 240 Pu практически бесполезен - это балласт в плутонии. Из 241-го получают америций - элемент № 95. В чистом виде, без примеси других изотопов, плутоний-240 и плутоний-241 можно получить при электромагнитном разделении плутония, накопленного в реакторе. Перед этим плутоний дополнительно облучают нейтронными потоками со строго определенными характеристиками. Конечно, все это очень сложно, тем более что плутоний не только радиоактивен, но и весьма токсичен. Работа с ним требует исключительной осторожности.
Один из самых интересных изотопов плутония - 242 Pu можно получить, облучая длительное время 239 Pu в потоках нейтронов. 242 Pu очень редко захватывает нейтроны и потому «выгорает» в реакторе медленнее остальных изотопов; он сохраняется и после того, как остальные изотопы плутония почти полностью перешли в осколки или превратились в плутоний-242.
Плутоний-242 важен как «сырье» для сравнительно быстрого накопления высших трансурановых элементов в ядерных реакторах. Если в обычном реакторе облучать плутоний-239, то на накопление из граммов плутония микрограммовых количеств, к примеру, калифорния-252 потребуется около 20 лет.
Можно сократить время накопления высших изотопов, увеличив интенсивность потока нейтронов в реакторе. Так и делают, но тогда нельзя облучать большое количество плутония-239. Ведь этот изотоп делится нейтронами, и в интенсивных потоках выделяется слишком много энергии. Возникают дополнительные сложности с охлаждением реактора. Чтобы избежать этих сложностей, пришлось бы уменьшить количество облучаемого плутония. Следовательно, выход калифорния стал бы снова мизерным. Замкнутый круг!
Плутоний-242 тепловыми нейтронами не делится, его и в больших количествах можно облучать в интенсивных нейтронных потоках... Поэтому в реакторах из этого изотопа «делают» и накапливают в весовых количествах все элементы от америция до фермия .
Всякий раз, когда ученым удавалось получить новый изотоп плутония, измеряли период полураспада его ядер. Периоды полураспада изотопов тяжелых радиоактивных ядер с четными массовыми числами меняются закономерно. (Этого нельзя сказать о нечетных изотопах.)
С увеличением массы растет и «время жизни» изотопа. Несколько лет назад высшей точкой этого графика был плутоний-242. А дальше как пойдет эта кривая - с дальнейшим ростом массового числа? В точку 1, которая соответствует времени жизни 30 млн. лет, или в точку 2, которая отвечает уже 300 млн. лет? Ответ на этот вопрос был очень важен для наук о Земле. В первом случае, если бы 5 млрд, лет назад Земля целиком состояла из 244 Pu, сейчас во всей массе Земли остался бы только один атом плутония-244. Если же верно второе предположение, то плутоний-244 может быть в Земле в таких концентрациях, которые уже можно было бы обнаружить. Если бы посчастливилось найти в Земле этот изотоп, наука получила бы ценнейшую информацию о процессах, происходивших при формировании нашей планеты.

Периоды полураспада некоторых изотопов плутония

Несколько лет назад перед учеными встал вопрос: стоит ли пытаться найти тяжелый плутоний в Земле? Для ответа на него нужно было прежде всего определить период полураспада плутония-244. Теоретики не могли рассчитать эту величину с нужной точностью. Вся надежда была только на эксперимент.
Плутоний-244 накопили в ядерном реакторе. Облучали элемент № 95 - америций (изотоп 243 Am). Захватив нейтрон, этот изотоп переходил в америций-244; америций- 244 в одном из 10 тыс. случаев переходил в плутоний-244.
Из смеси америция с кюрием выделили препарат плутония-244. Образец весил всего несколько миллионных долей грамма. Но их хватило для того чтобы определить период полураспада этого интереснейшего изотопа. Он оказался равным 75 млн. лет. Позже другие исследователи уточнили период полураспада плутония-244, но ненамного - 81 млн. лет. В 1971 г. следы этого изотопа нашли в редкоземельном минерале бастнезите .
Много попыток предпринимали ученые, чтобы найти изотоп трансуранового элемента, живущий дольше, чем 244 Pu. Но все попытки остались тщетными. Одно время возлагали надежды на кюрий-247, но после того, как этот изотоп был накоплен в реакторе, выяснилось, что его период полураспада всего 16 млн. лет. Побить рекорд плутония-244 не удалось, - это самый долгоживущий из всех изотопов трансурановых элементов.
Еще более тяжелые изотопы плутония подвержены бета-распаду, и их время жизни лежит в интервале от нескольких дней до нескольких десятых секунды. Мы знаем наверное, что в термоядерных взрывах образуются все изотопы плутония, вплоть до 257 Pu. Но их время жизни - десятые доли секунды, и изучить многие короткоживущие изотопы плутония пока не удалось.


Возможности первого изотопа плутония

И напоследок - о плутонии-238 - самом первом из «рукотворных» изотопов плутония, изотопе, который вначале казался бесперспективным. В действительности это очень интересный изотоп. Он подвержен альфа-распаду, т. е. его ядра самопроизвольно испускают альфа-частицы - ядра гелия. Альфа-частицы, порожденные ядрами плутония-238, несут большую энергию; рассеявшись в веществе, эта энергия превращается в тепло. Как велика эта энергия? Шесть миллионов электронвольт освобождается при распаде одного атомного ядра плутония-238. В химической реакции та же энергия выделяется при окислении нескольких миллионов атомов. В источнике электричества, содержащем один килограмм плутония-238, развивается тепловая мощность 560 ватт. Максимальная мощность такого же по массе химического источника тока - 5 ватт.
Существует немало излучателей с подобными энергетическими характеристиками, но одна особенность плутония-238 делает этот изотоп незаменимым. Обычно альфа- распад сопровождается сильным гамма-излучением, проникающим через большие толщи вещества. 238 Pu - исключение. Энергия гамма-квантов, сопровождающих распад его ядер, невелика, защититься от нее несложно: излучение поглощается тонкостенным контейнером. Мала и вероятность самопроизвольного деления ядер этого изотопа. Поэтому он нашел применение не только в источниках тока, но и в медицине. Батарейки с плутонием-238 служат источником энергии в специальных стимуляторах сердечной деятельности.
Но 238 Pu не самый легкий из известных изотопов элемента № 94, получены изотопы плутония с массовыми числами от 232 до 237. Период полураспада самого легкого изотопа - 36 минут.

Плутоний - большая тема. Здесь рассказано главное из самого главного. Ведь уже стала стандартной фраза, что химия плутония изучена гораздо лучше, чем химия таких «старых» элементов, как железо . О ядерных свойствах плутония написаны целые книги. Металлургия плутония - еще один удивительный раздел человеческих знаний... Поэтому не нужно думать, что, прочитав этот рассказ, вы по-настоящему узнали плутоний - важнейший металл XX в.

  • КАК ВОЗЯТ ПЛУТОНИЙ. Радиоактивный и токсичный плутоний требует особой осторожности при перевозке. Сконструирован контейнер специально для его транспортировки - контейнер, который не разрушается даже при авиационных катастрофах. Сделан он довольно просто: это толстостенный сосуд из нержавеющей стали, окруженный оболочкой из красного дерева. Очевидно, плутоний того стоит, но прпредставьте, какой толщины должны быть стенки, если известно, что контейнер для перевозки всего двух килограммов плутония весит 225 кг!
  • ЯД И ПРОТИВОЯДИЕ. 20 октября 1977 г. агентство «Франс Пресс» сообщило: найдено химическое соединение, способное выводить из организма человека плутоний. Через несколько лет об этом соединении стало известно довольно многое. Это комплексное соединение - линейный катехинамид карбоксилазы, вещество класса хелатов (от греческого - «хела» - клешня). В эту химическую клешню и захватывается атом плутония, свободный или связанный. У лабораторных мышей с помощью этого вещества из организма выводили до 70% поглощенного плутония. Полагают, что в дальнейшем это соединение поможет извлекать плутоний и из отходов производства, и из ядерного горючего.
Плутоний
Атомный номер 94
Внешний вид простого вещества
Свойства атома
Атомная масса
(молярная масса)
244,0642 а. е. м. ( /моль)
Радиус атома 151 пм
Энергия ионизации
(первый электрон)
491,9(5,10) кДж /моль (эВ)
Электронная конфигурация 5f 6 7s 2
Химические свойства
Ковалентный радиус n/a пм
Радиус иона (+4e) 93 (+3e) 108 пм
Электроотрицательность
(по Полингу)
1,28
Электродный потенциал Pu←Pu 4+ -1,25В
Pu←Pu 3+ -2,0В
Pu←Pu 2+ -1,2В
Степени окисления 6, 5, 4, 3
Термодинамические свойства простого вещества
Плотность 19,84 /см ³
Молярная теплоёмкость 32,77 Дж /( ·моль)
Теплопроводность (6,7) Вт /( ·)
Температура плавления 914
Теплота плавления 2,8 кДж /моль
Температура кипения 3505
Теплота испарения 343,5 кДж /моль
Молярный объём 12,12 см ³/моль
Кристаллическая решётка простого вещества
Структура решётки моноклинная
Параметры решётки a=6,183 b=4,822 c=10,963 β=101,8
Отношение c/a
Температура Дебая 162

Плутоний — радиоактивный химический элемент группы актиноидов, широко использовавшийся в производстве ядерного оружия (т. н. «оружейный плутоний»), а также (экспериментально) в качестве ядерного топлива для атомных реакторов гражданского и исследовательского назначения. Первый искусственный элемент, полученный в доступных для взвешивания количествах (1942 г.).

В таблице справа приведены основные свойства α-Pu — основной аллотропной модификации плутония при комнатной температуре и нормальном давлении.

История плутония

Изотоп плутония 238 Pu был впервые искусственно получен 23 февраля 1941 года группой американских ученых во главе с Гленном Сиборгом путем облучения ядер урана дейтронами. Примечательно, что только после искусственного получения плутоний был обнаружен в природе: в ничтожно малых количествах 239 Pu обычно содержится в урановых рудах как продукт радиоактивного превращения урана.

Нахождение плутония в природе

В урановых рудах в результате захвата нейтронов (например, нейтронов из космического излучения) ядрами урана образуется нептуний (239 Np), продуктом β-распада которого и является природный плутоний-239. Однако плутоний образуется в таких микроскопических количествах (0,4—15 частей Pu на 10 12 частей U), что о его добыче из урановых руд не может быть и речи.

Происхождение названия плутоний

В 1930 году астрономический мир был взбудоражен замечательной новостью: открыта новая планета, о существовании которой давно говорил Персиваль Ловелл, астроном, математик и автор фантастических очерков о жизни на Марсе. На основе многолетних наблюдений за движениями Урана и Нептуна Ловелл пришел к заключению, что за Нептуном в солнечной системе должна быть еще одна, девятая планета, отстоящая от Солнца в сорок раз дальше, чем Земля.

Эта планета, элементы орбиты которой Ловелл рассчитал еще в 1915 году, и была обнаружена на фотографических снимках, полученных 21, 23 и 29 января 1930 г. астрономом К. Томбо в обсерватории Флагстафф (США ) . Планету назвали Плутоном . По имени этой планеты, расположенной в солнечной системе за Нептуном, был назван плутонием 94-й элемент, искусственно полученный в конце 1940 г. из ядер атомов урана группой американских ученых во главе с Г. Сиборгом.

Физические свойства плутония

Существует 15 изотопов плутония — В наибольших количествах получаются изотопы с массовыми числами от 238 до 242:

238 Pu -> (период полураспада 86 лет, альфа-распад) -> 234 U,

Этот изотоп используется почти исключительно в РИТЭГ космического назначения, например, на всех аппаратах, улетавших дальше орбиты Марса.

239 Pu -> (период полураспада 24 360 лет, альфа-распад) -> 235 U,

Этот изотоп наиболее подходит для конструирования ядерного оружия и ядерных реакторов на быстрых нейтронах.

240 Pu -> (период полураспада 6580 лет, альфа-распад) -> 236 U, 241 Pu -> (период полураспада 14.0 лет, бета-распад) -> 241 Am, 242 Pu -> (период полураспада 370 000 лет, альфа-распад) -> 238 U

Эти три изотопа серьёзного промышленного значения не имеют, но получаются, как побочные продукты, при получении энергии в ядерных реакторах на уране, путём последовательного захвата нескольких нейтронов ядрами урана-238. Изотоп 242 по ядерным свойствам наиболее похож на уран-238. Америций-241, получавшийся при распаде изотопа 241, использовался в детекторах дыма.

Плутоний интересен тем, что от температуры затвердевания до комнатной претерпевает шесть фазовых переходов, больше, чем любой другой химический элемент. При последнем плотность увеличивается скачком на 11%, в результате, отливки из плутония растрескиваются. Стабильной при комнатной температуре является альфа-фаза, характеристики которой и приведены в таблице. Для применения более удобной является дельта-фаза, имеющая меньшую плотность, и кубическую объёмно-центрированную решётку. Плутоний в дельта-фазе весьма пластичен, в то время, как альфа-фаза хрупкая. Для стабилизации плутония в дельта-фазе применяется легирование трёхвалентными металлами (в первых ядерных зарядах использовался галлий).

Применение плутония

Первый ядерный заряд на основе плутония был взорван 16 июля 1945 года на полигоне Аламогордо (испытание под кодовым названием «Тринити»).

Биологическая роль плутония

Плутоний высокотоксичен; ПДК для 239 Pu в открытых водоемах и воздухе рабочих помещений составляет соответственно 81,4 и 3,3*10 −5 Бк/л. Большинство изотопов плутония обладают высокой величиной плотности ионизации и малой длиной пробега частиц, поэтому его токсичность обусловлена не столько его химическими свойствами (вероятно, в этом отношении плутоний токсичен не более, чем другие тяжелые металлы), сколько ионизирующим действием на окружающие ткани организма. Плутоний относится к группе элементов с особо высокой радиотоксичностью. В организме плутоний производит большие необратимые изменения в скелете, печени, селезенке, почках, вызывает рак. Максимально допустимое содержание плутония в организме не должно превышать десятых долей микрограмма.

Художественные произведения связанные с темой плутоний

— Плутоний использовался для машины De Lorean DMC-12 в фильме Назад в будущее как топливо для накопителя потока для перемещения в будущее или в прошлое.

— Из плутония состоял заряд атомной бомбы, взорванной террористами в Денвере, США, в произведении Тома Клэнси «Все страхи мира»

— Кэндзабуро Оэ «Записки пинчранера»

— В 2006 году компанией «Beacon Pictures» был выпущен фильм «Плутоний-239» («Pu-239» )

Металлический плутоний используется в ядерном оружии и служит в качестве ядерного топлива. Оксиды плутония используются в качестве энергетического источника для космической техники и находят свое применение в ТВЭЛах. Плутоний используется в элементах питания космических аппаратов. Ядра плутония-239 способны к цепной ядерной реакции при воздействии на них нейтронов, поэтому этот изотоп можно использовать как источник атомной энергии. Более частое использование плутония-239 в ядерных бомбах обусловлено тем, что плутоний занимает меньший объем в сфере, следовательно можно выиграть во взрывной силе бомбы за счет этого свойства. Ядро плутония при ядерной реакции испускает всреднем около 2,895 нейтрона против 2,452 нейтрона у урана-235. Однако затраты на производство плутония примерно в шесть раз больше по сравнению с ураном-235.

Изотопы плутония нашли свое применение при синтезе трансплутониевых элементов. Таким образом, смешанный оксид плутония-242 в 2009 г. и бомбардировки ионами кальция-48 в 2010 году того же изотопа были использованы для получения унунквадия. В Оук-Риджской национальной лаборатории длительное нейтронное облучение Pu используется для получения 24496Cm, 24296Cm, 24997Bk, 25298Cf и 25399Es и 257100Fm. За исключением Pu, все оставшиеся трансурановые элементы производились в прошлом в исследовательских целях. Благодаря нейтронному захвату изотопов плутония в 1944 году Г. Т. Сиборгом и его группой был одержан первый изотоп америция — 24195Am Am). Для подтверждения того, что актиноидов всего 14 был произведен в 1966 году в Дубне синтез ядер резерфордия под руководством академика Г. Н. Флёрова:

24294Pu + 2210Ne → 260104Rf + 4n.

δ-Стабилизированные сплавы плутония применяются при изготовлении топливных элементов, так как они обладают лучшими металлургическими свойствами по сравнению с чистым плутонием, который при нагревании претерпевает фазовые переходы.

«Сверхчистый» плутоний используется в ядерном оружии ВМФ США и применяется на кораблях и подводных лодках под ядерной защитой из свинца, что снижает дозовую нагрузку на команду.

Плутоний-238 и плутоний-239 являются самыми широко синтезируемыми изотопами.

  • Первый ядерный заряд на основе плутония был взорван 16 июля 1945 года на полигоне Аламогордо.

Ядерное оружие

Плутоний очень часто применялся в ядерных бомбах. Историческим фактом является сброс ядерной бомбы на Нагасаки в 1945 г. США. Бомба, сброшенная на этот город, содержала в себе 6,2 кг плутония. Мощность взрыва составила 21 килотонну. К концу 1945 года погибло 60-80 тыс. человек. По истечении 5 лет, общее количество погибших, с учётом умерших от рака и других долгосрочных воздействий взрыва, могло достичь или даже превысить 140 000 человек.

Принцип, по которому происходил ядерный взрыв с участием плутония, заключался в конструкции ядерной бомбы. «Ядро» бомбы состояло из сферы, наполненной плутонием-239, которая в момент столкновения с землей сжималась до миллиона атмосфер за счет конструкции и благодаря окружающему эту сферу взрывчатому веществу. После удара ядро расширялось в объеме и в плотности за десяток микросекунд, при этом сжимаемая сборка проскакивала критическое состояние на тепловых нейтронах и становилась существенно сверхкритической на быстрых нейтронах, то есть начиналась цепная ядерная реакция с участием нейтронов и ядер элемента. При этом следовало учитывать, что бомба не должна была взорваться преждевременно. Однако это практически невозможно, так как, чтобы сжать плутониевый шар за десяток наносекунд всего на 1 см, требуется придать веществу ускорение, в десятки триллионов раз превышающее ускорение свободного падения. При конечном взрыве ядерной бомбы температура повышается до десятков миллионов градусов. Следует отметить, что в наше время для создания полноценного ядерного заряда достаточно 8-9 кг этого элемента.

Всего один килограмм плутония-239 может произвести взрыв, который будет эквивалентен 20000 т тротила. Даже 50 г элемента при делении всех ядер произведут взрыв, равный детонации 1000 т тротила. Данный изотоп является единственным подходящим нуклидом для применения в ядерном оружии, так как присутствие хотя бы 1 % Pu приведет к образованию большого количества нейтронов, которые не позволят эффективно применять пушечную схему заряда ядерной бомбы. Остальные изотопы рассматриваются только из-за их вредного действия.

Плутоний-240 может находиться в ядерной бомбе в малых количествах, однако если его содержание будет повышено, произойдет преждевременная цепная реакция. Данный изотоп имеет высокую вероятность спонтанного деления, что делает невозможным большой процент его содержания в делящемся материале.

По данным телеканала Al-Jazeera, Израиль имеет около 118 боеголовок с плутонием в качестве радиоактивного вещества. Считается, что Южная Корея имеет около 40 кг плутония, количества которого достаточно для производства 6 ядерных ракет. По оценкам МАГАТЭ в 2007 году, производимого в Ираке плутония хватало на две ядерные боеголовки в год. В 2006 г. Пакистан начал строительство ядерного реактора, который позволит нарабатывать около 200 кг радиоактивного элемента в год. В пересчете на количество ядерных боеголовок, эта цифра будет составлять приблизительно 40-50 бомб.

Между Россией и США было подписано несколько договоров на протяжении первого десятилетия 21-го века. Так в частности, в 2003 г. был подписан договор о переработке 68 т плутония на Балаковской АЭС в MOX-топливо до 2024 года. В 2007 г. страны подписали план об утилизации Россией 34 т плутония, созданного для российских оружейных программ. В 2010 году был подписан договор об утилизации ядерного оружия, в частности плутония, количества которого хватило бы на производство 17 тыс. ядерных боеголовок.

В 2010 году 17 ноября между США и Казахстаном было подписано соглашение о закрытии промышленного ядерного реактора БН-350 в городе Актау, который вырабатывал электроэнергию за счет плутония. Этот реактор был первым в мире и Казахстане опытно-промышленным реактором на быстрых нейтронах; срок его работы составил 27 лет.

Ядерное загрязнение

В период, когда начинались ядерные испытания в основе которых лежал плутоний, и когда его радиоактивные свойства только начинались изучаться, в атмосферу было выброшено свыше 5 т элемента. С 1970-х годов доля плутония в радиоактивном заражении атмосферы Земли начала возрастать.

В северо-западную часть Тихого океана плутоний попал в основном благодаря ядерным испытаниям. Повышенное содержание элемента объясняется проведением США ядерных испытаний на территории Маршалловых Островов в Тихоокеанском полигоне в 1950-х годах. Основное загрязнение от этих испытаний пришлось на 1960 года. Исходя из оценки ученых, нахождение плутония в тихом океане повышено по сравнению с общим распространением ядерных материалов на земле. По некоторым расчетам, доза облучения, исходящего от цезия-137, на атоллах Маршалловых островов составляет примерно 95 %, а на остальные 5 приходятся изотопы стронция, америция и плутония.

Плутоний в океане переносится благодаря физическим и биогеохимическим процессам. Время нахождения плутония в поверхностных водах океана составляет от 6 до 21 года, что, как правило, короче, чем у цезия-137. В отличие от этого изотопа, плутоний является элементом, частично реагирующим с окружающей средой и образующим 1-10 % нерастворимых соединений от общей массы, попавшей в окружающую среду. Плутоний в океане выпадает на дно вместе с биогенными частицами, из которых он восстанавливается в растворимые формы в результате микробного разложения. Наиболее распространенными из его изотопов в морской среде являются плутоний-239 и плутоний-240.

В январе 1968 года, американский самолет B-52 с четырьмя зарядами ядерного оружия в результате неуспешной посадки разбился на льду вблизи Туле, на территории Гренландии. Столкновение вызвало взрыв и фрагментацию оружия, в результате чего плутоний попал на льдину. После взрыва верхний слой загрязненного снега была снесен и в результате образовалась трещина, через которую плутоний попал в воду. Для уменьшения урона природе было собрано примерно 1,9 млрд литров снега и льда, которые могли подвергнуться радиоактивному загрязнению. Впоследствии оказалось, что один из четырех зарядов так и не был найден.

Известен случай, когда советский космический аппарат Космос-954 24 января 1978 года с ядерным источником энергии на борту при неконтролируемом сходе с орбиты упал на территорию Канады. Данное происшествие привело к попаданию в окружающую среду 1 кг плутония-238 на площадь около 124 000 м² .

Попадание плутония в окружающую среду связано не только с техногенными происшествиями. Известны случаи утечки плутония как из лабораторных, так и из заводских условий. Было около 22 аварийных случаев утечки из лабораторий урана-235 и плутония-239. На протяжении 1953-1978 гг. аварийные случаи привели к потере от 0,81 до 10,1 кг Pu. Происшествия на промышленных предприятиях суммарно привели к смерти двух человек в г. Лос-Аламос из-за двух случаев аварий и потерь 6,2 кг плутония. В городе Саров в 1953 и 1963 гг. примерно 8 и 17,35 кг попало за пределы ядерного реактора. Один из них привел к разрушению ядерного реактора в 1953 году.

Уровни радиоактивности изотопов по состоянию на апрель 1986 года.

Известен случай аварии на Чернобыльской АЭС, который произошел 26 апреля 1986 года. В результате разрушения четвертного энергоблока в окружающую среду было выброшено 190 т радиоактивных веществ на площадь около 2200 км². Восемь из 140 т радиоактивного топлива реактора оказались в воздухе. Загрязненная площадь составила 160 000 км² . Для ликвидации последствий были мобилизованы значительные ресурсы, более 600 тыс. человек участвовали в ликвидации последствий аварии. Суммарная активность веществ, выброшенных в окружающую среду, составила, по различным оценкам, до 14×10 Бк, в том числе:

  • 1,8 ЭБк — 13153I,
  • 0,085 ЭБк — 13755Cs,
  • 0,01 ЭБк — 9038Sr
  • 0,003 ЭБк — изотопы плутония,
  • на долю благородных газов приходилось около половины от суммарной активности.

В настоящее время большинство жителей загрязнённой зоны получает менее 1 мЗв в год сверх естественного фона.

Источник энергии и тепла

Как известно, атомная энергия применяется для преобразования в электроэнергию за счет нагревания воды, которая испаряясь и образуя перегретый пар вращает лопатки турбин электрогенераторов. Преимуществом данной технологии является отсутствие каких либо парниковых газов, которые оказывают пагубное воздействие на окружающую среду. По состоянию за 2009 год 438 атомных станций по всему миру генерировали примерно 371,9 ГВт электроэнергии. Однако минусом ядерной промышленности являются ядерные отходы, которых в год отрабатывается приблизительно 12000 т. Данное количество отработанного материала представляет собой довольно сложную задачу перед сотрудниками АЭС. К 1982 году было подсчитано, что аккумулировано ~300 т плутония.

Таблетка диоксида плутония-238.

Желто-коричневый порошок, состоящий из диоксида плутония, способен выдерживать нагревание до температуры 1200 °C. Синтез соединения происходит с помощью разложения тетрагидроксида или тетранитрата плутония в атмосфере кислорода:

.

Полученный порошок шоколадного цвета спекается и нагревается в токе влажного водорода до 1500 °C. При этом образуются таблетки плотностью 10,5-10,7 г/см³, которые можно использовать в качестве ядерного топлива. Диоксид плутония является самым стабильным и инертным из оксидов плутония и посредством нагревания до высоких температур разлагается на составляющие, и потому применяется при переработке и хранении плутония, а также его дальнейшего использования как источника электроэнергии. Один килограмм плутония эквивалентен примерно 22 млн кВт·ч тепловой энергии.

В СССР было произведено несколько РИТЭГов Топаз, которые были предназначены для генерации электричества для космических аппаратов. Эти аппараты были предназначены работать с плутонием-238, который является α-излучателем. После падения Советского Союза США закупили несколько таких аппаратов для изучения их устройства и дальнейшего применения в своих долговременных космических программах.

РИТЭГ зонда Новые Горизонты.

Вполне достойной заменой плутонию-238 можно было бы назвать полоний-210. Его тепловыделение составляет 140 Вт/г, а всего один грамм может разогреться до 500 °C. Однако из-за его чрезвычайно малого для космических миссий периода полураспада применение этого изотопа в космической отрасли сильно ограничено.

Плутоний-238 в 2006 г. при запуске зонда New Horizons к Плутону нашел свое применение в качестве источника питания для зонда. Радиоизотопный генератор содержал 11 кг высокочистого диоксида Pu, производившего в среднем 220 Вт электроэнергии на протяжении всего пути. Высказывались опасения о неудачном запуске зонда, однако он все таки состоялся. После запуска зонд развил скорость 36000 миль/ч благодаря силам гравитации Земли. В 2007 году благодаря гравитационному маневру вокруг Юпитера его скорость повысилась еще на 9 тыс. миль, что позволит ему приблизиться на минимальное расстояние к Плутону в июле 2015 года и затем продолжить свое наблюдение за поясом Койпера.

Зонды Галилео и Кассини были также оборудованы источниками энергии, в основе которых лежал плутоний. Изотоп будет применяться и на будущих миссиях, например марсоход Curiosity будет получать энергию благодаря плутонию-238. Его спуск на поверхность Марса планируется провести в августе 2012 года. Марсоход будет использовать последнее поколение РИТЭГов, называемое Multi-Mission Radioisotope Thermoelectric Generator. Это устройство будет производить 125 Вт электрической мощности, а по истечению 14 лет — 100 Вт. Для работы марсохода будет производиться 2,5 кВт·ч энергии за счет распада ядер. Плутоний-238 является оптимальным источником энергии, выделяющим 0,56 Вт·г. Применение этого изотопа с теллуридом свинца, который используется в качестве термоэлектрического элемента, образует очень компактный и долговременный источник электричества без каких бы то ни было движущих частей конструкции, что позволяет «сэкономить» пространство космических аппаратов.

РИТЭГ SNAP-27, применявшийся в миссии Аполлон-14.

Несколько килограммов PuO 2 использовались не только на Галилео, но и на некоторых миссиях Аполлонов. Генератор электроэнергии SNAP-27, тепловая и электрическая мощность которого составляла 1480 Вт и 63,5 Вт соответственно, содержал 3,735 кг диоксида плутония-238. Для уменьшения риска взрыва или иных возможных происшествий, использовался бериллий в качестве термостойкого, лёгкого и прочного элемента. SNAP-27 был последним типом генераторов, использовавшихся NASA для космических миссий; предыдущие типы использовали другие источники электроэнергии.

При проведении пассивного сейсмического эксперимента на Луне в миссии Аполлон-11 были использованы два радиоизотопных тепловых источника мощностью 15 Вт, которые содержали 37,6 г диоксида плутония в виде микросфер. Генератор был использован в миссиях Аполлона-12, 14, 15, 16, 17. Он был призван обеспечивать электроэнергией научное оборудование, установленное на космических аппаратах. Во время миссии Аполлона-13 произошло схождение лунного модуля с траектории, в результате чего он сгорел в плотных слоях атмосферы. Внутри SNAP-27 был использован вышеупомянутый изотоп, который окружен устойчивыми к коррозии материалами и будет храниться в них еще 870 лет.

Плутоний-236 и плутоний-238 применяется для изготовления атомных электрических батареек, срок службы которых достигает 5 и более лет. Их применяют в генераторах тока, стимулирующих работу сердца. По состоянию на 2003 г. в США было 50-100 человек, имеющих плутониевый кардиостимулятор. Применение плутония-238 может распространиться на костюмы водолазов и космонавтов. Бериллий вместе с вышеуказанным изотопом применяется как источник нейтронного излучения.

В 2007 г. Великобритания начала снос старейшей ядерной электростанции Calder Hall на плутонии, которая начала свою работу 17 октября 1956 года и завершила 29 сентября 2007.

Реакторы-размножители

Схематическое изображение реакторов-размножителей на быстрых нейтронах с жидкометаллическим теплоносителем, с интегральной и петлевой компоновкой оборудования.

Для получения больших количеств плутония строятся реакторы-размножители, которые позволяют нарабатывать значительные количества плутония. Реакторы названы именно «размножителями» потому, что с их помощью возможно получение делящегося материала в количестве, превышающем его затраты на получение.

В США строительство первых реакторов данного типа началось еще до 1950 г. В СССР и Великобритании к их созданию приступили в начале 1950 гг. Однако первые реакторы были созданы для изучения нейтронно-физических характеристик реакторов с жестким спектром нейтронов. Поэтому первые образцы должны были продемонстрировать не большие производственные количества, а возможность реализации технических решений, закладываемых в первые реакторы такого типа.

Отличие реакторов-разможителей от обычных ядерных реакторов состоит в том, что нейтроны в них не замедляются, то есть отсутствует замедлитель нейтронов, для того, чтобы их как можно больше прореагировало с ураном-238. После реакции образуются атомы урана-239, который в дальнейшем и образует плутоний-239. В таких реакторах центральная часть, содержащая диоксид плутония в обедненном диоксиде урана, окружена оболочкой из еще более обедненного диоксида урана-238, в которой и образуется Pu. Используя вместе U и U такие реакторы могут производить из природного урана энергии в 50-60 раз больше, позволяя таким образом использовать запасы наиболее пригодных для переработки урановых руд. Коэффициент воспроизводства рассчитывается отношением произведенного ядерного топлива к затраченному. Однако достижение высоких показателей воспроизводства нелегкая задача. ТВЭЛы в них должны охлаждаться чем-то отличным от воды, которая уменьшает их энергию. Было предложено использование жидкого натрия в качестве охлаждающего элемента. В реакторах-размножителях используют обогащенный более 15 % по массе уран-235, для достижения необходимого нейтронного облучения и коэффициента воспроизводства примерно 1-1,2.

В настоящее время экономически более выгодно получение урана из урановой руды, обогащенной до 3 % ураном-235, чем размножение урана в плутоний-239 с применением урана-235, обогащенного на 15 %. Проще говоря, преимуществом бридеров является способность в процессе работы не только производить электроэнергию, но и утилизировать непригодный в качестве ядерного горючего уран-238.


Этот металл называют драгоценным, однако не за красоту, а за незаменимость. В периодической системе Менделеева этот элемент занимает ячейку под номером 94. Именно с ним ученые связывают свои самые большие надежды, и именно плутоний они называют самым опасным металлом для человечества.

Плутоний: описание

По внешнему виду это серебристо-белый металл. Он является радиоактивным и может быть представлен в виде 15 изотопов, имеющих различные периоды полураспада, к примеру:

  • Pu-238 – около 90 лет
  • Pu-239 – около 24 тысяч лет
  • Pu-240 – 6580 лет
  • Pu-241 – 14 лет
  • Pu-242 – 370 тысяч лет
  • Pu-244 – около 80 миллионов лет

Этот металл нельзя добыть из руды, поскольку он является продуктом радиоактивного превращения урана.

Как получают плутоний?

Производство плутония требует расщепления урана, что можно осуществить только в атомных реакторах. Если же говорить о присутствии элемента Pu в земной коре, то на 4 миллиона тонн урановой руды будет приходиться всего 1 грамм чистого плутония. И этот грамм образуется путем естественного захвата нейтронов ядрами урана. Таким образом, чтобы получить это ядерное горючее (обычно – изотоп 239-Pu) в количестве нескольких килограмм необходимо проведение сложного технологического процесса в атомном реакторе.

Свойства плутония


Радиоактивный металл плутоний обладает следующими физическими свойствами:

  • плотность 19,8 г/см 3
  • температура плавления – 641°C
  • температура кипения – 3232°C
  • теплопроводность (при 300 K) – 6,74 Вт/(м·К)

Плутоний радиоактивен, поэтому теплый на ощупь. При этом для этого металла характерна самая низкая теплопроводность и электропроводность. Жидкий плутоний является самым вязким из всех существующих металлов.

Малейшее изменение температуры плутония приводит к моментальному изменению плотности вещества. В целом же, масса плутония постоянно меняется, поскольку ядра этого металла находятся в состоянии постоянного деления на более мелкие ядра и нейтроны. Критическая масса плутония – так называют минимальную массу делимого вещества, при которой протекание деления (цепной ядерной реакции) остается возможным. К примеру, критическая масса оружейного плутония – 11 кг (для сравнения, критическая масса высокообогащенного урана – 52 кг).

Уран и плутоний – основное ядерное горючее. Чтобы получить плутоний в больших количествах применяется две технологии:

  • облучение урана
  • облучение трансурановых элементов, полученных из отработанного топлива


Оба способа представляют собой отделение плутония и урана в результате протекания химической реакции.

Похожие публикации