Что есть у биологической клетки. Анатомия человека. Строение клетки. Строение злокачественной частицы

Клетка (cellula) представляет живую систему, состоящую из двух частей - цитоплазмы и ядра, являющихся основой строения, развития и жизнедеятельности всех животных и растительных организмов (рис. 5, 6). Клетки, объединенные с внеклеточными структурами, формируют ткани. Контроль и взаимоотношение клеток, находящихся в составе тканей, устанавливают нервная система и гормоны. Адгезия (слипание) клеток обеспечивает структурное и функциональное единство тканей. Развитие клеточной структуры в филогенезе имело большое значение в эволюции органической жизни. Благодаря клеточной структуре возможны размножение, рост и передача наследственных свойств новым организмам, восстановление органов и тканей (регенерация). Клетки каждой ткани имеют различную форму: пластинок, кубиков, цилиндров, шариков, веретен или вообще переходят без четких границ друг в друга (синцитий). Эти формы чаще изображены из клеток, уплотненных (фиксированных) химическими веществами. В действительности живые клетки имеют неровные контуры с многочисленными выпячиваниями и отростками, которые представляют весьма динамичные образования.

5. Схема субмикроскопического строения фиксированной клетки. 1 - оболочка клетки; 2 - гиалоплазма; 3 - внутриклеточные нити; 4 - липоидные гранулы; 5 - эргастоплазма и в ней: 6 - альфа-цитомембраны; 7- рибосомы; 8 - ядра; 9 - поры в ядерной оболочке; 10 - ядерная оболочка; 11 - ядрышко; 12 - внутриклеточный сетчатый аппарат; 13 - митохондрий; 14-центриоли.

6. Схема строения фиксированной клетки при световой микроскопии. 1 - оболочка клетки; 2 - цитоплазма; 3 - внутриклеточный сетчатый аппарат; 4 - клеточный центр; 5 - митохондрии; 6 - белковые гранулы; 7 - ядро с оболочкой; 8 - глыбки хроматина; 9 - ядрышко;10 - вакуоли; 11 - липоидные гранулы.

Клетка состоит из ядра и цитоплазмы. Ядро (nucleus) имеет шарообразную овоидную форму и содержит хромосомы, которые хорошо выражены в фазе деления клеток и не видны в интерфазных ядрах. В состав ядра входят: а) хроматин, имеющий форму глыбок или нитей. Ядерная дезоксирибонуклеиновая кислота (ДНК) локализуется в хроматине и связана только с хромосомами, которые в период митотического деления спирально скручены в хромонемы. В интерфазный период хромосомы расправляются и тончайшие их нити видны только при электронной микроскопии; б) кариолимфа (ядерный сок) - среда, где локализуются разбухшие деспирализованные хромосомы, ядрышки и глобулины; в) ядрышки, синтезирующие рибонуклеиновую кислоту (РНК), которая через поры ядерной оболочки проникает в цитоплазму. Они состоят из гранул рибонуклеопротеида и РНК. Ядрышки исчезают в период деления ядра. В клетках, активно синтезирующих белок, имеются крупные ядрышки с большим содержанием РНК; г) ядерная оболочка, состоящая из двух мембран, пронизанных сквозными отверстиями, через которые кариолимфа сообщается с цитоплазмой.

Большей частью в клетках имеется одно ядро, кроме зрелых эритроцитов, где ядро отсутствует; встречаются клетки с двумя, тремя и сотнями ядер. Функция ядра более активна в период между делениями клетки. Химическая структура ядра состоит из ДНК, РНК, солей Mg, Na, К, Са, предшественников нуклеиновых кислот-нуклеотидов и ядерных белков: а) гистоны, связанные с ДНК; б) глобулины, соединенные с ядерными ферментами нуклеинового обмена и анаэробного гликолиза; в) негистоновые белки, связанные с РНК; г) труднорастворимые белки.

Цитоплазма представляет основу, где располагаются различные органоиды и включения, находящиеся в основном веществе клетки, представляющем бесструктурную глобулярную гиалоплазму.

Органоиды . Микротрубочки представляют трехслойные образования, выполняющие функцию опорных элементов для других органоидов и включений клетки. Рибосомы являются частицами белка, РНК, солей Mg и полиаминов в виде гранул, свободных и прикрепленных к мембране эргастоплазматической сети. Рибосомы синтезируют белки. Эргастоплазматическая (эндоплазматическая) сеть состоит из вакуолизированных элементов разнообразной формы. К наружной мембране этой сети прикреплены гранулы рибосом. Сеть необычайно динамична, легко перестраивается при внешних воздействиях в сферические, мешковидные, пластинчатые образования. Эргастоплазматическая сеть участвует в синтезе протеинов и в проведении возбуждения внутри клетки. Комплекс Гольджи имеет сетевидное строение, располагаясь около ядра и окружая клеточный центр. Представляет собой уплощенные мешочки или цистерны, содержащие продукты секреции эргастоплазматического комплекса. Лизосомы - сферические частицы, содержащие около 12 гидролитических ферментов. Митохондрии имеют форму нитевидных образований, состоящих из двухслойных мембран. В центре митохондрии расположены кристы (гребни), являющиеся производными внутреннего слоя. Митохондрии участвуют в окислении веществ. Клеточный центр располагается около ядра и имеет форму цилиндрических трубочек, названных центриолями. В период митотического деления клеток центриоли ориентируют хромосомы по полюсам клетки. Специализированными структурами цитоплазмы являются микроворсинки, реснички, жгутики, миофибриллы, нейрофибриллы, тонофибриллы.

Включения . В процессе обмена веществ в клетке откладываются различные вещества типа белковых, липидных, углеводных, пигментных гранул.

Клетки делятся на прокариотические и эукариотические. Первые - это водоросли и бактерии, которые содержат генетическую информацию в одной единственной органелле, - хромосоме, а эукариотические клетки, составляющие более сложные организмы, такие как человеческое тело, имеют четко дифференцированное ядро, в котором находится несколько хромосом с генетическим материалом.

Эукариотическая клетка

Прокариотическая клетка

Строение

Клеточная или цитоплазматическая мембрана

Цитоплазматическая мембрана (оболочка) - это тонкая структура, которая отделяет содержимое клетки от окружающей среды. Она состоит из двойного слоя липидов с белковыми молекулами толщиной примерно 75 ангстрем.

Клеточная мембрана сплошная, но у нее имеются многочисленные складки, извилины, и поры, что позволяет регулировать прохождение через нее веществ.

Клетки, ткани, органы, системы и аппараты

Клетки , Человеческий организм - слагаемое элементов, которые слаженно действуют, чтобы эффективно выполнять все жизненные функции.

Ткань - это клетки одинаковой формы и строения, специализированные на выполнении одной и той же функции. Различные ткани объединяются и образуют органы, каждый из которых выполняет конкретную функцию в живом организме. Кроме того, органы также группируются в систему для выполнения определенной функции.

Ткани:

Эпителиальная - защищает и покрывает поверхность тела и внутренние поверхности органов.

Соединительная - жировая, хрящевая и костная. Выполняет различные функции.

Мышечная - гладкая мышечная ткань, поперечнополосатая мышечная ткань. Сокращает и расслабляет мышцы.

Нервная - нейроны. Вырабатывает и передает и принимает импульсы.

Размер клеток

Величина клеток очень разная, хотя в основном она колеблется от 5 до 6 микронов (1 микрон = 0,001 мм). Этим объясняется тот факт, что многие клетки не могли рассмотреть до изобретения электронного микроскопа, разрешающая способность которого составляет от 2 до 2000 ангстрем (1 ангстрем = 0,000 000 1 мм).Размер некоторых микроорганизмов меньше 5 микрон, но есть и клетки-гиганты. Из наиболее известных - это желток птичьих яиц, яйцеклетка размером около 20 мм.

Есть еще более поразительные примеры: клетка ацетабулярии, морской одноклеточной водоросли, достигает 100 мм, а рами, травянистого растения, - 220 мм - больше ладони.

От родителей к детям благодаря хромосомам

Ядро клетки претерпевает различные изменения, когда клетка начинает делиться: исчезают оболочка и ядрышки; в это время хроматин становится более плотным, образуя в итоге толстые нити - хромосомы. Хромосома состоит из двух половин - хроматид, соединенных в месте сужения (центрометр).

Наши клетки, так же как и все клетки животных и растений, подчиняются так называемому закону численного постоянства, согласно которому число хромосом определенного вида постоянно.

Кроме того, хромосомы распределяются парами, идентичными между собой.

В каждой клетке нашего тела имеется 23 пары хромосом, представляющих собой несколько удлиненных молекул ДНК. Молекула ДНК принимает форму двойной спирали, состоящей из двух групп сахарофосфата, откуда в виде ступенек винтовой лестницы выступают азотистые основы (пурины и пирамидины).

Вдоль каждой хромосомы располагаются гены, ответственные за наследственность, передачу генных признаков от родителей к детям. Именно они определяют цвет глаз, кожи, форму носа и т. д.

Митохондрии

Митохондрии - это органеллы округлой или удлиненной формы, распределенные по всей цитоплазме, содержащие водянистый раствор ферментов, способные осуществлять многочисленные химические реакции, например клеточное дыхание.

С помощью этого процесса высвобождается энергия, которая необходима клетке для выполнения ее жизненных функций. Митохондрии находятся в основном в наиболее активных клетках живых организмов: клетках поджелудочной железы и печени.

Ядро клетки

Ядро, одно в каждой человеческой клетке, является ее основным компонентом, так как это организм, управляющий функциями клетки, и носитель наследственных признаков, что доказывает его важность в размножении и передаче биологической наследственности.

В ядре, размер которого колеблется от 5 до 30 микрон, можно различить следующие элементы:

  • Ядерная оболочка. Она двойная и позволяет веществам проходить между ядром и цитоплазмой благодаря своей пористой структуре.
  • Ядерная плазма. Светлая, вязкая жидкость, в которую погружены остальные ядерные структуры.
  • Ядрышко. Сферическое тельце, изолированное или в группах, участвующее в образовании рибосом.
  • Хроматин. Вещество, которое может принимать различную окраску, состоящее из длинных нитей ДНК (дезоксирибонуклеиновой кислоты). Нити представляют собой частицы, гены, каждый из которых содержит информацию об определенной функции клетки.

Ядро типичной клетки

Клетки кожи живут в среднем одну неделю. Эритроциты живут 4 месяца, а костные клетки - от 10 до 30 лет.

Центросома

Центросома обычно находится рядом с ядром и играет важнейшую роль в митозе, или клеточном делении.

Она состоит из 3 элементов:

  • Диплосома. Состоит из двух центриол - цилиндрических структур, расположенных перпендикулярно.
  • Центросфера. Полупрозрачное вещество, в которое погружена диплосома.
  • Астер. Лучистое образование из нитей, выходящих из центросферы, имеющее важное значение для митоза.

Комплекс Гольджи, лизосомы

Комплекс Гольджи состоит из 5-10 плоских дисков (пластин), в котором различают основной элемент - цистерну и несколько диктиосом, или скопление цистерн. Эти диктиосомы разъединяются и распределяются равномерно во время митоза, или деления клетки.

Лизосомы, «желудок» клетки, образуются из пузырьков комплекса Гольджи: они содержат пищеварительные ферменты, которые позволяют им переваривать пишу, поступающую в цитоплазму. Их внутренняя часть, или микус, выстлана толстым слоем полисахаридов, которые препятствуют тому, чтобы эти ферменты разрушили собственный клеточный материал.

Рибосомы

Рибосомы - это клеточные органеллы диаметром около 150 ангстрем, которые прикреплены к оболочкам эндоплазматического ретикулума или свободно размещаются в цитоплазме.

Они состоят из двух подъединиц:

  • большая подъединица состоит из 45 молекул белка и 3 РНК (рибонуклеиновой кислоты);
  • меньшая подъединица состоит из 33 молекул белка и 1 РНК.

Рибосомы объединяются в полисомы с помощью молекулы РНК и синтезируют белки из молекул аминокислот.

Цитоплазма

Цитоплазма - это органическая масса, расположенная между цитоплазматической мембраной и оболочкой ядра. Содержит внутреннюю среду - гиалоплазму - вязкую жидкость, состоящую из большого количества воды и содержащую белки, моносахариды и жиры в растворенном виде.

Она является частью клетки, наделенной жизненной активностью, потому что внутри нее двигаются различные клеточные органеллы и происходят биохимические реакции. Органеллы выполняют в клетке ту же роль, что и органы в человеческом теле: производят жизненно важные вещества, генерируют энергию, выполняют функции пищеварения и выведения органических веществ и т. д.

Примерно треть цитоплазмы составляет вода.

Кроме того, в цитоплазме содержится 30% органических веществ (углеводов, жиров, белков) и 2-3% неорганических веществ.

Эндоплазматический ретикулум

Эндоплазматический ретикулум - это структура в виде сети, образованная заворачиванием цитоплазматической оболочки в саму себя.

Считается, что этот процесс, известный как инвагинация, привел к появлению более сложных существ с большими потребностями в белках.

В зависимости от наличия или отсутствия рибосом в оболочках различают два типа сетей:

1. Эндоплазматический ретикулум складчатый. Совокупность плоских структур, соединенных между собой и сообщающихся с ядерной мембраной. К ней прикреплено большое количество рибосом, поэтому ее функция заключается в накоплении и выделении белков, синтезированных в рибосомах.

2. Эндоплазматический ретикулум гладкий. Сеть из плоских и трубчатых элементов, которая сообщается со складчатым эндоплазматическим ретикулумом. Синтезирует, выделяет и переносит жиры по всей клетке, вместе с белками складчатого ретикулума.

Хотите читать всё самое интересное о красоте и здоровье, подпишитесь на рассылку !

Исторические открытия

1609 - изготовлен первый микроскоп (Г. Галилей)

1665 - обнаружена клеточная структура пробковой ткани (Р. Гук)

1674 - открыты бактерии и простейшие (А. Левенгук)

1676 - описаны пластиды и хроматофоры (А. Левенгук)

1831 - открыто клеточное ядро (Р. Броун)

1839 - сформулирована клеточная теория (Т. Шванн, М. Шлейден)

1858- сформулировано положение "Каждая клетка из клетки" (Р. Вирхов)

1873 - открыты хромосомы (Ф. Шнейдер)

1892 - открыты вирусы (Д. И. Ивановский)

1931 - сконструирован электронный микроскоп (Е. Руске, М.Кноль)

1945 - открыта эндоплазматическая сеть (К. Портер)

1955 - открыты рибосомы (Дж. Палладе)



Раздел:Учение о клетке
Тема: Клеточная теория. Прокариоты и эукариоты

Клетка (лат."цкллюла" и греч. "цитос") - элементарная жи
вая система, основная структурная единица растительных и животных организмов, способная к самовозобнавлению, саморегуляции и самовоспроизведению. Открыта английский ученым Р. Гуком в 1663г., им же предложена этот термин. Клетка эукариотов представлена двумя системами - цитоплазмой и ядром. Цитоплазма состоит из различных органелл, которые можно классифицировать на: двухмембраные - митохондрии и пластиды; и одномембранные - эндоплазматическая сеть (ЭПС), Аппарат Гольджи, плазмалемма, тонопласты, сферосомы, лизосомы; немембранные - рибосомы, центросомы, гиалоплазма. Ядро состоит из ядерной оболочки (двухмембранной) и немембранных структур - хромосом, ядрышка и ядерного сока. Кроме того, в клетках имются различные включения.

КЛЕТОЧНАЯ ТЕОРИЯ: Создатель этой теории - немецкий ученый Т. Шванн, который опираясь на работы М. Шлейдена, Л. Окена, в 1838 -1839 гг. с формулировал следующие положения:

  1. все организмы растений и животных состоят из клеток
  2. каждая клетка функционирует независимо от других, но вместе со всеми
  3. все клетки возникают из безструктурного вещества неживой материи.
Позднее Р. Вирхов (1858) внес существенное уточнение в последнее положение теории:
4. все клетки возникают только из клеток путем их деления.

СОВРЕМЕННАЯ КЛЕТОЧНАЯ ТЕОРИЯ:

  1. клеточная организация возникла на заре жизни и прошла длительный путь эволюции от прокариотов до эукариотов, от предклеточных организмов до одно- и многоклеточных.
  2. новые клетки образуются путем деления от ранее существовавших
  3. клетка является микроскопическо й живой системой, состоящей из цитоплазмы и ядра, окруженных мембраной(за исключением прокариотов)
  4. в клетке осуществляются:
  • метаболизм - обмен веществ;
  • обратимые физиологические процессы - дыхание, поступление и выделение веществ, раздражимость, движение;
  • необратимые процессы - рост и развитие.
5. клетка может быть самостоятельным организмом. Все многоклеточные организм также состоят из клеток и их производных. Рост, развитие и размножение многоклеточного организма - следствие жизнедеятельности одной или нескольких клеток.


Прокариоты (предъядерные, доядерные) составляют надцарство, включающее одно царство - дробянки, объединяющее подцарство архебактерии, бактерии и оксобактерии (отдел цианобактерий и хлороксибактерии)

Эукароты (ядерные) также составляют надцарство. Оно объединяет царства грибы, животные, растения.

Особенности строения прокариотической и эукариотической клетки.

Признак
прокариоты
эукариоты
1 особенности строения
Наличие ядра
обособленного ядра нет
морфологически обособленное ядро, отделенное от цитоплазмы двойной мембраной
Число хромосом и их строение
у бактерий - одна кольцевая хромосома, прикрепленная к мезосоме - двухцепочечная ДНК не связанная с белками- гистонами. У цианобактерий - несколько хромосом в центре цитоплазмы
Определенное для каждого вида. Хромосомы линейные, двухцепочная ДНК связана с белками-гистонами
Плазмиды

Наличие ядрышка

имеются

отсутствуют
имеются у митохондрий и пластид

Имеются

Рибосомы мельче чем у эукариотов. Распределены по цитоплазме. Обычно свободные, но могут быть связаны с мембранными структурами. Составляют до 40% массы клетки
крупные, находятся в цитоплазме в свободном состоянии или связаны с мембранами эндоплазматического ретикулюма. В пластидах и митохондриях тоже содержатся рибосомы.
Одномембранны замкнутые органеллы
отсутствуют. их функции выполняют выросты клеточной мембраны
Многочисленны: эндоплазматический ретикулюм, аппарат Гольджи, вакуоли, лизосомы т.д.
Двухмембранные органеллы
Отсут ств уют
Митохондрии - у всех эукариотов; пластиды - у растений
Клеточный центр
Отсутствует
Имеется в клетках животных, грибов; у растений - в клетках водорослей и мхов
Мезосома Имеется у бактерий. Участвует в деление клетки и метаболизме.
Отсутствует
Клеточная стенка
У бактерий содержит муреин, у цианобактерий - целлюлозу, пектиновые вещества, немного муреина
У растений - целлюлозная, у грибов - хитиновая, у животных клеток клеточной стенки нет
Капсула или слизистый слой
Имеется у некоторых бактерий Отсутствует
Жгутики простого строения, не содержат микротрубочек. Диаметр 20 нм
Сложного строения, содержат микротрубочки (подобные микротрубочкам центриолей) Диаметр 200 нм
Размер клеток
Диаметр 0,5 - 5 мкм Диаметр обычно до 50мкм. Объем может превышать объем прокариотической клетки более чем в тысячу раз.
2. Особенности жизнедеятельности клетки
Движение цитоплазмы
Отсутствует
Наблюдается часто
Аэробное клеточное дыхание
У бактерий - в мезосомах; у цианобактерий - на цитоплазматических мембранах
Происходит в митохондриях
Фотосинтез Хлоропластов нет. Происходит на мембранах, не имеющих специфические формы
В хлоропластах, содержащих специальные мембраны, собранные в граны
Фагоцитоз и пиноцитоз
Отсутствует (невозможен из - за наичия жесткой клеточной стенки)
Свойствен клеткам животных, у растений и грибов отсутствует
Спорообразование Часть представителей способна образовывать споры из клетки. Они предназначены только для перенесения неблагоприятных условий среды, поскольку имеют толстую стенку
Спорообразование свойственно растениям и грибам. Споры предназначены для размножения
Способы деления клетки
Равновеликое бинарное поперечное деление, редко - почкование (почкующиеся бактерии). Митоз и мейоз отсутствуют
Митоз, мейоз, амитоз


Тема: Строение и функции клетки



Растительная клетка: Животная клетка :


Строение клетки. Структурная система цитоплазмы

Органеллы Строение
Функции
Наружная клеточная мембрана
ультромикроскопическая пленка, состоящая из бимолекулярного слоя липидов. Цельность липидного слоя может прерываться белковыми молекулами - порами. Кроме того, белки лежат мозаично по обе стороны мембраны, образуя ферментные системы.
изолирует клетку от окружающей среды, обладает избирательной проницаемостью, регулирует процесс поступления веществ в клетку; обеспечивает обмен веществ и энергии с внешней средой, способствует соединению клеток в ткани, участвует в пиноцитозе и фагоцитозе; регулирует водный баланс клетки и выводит из нее конечные продукты жизнедеятельности.
Эндоплазматичкская сеть ЭПС

Ультрамикроскопическая система мембран, об разующих трубочки, канальцы, цистерны пузырьки . Строение мембран универсальное, вся сеть объединена в единое целое с наружной мембраной ядерной оболочки и наружной клеточной мембраной. Гранулярная ЭПС несет рибосомы, гладкая лишена их.
Обеспечивает транспорт веществ как внутри клетки, так и между соседними клетками. Делит клетку на отдельные секции, в которых одновременно происходят различные физиологические процессы и химические реакции. Гранулярная ЭПС участвует в синтезе белка. В каналах ЭПС молекулы белка приобретают вторичную, третичную и четвертичную структуры, синтезируются жиры, транспортируется АТФ
Митохондрии

Микроскопические органеллы, имеющие двухмембраное строение. Внешняя мембрана гладкая, внутренняя - обра зует различной формы выросты - кристы. В матриксе митохондрий (полужидкое вещество) находятся ферменты, рибосомы, ДНК, РНК. Размножаются делением.
Универсальная органелла, являющаяся дыхательным и энергетическим центром. В процессе кислородного этапа диссимиляции в матриксе с помощью ферментов происходит расщеплении органических веществ с освобождением энергии, которая идет на синтез АТФ (на кристах)
Рибосомы

Ультрамикроскопические органеллы округлой или грибовидной формы, состоящие из двух частей- субъединиц. Они не имеют мембранного строения и состоят из белка и рРНК. Субъединицы образуются в ядрышке. Объединяются вдоль молекул иРНК в цепочки -полирибосомы - в цитоплазме Универсальные органеллы всех клеток животных и растений. Находятся в цитоплазме в свободном состоянии или на мембранах ЭПС; кроме того, содержаться в митохондриях и хлоропластах. В рибосомах синтезируются белки по принципу матричного синтеза; образуется полипептидная цепочка - первичная структура молекулы белка.
Лейкопласты

Микроскопические органеллы, имеющие двухмембранное строение. Внутренняя мембрана образует 2-3 выроста Форма округлая. Бесцветны. Как и все пластиды, способны к делению. Характерны для растительных клеток. Служат местом отложения запасных питательных веществ, главным образом крахмальных зерен. На свету их строение усложняется и они преобразуют в хлоропласты. Образуются из пропластид.
Аппарат Гольджи (диктиосома)


микроскопические одномембранные органеллы, состоящие из стопочки плоских цистерн, по кроям которых ответвляются трубочки, отделяющие мелкие пузырьки. Имеет два полюса: строительный и секреторный наиболее подвижная и изменяющаяся органелла. В цистернах накапливаются продукты синтеза, распада и вещества, поступившие в клетку, а так же вещества, которые выводятся из клетки. Упакованные в пузырьки, они поступают в цитоплазму. в растительной клетке участвуют в построении клеточной стенки.
Хлоропласты

Микроскопические органеллы, имеющие двухмембранное строение. Наружная мембрана гладкая. Вн утренняя мембрана образует систему двухслойных пластин - тилакоидов стромы и тилакоидов гран. В мембранах тилакоидов гран между слоями молекул белков и липидов сосредоточены пигменты - хлорофилл и каротиноиды. В белково - липидном матриксе находятся собственные рибосомы, ДНК, РНК. Форма хлоропластов чечевицеобразная. Окраска зеленая.
Характерны для растительных клеток. Органеллы фотосинтеза, способные создавать из неорганических веществ (СО2 и Н2О) при наличии световой энергии и пигмента хлорофилла органические вещества - углеводы и свободный кислород. Синетз собственных белков. Могут образовываться из пропластид или лейкопластов, а осенью преобразоваться в хромопласты (красные и оранжевые плоды, красные и желтые листья). Способны к делению.
Хромопласты


Микр-ие органеллы, имеющие двухмембранное строение. Собственно хромопласты имеют шаровидную форму, а образовавшиеся из хлоропластов принимают форму крис таллов каротиноидов, типичную для данного вида растения. Окраска красная. оранжевая, желтая
Характерны для растительных клеток. Придают лепесткам цветков окраску, привлекательную для насекомых - опылителей. В осенних листьях и зрелых плодах, отделяющихся от растения, содержатся кристаллические каротиноиды - конечные продукты обмена
Лизосомы

Микроскопические одномембраные органеллы округлой формы. их число зависит от жизнедеятельности клетки и ее физиологиче ского состояния. в лизосомах находится лизируещее (растворяющее) ферменты, синтезированные на рибосомах. обособляются от диктисом в виде пузырьков

Переваривание пищи, попавшей в животную клетку при фагоцитозе. защитная функция. в клетках любых организмов осуществляют автолиз(саморастворение органелл), особенно в условиях пищегого или кислородного голодания. у растений органеллы растворяются при образовании пробковой ткани, сосудов, древесины, волокон.

Клеточный центр
(Центросома)


Ультромикроскопическая органелла немембраного с троения. состоит из двух центриолей. каждая имеет цилиндрическую форму, стенки образованы девятью триплетами трубочек, а в середине находится однородное вещество. центриоли расположены перпендикулярно друг другу.
Принимает участие в деление клеток животных и низших растений. в начале деления центриоли расходятся к разным полюсам клетки. от центриолей к центромерам хромосом отходят нити веретена деления. в анафазе эти нити притягиваются хроматидами к полюсам. после окончания деления центриоли остаются в дочерних клетках, удваиваются и образуют клеточный центр.
Органоиды движения

реснички - многочисленные цитоплазматические выросты на поверхности мембраны

жгутики - еди

ничные цитоплазматические выросты на поверхности клетки

ложные ножки (псевдоподии)- амебовидные выступы цитоплазмы



миофибриллы - тонкие нити длиной 1 см и более

цитоплазма осуществляющая струйчатое и круговое движение

удаление частичек пыли. передвижение

передвижение

образуются у одноклеточных животных в разных местах цитоплазмы для захвата пищи, для передвижения. Характерны для лейкоцитов крови, а так же клеток энтодермы кишечнополостных.

служат для сокращения мышечных волокон

перемещение органелл клетки по отношению к источнику света, тепла, химического раздражителя.

Клетка - это структурно-функциональная единица живого организма, способная к делению и обмену с окружающей средой. Она осуществляет передачу генетической информации путем самовоспро-изведения.

Клетки очень разнообразны по строению, функции, форме, размерам (рис. 1). Последние колеблются от 5 до 200 мкм. Самыми крупными в организме человека являются яйцеклетка и нервная клетка, а самыми маленькими - лимфоциты крови. По форме клетки бывают шаровидные, веретеновидные, плоские, кубические, призматические и др. Некоторые клетки вместе с отростками достигают длины до 1,5 м и более (например, нейроны).

1 - нервная; 2 - эпителиальная; 3 - соединителытотканная; 4 - гладкая мышечная; 5- эритроцит; 6- сперматозоид; 7-яйцеклетка

Каждая клетка имеет сложное строение и представляет собой систему биополимеров, содержит ядро, цитоплазму и находящиеся в ней органеллы (рис. 2). От внешней среды клетка отграничивается клеточной оболочкой - плазма-леммой (толщина 9-10 мм), которая осуществляет транспорт необходимых веществ в клетку, и наоборот, взаимодействует с соседними клетками и межклеточным веществом. Внутри клетки находится ядро, в котором происходит синтез белка, оно хранит генетическую информацию в виде ДНК (дезоксирибонуклеиновая кислота). Ядро может иметь округлую или овоидную форму, но в плоских клетках оно несколько сплющенное, а в лейкоцитах палочковидное или бобовидное. В эритроцитах и тромбоцитах оно отсутствует. Сверху ядро покрыто ядерной оболочкой, которая представлена внешней и внутренней мембраной. В ядре находится нуклеошазма, которая представляет собой гелеобразное вещество и содержит хроматин и ядрыш-ко.

(по М. Р. Сапину, Г. Л. Билич, 1989):

1 - цитолемма (плазматическая мембрана); 2 - пиноцитозные пузырьки; 3 - центросома (клеточный центр, цитоцентр); 4 - гиалоплазма; 5 - эн-доплазматическая сеть (о - мембраны эндоплазматической сети, б - ри-босомы); 6- ядро; 7- связь перинуклеарного пространства с полостями эндоплазматической сети; 8 - ядерные поры; 9 - ядрышко; 10 - внутриклеточный сетчатый аппарат (комплекс Гольджи); 77-^ секреторные вакуоли; 12- митохондрии; 7J - лизосомы; 74-три последовательные стадии фагоцитоза; 75 - связь клеточной оболочки (цитолеммы) с мембранами эндоплазматической сети

Ядро окружает цитоплазма, в состав которой входят ги-алоплазма, органеллы и включения.

Гиалоплазма - это основное вещество цитоплазмы, она участвует в обменных процессах клетки, содержит белки, полисахариды, нуклеиновую кислоту и др.

Постоянные части клетки, которые имеют определенную структуру и вы-полняют биохимические функции, называются органеллами. К ним относятся клеточный центр, митохондрии, комплекс Гольджи, эндоплазматическая (ци-топлазматическая) сеть.

Клеточный центр обычно находится около ядра или комплекса Гольджи, состоит из двух плотных образований - центриолей, которые входят в состав веретена движущейся клетки и образуют реснички и жгутики.

Митохондрии имеют форму зерен, нитей, палочек, формируются из двух мембран - внутренней и внешней. Длина митохондрии колеблется от 1 до 15 мкм, диаметр - от 0,2 до 1,0 мкм. Внутренняя мембрана образует складки (кри-сты), в которых располагаются ферменты. В митохондриях происходят расщепление глюкозы, аминокислот, окислении жирных кислот, образование АТФ (аденозинтрифосфорнай кислота) - основного энергетического материала.

Комплекс Гольджи (внутриклеточный сетчатый аппарат) имеет вид пузырьков, пластинок, трубочек, расположенных вокруг ядра. Его функция состоит в транспорте веществ, химической их обработке и выведении за пределы клетки продуктов ее жизнедеятельности.

Эндоплазматическая (цитоплазматическая) сеть формируется из агранулярной (гладкой) и гранулярной (зернистой) сети. Агранулярная Эндоплазматическая сеть образуется преимущественно мелкими цистернами и трубочками диаметром 50-100 нм, которые участвуют в обмене липи-дов и полисахаридов. Гранулярная Эндоплазматическая сеть состоит из пластинок, трубочек, цистерн, к стенкам которых прилегают мелкие образования - рибосомы, синтезирующие белки.

Цитоплазма также имеет постоянные скопления отдельных веществ, которые называются включениями цитоплазмы и имеют белковую, жировую и пигментную природу.

Клетка как часть многоклеточного организма выполняет основные функции: усвоение поступающих веществ и расщепление их с образованием энергии, необходимой для поддержания жизнедеятельности организма. Клетки обладают также раздражимостью (двигательные реакции) и способны размножаться делением. Деление клеток бывает непрямое (митоз) и редукционное (мейоз).

Митоз - самая распространенная форма клеточного деления. Он состоит из нескольких этапов - профазы, метафазы, анафазы и телофазы. Простое (или прямое) деление клеток - амитоз - встречается редко, в тех случаях, когда клетка делится на равные или неравные части. Мейоз - форма ядерного деления, при котором количество хромосом в оплодотворенной клетке уменьшается вдвое и наблюдается перестройка генного аппарата клетки. Период от одного деления клетки к другому называется ее жизненным циклом.

Расскажите
друзьям!

Во времена Дарвина считалось, что клетка - это просто мешочек с раствором химических веществ и свободно плавающих в нем простых компонент. Такой она виделась в окуляре существовавших тогда микроскопов. Поэтому не составляло особого труда представить, как такой несложный объект мог спонтанно возникнуть в «первичном бульоне» путем небольших последовательных изменений.

Сегодня понятно, что клетку, по сложности структуры и происходящих в ней процессов, можно без преувеличения сравнить с большим мегаполисом. А как многого о мы ещё не знаем и не понимаем!

В дальнейшем, с совершенствованием технологий, развивалось и понимание строения и организации клетки. Известная нам структура усложнялась, но принципиально на веру в возможность самозарождения до некоторых пор не влияла. Даже сейчас многие люди слабо представляют степень сложности устройства обыкновенной живой клетки.

Однако за последние десятилетия наше понимание внутреннего мира клетки возросло взрывоподобно. И новые исследования одно за другим продолжают открывать невероятно сложные и эффективные механизмы и устройства внутри клетки. Этот удивительно устроенный микромир содержит:

  • совершенные системы хранения, считывания и копирования (с коррекцией ошибок) огромных объемов генетической информации;
  • фабрики синтеза белковых цепочек и придания им правильной трехмерной формы;
  • транспортные сети для перемещения необходимых веществ и компонент;
  • настоящие коммуникационные сети для внутриклеточного и межклеточного (в случае многоклеточных организмов) информационного обмена;
  • преобразователи энергии (из электрической или световой в химическую);
  • различные двигатели (роторные и поступательные);
  • транспортные каналы внутрь и наружу клетки (действующие как избирательные насосы);
  • различные регуляторные механизмы; и множество других изощрённых нано-систем...
  • Без большинства из них не обходится ни одна живая клетка, даже самая «простая»... И эти системы, которые сами по отдельности являются неупрощаемо сложными, неразрывно связаны и зависят друг от друга, демонстрируя неупрощаемую сложность второго порядка.

    Предлагаем Вам посмотреть анимационные ролики, на которых показаны некоторые удивительные механизмы и процессы внутри живых клеток. Эти видео - не плод фантазии художников, а результат многолетних исследований многих учёных. Лишь цвета и, возможно, некоторые незначительные детали являются художественным допущением.

    АТФ-синтаза

    На видео показан один из примеров потрясающих клеточных механизмов - фермент АТФ-синтаза. Этот фермент представляет собой настоящий роторный нано-мотор, состоящий, как и изобретенные человеком электродвигатели, из неподвижного статора и вращающегося со скоростью до 7 000 оборотов в минуту ротора. АТФ-синтаза - клеточный «энергетический завод», он преобразует электрическую энергию потока протонов (позитивно заряженных частиц) в химическую энергию, производя молекулы АТФ (аденозинтрифосфат). АТФ - это универсальная энергетическая «валюта» клетки, участвующая практически в каждой биохимической реакции.

    Кинезин

    Кинезин - потрясающий миниатюрный мотор, участвующий в системе транспортировке белков внутри живой клетки. Белки необходимо доставить в определённую часть клетки, чтобы они могли выполнять свои функции. Эта анимация, основанная на ряде искусных исследований в течение многих лет, показывает, каким образом это происходит. Магистрали из микротрубочек собраны из взаимосцепленных белков, каждый из которых произведён согласно инструкциям, закодированным в ДНК клетки. Мы видим, как мотор кинезин, герой нашего рассказа, шагает вдоль микротрубочки, и тащит за собой огромный мешок с белками, чтобы доставить его в заранее определённое место внутри клетки. Там белки будут высвобождены для выполнения своих функций. Линейный мотор кинезин использует 1 молекулу АТФ в качестве источника энергии для каждого шага и делает 125 тысяч шагов, чтобы преодолеть один миллиметр! Этот потрясающий механизм демонстрирует все признаки разумного замысла!

    Синтез белка

    Удивительный и невероятно сложный процесс производства белка по инструкциям, закодированным в ДНК, непрерывно происходящий в каждой живой клетке. Весь этот многоэтапный процесс и комплекс осуществляющих его механизмов должен был появиться сразу, целиком, чтобы первая живая клетка могла жить

    Сборка бактериального жгутика

    На этом видео показан процесс сборки бактериального жгутика, благодаря которому бактерия может перемещаться в окружающей её жидкости. Каждый из маленьких блоков на самом деле является белком - цепочкой аминокислот, собранной по инструкциям, закодированным на ДНК, как показано в видео «Синтез белка».

Похожие публикации