Силы взаимодействия молекул кратко. Силы, действующие между молекулами

Взаимодействие атомов и молекул вещества. Между молекулами вещества действуют одновременно силы притяжения и силы отталкивания. Эти силы в сильной степени зависят от расстояний между молекулами. Согласно экспериментальным и теоретическим исследованиям, межмолекулярные силы взаимодействия обратно пропорциональны n-ой степени расстояния между молекулами. где для сил притяжения n=7, а для сил отталкивания n=9…15.


Силы отталкивания гораздо больше сил притяжения на малых расстояниях (r


В газах расстояние между молекулами во много раз превышают размеры самих молекул. Вследствие этого силы взаимодействия между молекулами газа малы. Каждая молекула движется свободно от других молекул с огромными скоростями (сотни метров в секунду), испытывая редкие столкновения и меняя при этом направление и модуль скорости. Длина свободного пробега » молекул газа зависит от давления и температуры газа. При нормальных условиях »~10-7 м. В жидкостях расстояние между молекулами значительно меньше, чем в газах. Силы взаимодействия между молекулами велики, вследствие чего молекулы жидкости совершают колебания около некоторого положения равновесия, затем делают скачок, колеблются в новом окружении, затем снова делают скачок и т.д.


В твердых телах расстояние между молекулами еще меньше, вследствие чего силы взаимодействия между молекулами настолько велики, что молекулы совершают лишь колебания с малой амплитудой около некоторого постоянного положения равновесия – узла кристаллической решетки.

Силы межмолекулярного взаимодействия.

Когда вещество находится в газообразном состоянии , тогда образующие его частицы – молекулы или атомы – хаотически движутся и при этом преобладающую часть времени находятся на больших расстояниях (в сравнении с их собственными размерами) расстояниях друг от друга. Вследствии этого силы взаимодействия между ними пренебрежимо малы .


Иначе обстоит дело, когда вещество находится в конденсированном состоянии – в жидком или твёрдом. Здесь расстояния между частицами вещества малы и силы взаимодействия между ними велики . Эти силы удерживают частицы жидкости или твёрдого тела друг около друга. Поэтому вещества в конденсированном состоянии имеют, в отличии от газов, постоянный при данной температуре объём.


Все силы, удерживающие частицы жидкости или твёрдого тела друг около друга, имеют электрическую природу . Но в зависимости от того, что представляют собой частицы – являются ли они атомами металического или неметалического элемента, ионами или молекулами – эти силы существенно различны .

Неметалы с атомным строением

Если вещество состоит из атомов, но не является металлом, то его атомы обычно связаны друг с другом ковалентной связью .

Металлы

Если вещество – металл , то часть электронов его атомов становится общими для всех атомов. Эти электроны свободно движутся между атомами, связывая их друг с другом.

Вещества с ионным строением

Если вещество имеет ионное строение , то образующие его ионы удерживаются друг около друга силами электростатического притяжения.

Вещества с молекулярным строением

В веществах с молекулярным строением имеет место межмолекулярное взаимодействие.


Силы межмолекулярного взаимодействия , называемые также силами Ван-дер-Ваальса , слабее ковалентных сил, но проявляются на больших расстояниях. В основе их лежит электростатическое взаимодействие диполей , но в различных веществах механизм возникновения диполей различен.


1. Ориентационное взаимодействие.


Если вещество состоит из полярных молекул , например, Н 2 О, НCl , то в конденсированном состоянии молекулы ориентируются друг по отношению к другу своими разноимённо заряженными концами , вследствии чего наблюдается их взаимное притяжение.


Такой вид межмолекулярного взаимодействия называется ориентационным взаимодействием . Тепловое движение молекул препятствует их взаимной ориентации, поэтому с ростом температуры ориентационный эффект ослабевает.


2. Индукционное взаимодействие.


В случае веществ, состоящих из неполярных , но способных к поляризации молекул, например СО2, наблюдается возникновение наведённых или индуцированных диполей .


Причина их появления обычно состоит в том, что каждый атом создаёт вблизи себя электрическое поле, оказывающее поляризующее действие на ближайший атом соседней молекулы. Молекула поляризуется и образовавшийся индуцированный диполь в свою очередь поляризует соседние молекулы.


В результате происходит взаимное притяжение молекул друг к другу . Это индукционное взаимодействие наблюдается также и у веществ с полярными молекулами, но при этом оно обычно значительно слабее ориентационного.


3. Дисперсионное взаимодействие.


Дисперсионные силы (Лондоновские силы) - силы электростатического притяжения мгновенного и индуцированного (наведённого) диполей электрически нейтральных атомов или молекул.


В атомах и молекулах электроны сложным образом движутся вокруг ядер. В среднем по времени дипольные моменты неполярных молекул оказываются равными нулю. Но в каждый момент электроны занимают какое-то положение. Поэтому мгновенное значение дипольного момента (например, у атома водорода) отлично от нуля. Мгновенный диполь создаёт электрическое поле, поляризующее соседние молекулы. В результате возникает взаимодействие мгновенных диполей .


Считается, что дисперсионная энергия не имеет классического аналога и определяется квантовомеханическими флуктуациями электронной плотности.


Как показывает квантовая механика, мгновенные диполи возникают в твёрдых телах и жидкостях согласованно , причём концы соседних молекул оказываются заряженными электричеством противоположного знака, что приводит к их притяжению .


Это явление, называемое дисперсионным взаимодействием , имеет место во всех веществах, находящихся в конденсированном состоянии. В частности, оно обуславливает переход благородных газов при низких температурах в жидкое состояние.


Соотношение молекулярных сил.


Относительная величина рассмотренных видов межмолекулярных сил зависит от полярности и от поляризуемости молекул вещества.


Чем больше полярность молекул, тем больше ориентационные силы .


Чем крупнее атомы , чем слабее связаны внешние электроны атомов, чем больше деформируется электронное облако, тем значительнее дисперсионные силы .


Таким образом, в ряду однотипных веществ дисперсионное взаимодействие возрастает с увеличением размеров атомов , составляющих размеры этих веществ.


Например:

  • в случае HCl на долю дисперсионных сил приходится 81% всего
    межмолекулярного взаимодействия,
  • для НBr эта величина составляет 95% ,
  • для HI - 99,5% .

    • Индукционные силы почти всегда малы .


Характеризуя количественно межмолекулярные взаимодействия обычно оперируют следующими понятиями: вандервааль- совы силы, электростатическое взаимодействие, водородные связи и гидрофобные силы. Количественными характеристиками суммарного действия всех сил является константа равновесия и изменения энтальпии и энтропии рассматриваемой системы.

Прочность связи между двумя частицами можно охарактеризовать с помощью константы образования К/.

Рассмотрим присоединение молекулы X к другой молекуле Р, которая может представлять собой молекулы белка, нуклеиновой кислоты, ион металла или любую другую частицу. Если на поверхности Р имеется лишь один центр связывания для X, то взаимодействие молекул описано уравнением 3.1, а константа равновесия Кі определяется уравнением 3.2:

Х+Р^РХ, (3.1)
К, = [РХ\/[Р][Х]. (3.2)

Константа образования выражается обычно в л/моль (или М_1); она является прямой мерой прочности связи - чем больше константа, тем сильнее взаимодействие. Прочность связи характеризуется также изменением стандартной свободной энергии *G° реакции - чем более отрицательна *G° реакции, тем прочнее связь.

ДО/= -RT\gK, = - 2,303RT lg К, =

5,708 lg Kj кДж моль-1 при 25 °С. (3.3)

Чтобы избежать недоразумения, важно помнить, что наряду с константой образования (ассоциации) часто (особенно в энзимологии и при определенной кислотности) используют константу диссоциации Kd-

К сожалению, в разных областях химии одинаково часто пользуются и константами образования (или ассоциации), и константами диссоциации; поэтому удобнее пользоваться не самими константами образования, а их логарифмами, поскольку они пропорциональны соответствующим изменениям свободной энергии:

К[ [Х][Я]). Если константа образования в 1000 раз больше, т. е. К/ = 10^t(AG° = -22,8 кДж-моль-1), то в составе комплекса находится 38 % всех молекул, а при К/= Ю7 (очень сильно взаимодействие (AG° = - 40 кДж-моль-1, или -9,55 ккал-моль-1), эта величина составляет 97 %.

Взаимодействие лекарств и белков осуществляется с помощью межмолекулярных сил, относящихся к категории слабых.

Эти взаимодействия получили групповое название вандерва- альсовых, поскольку они были выведены из поправок Ван-дер- Ваальса к закону для идеального газа:

где Р - давление, V - объем, Т - абсолютная температура, п - число молекул и R - газовая постоянная, равная 1,987 кал/град/моль.

Уравнение Ван-дер-Ваальса имеет вид:

где a/V2 - поправка, учитывающая препятствие между молекулами, а Ь - поправка, учитывающая их объем.

Межмолекулярные силы, обусловливающие отклонение от закона для идеального газа, отличаются друг от друга по величине. Кроме того, они по-разному изменяются с увеличением расстояния.

Как мы уже знаем из того, что говорилось о свойствах воды (2.1.1), молекула в целом электрически нейтральная, может быть полярной, т. е. «центр тяжести» ее положительного заряда может не совпадать с «центром тяжести» отрицательного заряда.

Такая молекула обладает дипольным моментом, который можно определить, измерив способность молекулы ориентироваться в электрическом поле. Чем больше разделение зарядов, т. е. полярность молекулы, тем выше ее дипольный момент.

Самые сильные из всех слабых взаимодействий - это взаимодействия типа ион-диполь, т. е. силы, действующие между ионом и полярной молекулой (например Na+ и Н20; рис. 3.1, а). Часто именно эти силы, играющие вообще важную роль во многих биологических явлениях, обусловливают гидратацию ионов.


Рис. 3.1. Вандерваальсовы взаимодействия, обусловливающие слабое

притяжение молекул

Взаимодействие ион-индуцированный диполь возникает как результат влияния иона на неполярную молекулу (рис. 3.1, б). При этом заряд иона индуцирует превращение неполярной молекулы в диполь, в результате чего возникает взаимодействие, несколько более слабое, чем ион-диполь.

Притяжение может существовать и между двумя диполями (рис. 3.1, в). Такое взаимодействие (диполь-диполь) обусловливает ориентацию молекул друг относительно друга и, возможно, играет важную роль в процессах сборки.

Диполь также может индуцировать превращение неполярных молекул в диполи. Взаимодействия диполь-индуцирован- ный диполь относятся к числу слабейших (рис. 3.1, г).

Наконец, две неполярные молекулы могут притягиваться друг к другу вследствие того, что происходит взаимная индукция диполей. Хотя электроны в нейтральной молекуле распределены вокруг ядра равномерно, если рассматривать такую молекулу в течение длительного времени, однако, в каждый данный момент существует значительная вероятность того, что центр отрицательного заряда не будет совпадать с центром положительного заряда. Отсюда и возможность существования мгновенных диполей, которые, пусть временно, но могут индуцировать превращение ближайших молекул в такие же диполи. Между диполями в такой системе возникает слабое притяжение. Это так называемые дисперсионные силы, именно

за счет этих сил такие газы как Н2, N2 или Не, имеющие неполярные молекулы, могут при надлежащих значениях температуры и давления переходить в жидкое состояние (рис. 3.1, д).

Итак, важная особенность вандерваальсовых взаимодействий между органическими молекулами состоит в том, что все они обусловлены слабыми силами, действующими только на малых расстояниях; именно этим силам принадлежит, однако, выдающаяся роль в определении биологической структуры, биологической специфичности и характера биохимических реакций. Общий эффект складывается, естественно, из взаимодействий различных типов.

Изучая кристаллы различных органических молекул с помощь методов дифракции рентгеновских лучей и дифракции нейтронов, удалось показать, что расстояние между атомом водорода и электроотрицательным атомом меньше вандерва- альсова радиуса электроотрицательного атома. Когда впервые с помощью рентгеноструктурного анализа, (который не дает возможности установить локализацию атома водорода), определили расстояние между двумя атомами кислорода, оказалось что оно лежит в пределах 2,75-2,45 А. Это меньше вандерва- альсова расстояния между двумя атомами кислорода (2,8 А) и гораздо больше расстояния между двумя ковалентно связанными атомами кислорода (1,4 А). Отклонения можно было объяснить допустив, что между двумя атомами кислорода помещается атом водорода. Так возник термин водородная связь.

Водородные связи - это слабые связи по сравнению с ковалентными, но довольно сильные в сравнении с вандервааль- совыми взаимодействиями. Энергия, нужная для того, чтобы разорвать ковалентную связь составляет 50-100 ккал/моль, тогда как для расщепления водородной связи требуется всего 0,5-12 ккал/моль.

Пожалуй, основная причина той огромной роли, которую играют в биохимии водородные связи, состоит в том, что они часто обеспечивают комплементарность поверхностей взаимодействующих молекул. Другими словами места расположения групп, образующих водородные связи, на поверхности взаимодействующих молекул служат важными «ориентирами», обеспечивающими точное совмещение поверхностей этих молекул.

Однако силы, обусловливающие агрегацию многих органических молекул и их связывание друг с другом в водных растворах, не ограничиваются водородными связями.

Термин гидрофобная связь или, точнее гидрофобное взаимодействие используется при описании взаимодействий между неполярными группами веществ и белков. Удобной моделью, объясняющей этот тип взаимодействия, является процесс перехода гидрофобной молекулы из инертного растворителя (тет- рахлорметан) в воду. При этом наблюдаются две основные стадии. 1) В воде образуется «полость», размер которой примерно соответствует размеру растворенной молекулы. Свободная энергия образования такой полости довольно велика, поскольку этот процесс сопровождается разрывом большого числа водородных связей. В основном энтальпийный (ДЯ) эффект. 2) Теперь молекулы воды будут стремится изменить свою ориентацию, приспосабливаясь к присутствию в полости неполярной молекулы. Ясно, что они переориентируются таким образом, чтобы обеспечить оптимальные условия для вандерваальсовых взаимодействий и образовать максимальное число водородных связей. В результате такой переориентации число водородных связей может даже увеличиться, поскольку водородные связи в воде могут образовываться самым разным образом. Особенно это относится к низким температурам, когда в воде присутствуют в значительном количестве льдоподобные структуры. Во многих случаях ограничение подвижности молекул воды, окружающих гидрофобные группы, т. е. возрастание структурированности воды, оказывается самым важным результатом действия гидрофобных сил. При растворении углеводородов энтальпия образования новых водородных связей почти полностью компенсируется энтальпией образования полости. В результате суммарное изменение энтальпии (ДЯ) при переходе неполярных молекул из инертного растворителя в воду обычно близко к нулю (как правило, это небольшая положительная или отрицательная величина). Вместе с тем уменьшение подвижности молекул воды приводит к значительному уменьшению энтропии, т. е. дает отрицательное значение AS. Поскольку AG = АН - - TAS, а член TAS положителен, изменение свободной энергии при переходе гидрофобной молекулы из инертного растворителя в воду также является величиной положительной, т. е. такой переход невыгоден с энергетической точки зрения. Именно этим объясняется плохая растворимость углеводородов в воде.

По тем же причинам молекулы углеводородов стремятся агрегировать в воде. Процесс образования гидрофобной связи можно представить себе как перемещение неполярных частей молекул из воды в «гидрофобные» области, образуемые за счет ассоциации этих частей. В результате неполярные части оказываются в непосредственной близости друг от друга, т. е. как бы в окружении неполярного растворителя. Вследствие такого перемещения происходит уменьшение числа молекул воды, контактирующих с гидрофобными участками растворенного вещества, т. е. разрушение части областей структурированной воды, окружающих гидрофобные поверхности, в результате чего энтропия раствора возрастает. Следовательно, образование гидрофобной связи между двумя углеводородными молекулами или алкильными группами сопровождается обычно увеличением энтропии. Поскольку энтропийный член TAS чаще всего вносит наибольший вклад в величину свободной энергии, определяющую значение константы К/ часто говорят, что гидрофобное связывание имеет энропийную природу. Однако, как подчеркивал Дженкс, важную роль в гидрофобном взаимодействии играет сильно выраженная способность молекул воды «сцепляться» друг с другом, вследствие чего заметный вклад может вносить не только энтропийный член, но и энтальпийная составляющая свободной энергии.

В зависимости от характера взаимодействия растворенного вещества с водой энтропия образования гидрофобных связей (ASf) может быть иногда равной нулю или даже отрицательной. Именно это имеет место в случае гетероциклических соединений, которые содержат как гидрофобные участки, так и полярные группы, способные образовывать водородные связи с водой. Хотя эти группы действительно образуют водородные связи, тем не менее они все же вызывают уменьшение структурированности окружающей их воды. Это уменьшение иногда компенсирует или даже превышает то возрастание структурированности, которое имеет место в областях, окружающих гидрофобные участки. Следовательно, изменение энтропии при переносе гетероциклических молекул в воду может быть положительным. И наоборот, изменение энтропии при ассоциации гетероциклических молекул в воде может быть отрицательным.

Поскольку структурированность воды, окружающей гетероциклические основания, меньше, чем воды, окружающей полностью неполярные молекулы, изменение энтальпии, которое сопровождает гидрофобную ассоциацию гетероциклических молекул, может быть достаточно отрицательным, чтобы ассоциация оказалась выгодной, даже несмотря на уменьшение энтропии.

Константа образования К) при гидрофобной ассоциации часто возрастает с ростом температур, что отличает процесс гидрофобного взаимодействия от большинства реакций ассоциации с участием полярных молекул.

Из уравнения R ln/C/ = - AG°/T = - АН°/Т + AS0 видно, что для образования прочных ассоциатов необходимо, чтобы либо величина АН0 имела достаточно большое отрицательное значение, либо AS0 было достаточно большой положительной величиной. Если АН отрицательно, как это имеет место для большинства экзергонических реакций (например, при протонировании NH3A/y° = - 52 кДж моль-1), то К/ будет уменьшаться с повышением температуры. Однако если AS0 - это большая положительная величина, АН0 может быть и положительным, что часто наблюдается при образовании гидрофобных ассоциатов. В этом случае Кі будет возрастать с ростом температуры (табл. 3.2).

Возрастание стабильности при повышении температуры иногда используют в качестве показателя гидрофобной природы связывания.

Общая характеристика межмолекулярных сил взаимодействия представлена в табл. 3.2.

Таблица 3.2

Характеристики межмолекулярных сил взаимодействия

Тип межмолекулярных сил Взаимодействие имеет место между группами Молекулярные характеристики для межмолекулярной силы Зависимость от температуры Типы молекул, вовлеченных во взаимодействие
Водородные и гидрофобные связи Некоторые типы OH,=NH, -0“, =N+ и др. Кислотность (pH) основность партнера, рКа Сильная Спирты, кислоты, амины и др.
Дисперсионные силы Полярные,

соответственно

Молекулярные силы. Между молекулами вещества существуют силы взаимодействия, называемые молекулярными силами . Если бы между молекулами не было сил притяжения, то все вещества при любых условиях находились бы только в газообразном состоянии. Лишь благодаря силам притяжения молекулы удерживаются друг возле друга и образуют жидкие и твердые тела.

Однако одни только силы притяжения не могут обеспечить существование устойчивых образований из атомов и молекул. На очень малых расстояниях между молекулами действуют силы отталкивания.

Строение атомов и молекул. Атом, а тем более молекула, – это сложная система, состоящая из отдельных заряженных частиц – электронов и атомных ядер. Хотя в целом молекулы электрически нейтральны, между ними на малых расстояниях действуют значительные электрические силы. Происходит взаимодействие между электронами и ядрами соседних молекул. Описание движения частиц внутри атомов и молекул и сил взаимодействия между молекулами очень сложная задача. Ее рассматривают а атомной физике. Мы приведем только результат: примерную зависимость силы взаимодействия двух молекул от расстояния между ними.

Атомы и молекулы состоят из заряженных частиц противоположных знаков заряда. Между электронами одной молекулы и атомными ядрами другой действуют силы притяжения. Одновременно между электронами обеих молекул и между их ядрами действуют силы отталкивания.
Вследствие электрической нейтральности атомов и молекул молекулярные силы являются короткодействующими. На расстояниях, превышающих размеры молекул в несколько раз, силы взаимодействия между ними практически не сказываются.

Зависимость молекулярных сил от расстояния между молекулами. Рассмотрим, как меняется в зависимости от расстояния между молекулами проекция силы взаимодействия между ними на прямую, соединяющую центры молекул. На расстояниях, превышающих 2-3 диаметра молекул, сила отталкивания практически равна нулю. Заметна лишь сила притяжения. По мере уменьшения расстояния сила притяжения возрастает и одновременно начинает сказываться сила отталкивания. Эта сила очень быстро возрастает, когда электронные оболочки атомов начинают перекрываться. В результате на сравнительно больших расстояниях молекулы притягиваются, а на малых отталкиваются.

На рисунке 8 изображена примерная зависимость проекции силы отталкивания от расстояния между центрами молекул (верхняя кривая), проекции силы притяжения (нижняя кривая) и проекция результирующей силы (средняя кривая). Проекция силы отталкивания положительна, а проекция силы притяжения отрицательна. Тонкие вертикальные линии проведены для удобства выполнения сложения проекций сил.

На расстоянии r 0 , равном примерно сумме радиусов молекул, проекция результирующей силы F r = 0, так как сила притяжения равна по модулю силе отталкивания (рис. 9, а). При r > r 0 сила притяжения превосходит силу отталкивания и проекция результирующей силы (жирная стрелка) отрицательна (рис 9, б). Если r → ∞, то F r → 0. На расстояниях r < r 0 сила отталкивания превосходит силу притяжения (рис. 9, в).

Происхождение сил упругости. Зависимость сил взаимодействия молекул от расстояния между ними объясняет появление силы упругости при сжатии и растяжении тел. Если пытаться сблизить молекулы на расстояние, меньшее r0, то начинает действовать сила, препятствующая сближению. Наоборот, при удалении молекул друг от друга действует сила притяжения, возвращающая молекулы в исходное положение после прекращения внешнего воздействия.

При малом смешении молекул из положений равновесна сила притяжения или отталкивания растут линейно с увеличением смещения. На малом участке кривую можно считать отрезком прямой (утолщенный участок кривой на рис 8). Именно поэтому при малых деформациях оказывается справедливым закон Гука, согласно которому сила упругости пропорциональна деформации. При больших смещениях молекул закон Гука уже несправедлив.

Так как при деформации тела изменяются расстояния между всеми молекулами, то на долю соседних слоев молекул приходится незначительная часть общей деформации. Поэтому закон Гука выполняется при деформациях в миллионы раз превышающих размеры молекул.

Похожие публикации