Органоиды отсутствующие в клетках животных. Строение клетки и функции ее органоидов

Органоиды постоянные и обязательные компоненты клеток; специализированные участки цитоплазмы клетки, имеющие определенную структуру и выполняющие определенные функции в клетке. Различают органоиды общего и специального назначения.

Органоиды общего назначения имеются в большинстве клеток (эндоплазматическая сеть, митохондрии, пластиды, комплекс Гольджи, лизосомы, вакуоли, клеточный центр, рибосомы). Органоиды специального назначения характерны только для специализированных клеток (миофибриллы, жгутики, реснички, сократительные и пищеварительные вакуоли). Органоиды (за исключением рибосом и клеточного центра) имеют мембранное строение.

Эндоплазматическая ретикулюм(ЭПР) это разветвленная система соединенных между собой полостей, трубочек и каналов, образованных элементарными мембранами и пронизывающая всю толщу клетки. Открыта в 1943 г. Портером. Особенно много каналов эндоплазматической сети в клетках с интенсивным обменом веществ. В среднем объем ЭПС составляет от 30% до 50% общего объема клетки. ЭПС лабильна. Форма внутренних лакун и кана

лов, их размер, расположение в клетке и количество изменяются в процессе жизнедеятельности. Развита сильнее в животных клетка. ЭПС морфологически и функционально связана с пограничным слоем цитоплазмы, ядерной оболочкой, рибосомами, комплексом Гольджи, вакуолями, образуя вместе с ними единую функционально-структурную систему для осуществления обмена веществ и энергии и передвижения веществ внутри клетки. Вблизи эндоплазматической сети накапливаются митохондрии и пластиды.

Выделяют две разновидности ЭПС: шероховатую и гладкую. На мембранах гладкой (агранулярной) ЭПС локализованы ферменты систем жирового и углеводного синтеза: здесь происходит синтез углеводов и почти всех клеточных липидов. Мембраны гладкой разновидности эндоплазматической сети преобладают в клетках сальных желез, печени (синтез гликогена), в клетках с большим содержанием питательных веществ (семена растений). На мембране шероховатой (гранулярной) ЭПС располагаются рибосомы, где осуществляется биосинтез белков. Часть синтезируемых ими белков включается в состав мембраны эндоплазматической сети, остальные поступают в просвет ее каналов, где преобразуются и транспортируются в комплекс Гольджи. Особенно много шероховатых мембран в клетках желез и нервных клетках.

Рис. Шероховатый и гладкий эндоплазматический ретикулум.

Рис. Транспорт веществ по системе ядро – эндоплазматический ретикулум (ЭПР) – комплекс Гольджи.

Функции эндоплазматической сети :

1) синтез белков (шероховатая ЭПС), углеводов и липидов (гладкая ЭПС);

2) транспорт веществ, как поступивших в клетку, так и вновь синтезируемых;

3) деление цитоплазмы на отсеки (компартменты), что обеспечивает пространственное разделение ферментных систем, необходимое для их последовательного вступления в биохимические реакции.

Митохондрии – присутствуют практически во всех типах клеток одно- и многоклеточных организмов (за исключением эритроцитов млекопитающих). Число их в разных клетках варьирует и зависит от уровня функциональной активности клетки. В клетке печени крысы их около 2500, а в мужской половой клетке некоторых моллюсков – 20 – 22. Их больше в грудной мышце летающих птиц, чем в грудной мышце нелетающих.

Митохондрии имеют форму сферических, овальных и цилиндрических телец. Размеры составляют 0,2 – 1,0 мкм и диаметре и до 5 - 7 мкм в длину.

Рис. Митохондрия.

Длина нитевидных форм достигает 15-20 мкм. Снаружи митохондрии ограничены гладкой наружной мембраной, сходной по составу с плазмалеммой. Внутренняя мембрана образует многочисленные выросты – кристы – и содержит многочисленные ферменты, АТФ-сомы (грибовидные тела), участвующие в процессах трансформации энергии питательных веществ в энергию АТФ. Количество крист зависит от функции клетки. В митохондриях мышц крист очень много, они занимают всю внутреннюю полость органоида. В митохондриях эмбриональных клеток кристы единичны. В растительных выросты внутренней мембраны чаще имеют форму трубочек. Полость митохондрии заполнена матриксом, в котором содержатся вода, минеральные соли, белки-ферменты, аминокислоты. Митохондрии имеют автономную белоксинтезирующую систему: кольцевую молекулу ДНК, различные виды РНК и более мелкие, чем в цитоплазме рибосомы.

Митохондрии тесно связаны мембранами эндоплазматической сети, каналы которой часто открываются прямо в митохондрии. При повышении нагрузки на орган и усилении синтетических процессов, требующих затраты энергии, контакты между ЭПС и митохондриями становятся особенно многочисленными. Число митохондрий может быстро увеличиваться путем деления. Способность митохондрий к размножению обусловлена присутствием в них молекулы ДНК, напоминающей кольцевую хромосому бактерий.

Функции митохондрий :

1) синтез универсального источника энергии – АТФ;

2) синтез стероидных гормонов;

3) биосинтез специфических белков.

Пластиды – органоиды мембранного строения, характерные только для растительных клеток. В них происходят процессы синтеза углеводов, белков и жиров. По содержанию пигментов их делят на три группы: хлоропласты, хромопласты и лейкопласты.

Хлоропласты имеют относительно постоянную эллиптическую или линзовидную форму. Размер по наибольшему диаметру составляет 4 – 10 мкм. Количество в клетке колеблется от нескольких единиц до нескольких десятков. Их размер, интенсивность окраски, количество и расположение в клетке зависят от условий освещения, вида и физиологического состояния растений.

Рис. Хлоропласт, строение.

Это белково-липоидные тела, состоящие на 35-55% из белка, 20-30% - липидов, 9% - хлорофилла, 4-5% каратиноидов, 2-4% нуклеиновых кислот. Количество углеводов варьирует; обнаружено некоторое количество минеральных веществ Хлорофилл – сложный эфир органической двухосновной кислоты – хлорофиллина и органических спиртов – метилового (СН 3 ОН) и фитола (С 20 Н 39 ОН). У высших растений в хлоропластах постоянно присутствуют хлорофилл а – имеет сине-зеленую окраску, и хлорофилл b – желто-зеленую; причем содержание хлорофилла, а в несколько раз больше.

Кроме хлорофилла в состав хлоропластов входят пигменты - каротин С 40 Н 56 и ксантофилл С 40 Н 56 О 2 и некоторые другие пигменты (каратиноиды). В зеленом листе желтые спутники хлорофилла маскируются более яркой зеленой окраской. Однако осенью, при листопаде, у большинства растений хлорофилл разрушается и тогда обнаруживается присутствие в листе каратиноида – лист становится желтым.

Хлоропласт одет двойной оболочкой, состоящей из наружной и внутренней мембран. Внутреннее содержимое – строма – имеет ламеллярное (пластинчатое) строение. В бесцветной строме выделяют граны – окрашенные в зеленые цвет тельца, 0,3 – 1,7 мкм. Они представляют собой совокупность тилакоидов – замкнутых телец в виде плоских пузырьков или дисков мембранного происхождения. Хлорофилл в виде мономолекулярного слоя располагается между белковым и липидным слоями в тесной связи с ними. Пространственное расположение молекул пигментов в мембранных структурах хлоропластов является весьма целесообразным и создает оптимальные условия для наиболее эффективного поглощения, передачи и использования лучистой энергии. Липиды образуют безводные диэлектрические слои мембран хлоропласта, необходимые для функционирования электронно-транспортной цепи. Роль звеньев цепи переноса электронов выполняют белки (цитохромы, пластохиноны, ферредоксин, пластоцианин) и отдельные химические элементы – железо, марганец и др. Количество гран в хлоропласте от 20 до 200. Между гранами, связывая их друг с другом, располагаются ламеллы стромы. Ламеллы гран и ламеллы стромы имеют мембранное строение.

Внутренне строение хлоропласта делает возможным пространственное разобщение многочисленных и разнообразных реакций, составляющих в своей совокупности содержание фотосинтеза.

Хлоропласты, как и митохондрии, содержат специфическую РНК и ДНК, а также более мелкие рибосомы и весь молекулярный арсенал, необходимый для биосинтеза белка. У этих органоидов имеется достаточное для обеспечения максимальной активности белоксинтезирующей системы количество и-РНК. Вместе с тем в них содержится и достаточно ДНК для кодирования определенных белков. Они размножаются делением, путем простой перетяжки.

Установлено, что хлоропласты могут изменять свою форму, размеры и положение в клетке, т. е. способны самостоятельно двигаться (таксис хлоропластов). В них обнаружено два типа сократительных белков, за счет которых, очевидно, и осуществляется активное движение этих органоидов в цитоплазме.

Хромопласты широко распространены в генеративных органах растений. Они окрашивают лепестки цветков (лютика, георгина, подсолнечника), плоды (томатов, рябины, шиповника) в желтый, оранжевый, красный цвета. В вегетативных органах хромопласты встречаются значительно реже.

Окраска хромопластов обусловлена присутствием каратиноидов – каротина, ксантофилла и ликопина, которые в пластидах находятся в различном состоянии: в виде кристаллов, липоидного раствора или в соединении с белками.

Хромопласты, по сравнению с хлоропластами, имеют более простое строение – в них отсутствует ламеллярная структура. Химический состав также отличен: пигменты – 20–50%, липиды до 50%, белки – около 20%, РНК – 2-3%. Это свидетельствует о меньшей физиологической активности хлоропластов.

Лейкопласты не содержат пигментов, они бесцветны. Эти самые мелкие пластиды имеют округлую, яйцевидную или палочковидную форму. В клетке они часто группируются вокруг ядра.

Внутренне структура, еще менее дифференцирована по сравнению с хлоропластами. В них осуществляется синтез крахмала, жиров, белков. В соответствии с этим выделяют три вида лейкопластов – амилопласты (крахмал), олеопласты (растительные масла) и протеопласты (белки).

Возникают лейкопласты из пропластид, с которыми они сходны по форме и строению, а отличаются лишь размерами.

Все пластиды генетически связаны друг с другом. Они образуются из пропластид – мельчайших бесцветных цитоплазматических образований, сходных по внешнему виду с митохондриями. Пропластиды находятся в спорах, яйцеклетках, в эмбриональных клетках точек роста. Непосредственно из пропластид образуются хлоропласты (на свету) и лейкопласты (в темноте), а из них развиваются хромопласты, являющиеся конечным продуктом в эволюции пластид в клетке.

Комплекс Гольджи – впервые был обнаружен в 1898 г. Итальянским ученым Гольджи в животных клетках. Это система внутренних полостей, цистерн (5-20), располагающихся сближено и параллельно друг другу, и крупных и мелких вакуолей. Все эти образования имеют мембранное строение и являются специализированными участками эндоплазматической сети. В животных клетках комплекс Гольджи развит лучше, чем в растительных; в последних он называется диктиосомы.

Рис. Строение комплекса Гольджи.

Попадающие в пластинчатый комплекс белки и липиды, подвергаются различным преобразованиям, накапливаются, сортируются, упаковываются в секреторные пузырьки и транспортируются по назначению: к различным структурам внутри клетки или за пределы клетки. Мембраны комплекса Гольджи также синтезируют полисахариды и образуют лизосомы. В клетках молочных желез комплекс Гольджи участвует в образовании молока, а в клетках печени – желчи.

Функции комплекса Гольджи :

1) концентрация, обезвоживание и уплотнение синтезированных в клетке белков, жиров, полисахаридов и веществ, поступивших извне;

2) сборка сложных комплексов органических веществ и подготовка их к выведению из клетки (целлюлоза и гемицеллюлоза у растений, гликопротеины и гликолипиды у животных);

3) синтез полисахаридов;

4) образование первичных лизосом.

Лизосомы - небольшие овальные тельца диаметром 0,2-2,0 мкм. Центральное положение занимает вакуоль, содержащая 40 (по разным данным 30-60) гидролитических ферментов, способных в кислой среде (рН 4,5-5) расщеплять белки, нуклеиновые кислоты, полисахариды, липиды и другие вещества.

Вокруг этой полости располагается строма, одетая снаружи элементарной мембраной. Расщепление веществ при помощи ферментов называется лизисом, поэтому органоид назван лизосомой. Образование лизосом происходит в комплексе Гольджи. Первичные лизосомы приближаются непосредственно к пиноцитозным или фагоцитозным вакуолям (эндосомам) и изливают свое содержимое в их полость, образуя вторичные лизосомы (фагосомы), внутри которых и происходит переваривание веществ. Продукты лизиса через мембрану лизосом поступают в цитоплазму и включаются в дальнейший обмен веществ. Вторичные лизосомы с остатками непереваренных веществ называются остаточными тельцами. Примером вторичных лизосом являются пищеварительные вакуоли простейших.

Функции лизосом :

1) внутриклеточное переваривание макромолекул пищи и чужеродных компонентов, поступающих в клетку при пино- и фагоцитозе, обеспечивая клетку дополнительным сырьем для биохимических и энергетических процессов;

2) при голодании лизосомы переваривают некоторые органоиды и на какое-то время пополняют запас питательных веществ;

3) разрушение временных органов эмбрионов и личинок (хвост и жабры у лягушки) в процессе постэмбрионального развития;

Рис. Образование лизосом

Вакуоли полости в цитоплазме растительных клеток и протист, заполненные жидкостью. Имеют форму пузырьков, тонких канальцев и другую. Вакуоли образуются из расширений эндоплазматической сети и пузырьков комплекса Гольджи как тончайшие полости, затем по мере роста клетки и накопления продуктов обмена объем их увеличивается, а количество сокращается. Развитая сформировавшаяся клетка имеет обычно одну большую вакуоль, занимающую центральное положение.

Вакуоли растительных клеток заполнены клеточным соком, который представляет собой водный раствор органических (яблочная, щавелевая, лимонная кислоты, сахара, инулин, аминокислоты, белки, дубильные вещества, алкалоиды, глюкозиды) и минеральных (нитраты, хлориды, фосфаты) веществ.

У протист встречаются пищеварительные вакуоли и сократительные.

Функции вакуолей :

1) хранилища запасных питательных веществ и вместилища выделений (у растений);

2) определяют и поддерживают осмотическое давление в клетках;

3) обеспечивают внутриклеточное пищеварение у протист.

Рис. Клеточный центр.

Клеточный центр обычно находится вблизи ядра и состоит из двух центриолей, расположенных перпендикулярно друг другу и окруженных лучистой сферой. Каждая центриоль представляет собой полое цилиндрическое тельце длиной 0,3-0,5 мкм и длиной 0,15 мкм, стенка которого образована 9 триплетами микротрубочек. Если центриоль лежит в основании реснички или жгутика, то ее называют базальным тельцем .

Перед делением центриоли расходятся к противоположным полюсам и возле каждой из них возникает дочерняя центриоль. От центриолей, расположенных на разных полюсах клетки, образуются микротрубочки, растущие навстречу друг другу. Они формируют митотическое веретено, способствующее равномерному распределению генетического материала между дочерними клетками, являются центром организации цитоскелета. Часть нитей веретена прикрепляется к хромосомам. В клетках высших растений клеточный центр центриолей не имеет.

Центриоли относятся к самовоспроизводящимся органоидам цитоплазмы. Они возникают в результате дупликации уже имеющихся. Это происходит при расхождении центриолей. Незрелая центриоль содержит 9 одиночных микротрубочек; по-видимому, каждая микротрубочка является матрицей при сборке триплетов, характерных для зрелой центриоли.

Центросома характерна для клеток животных, некоторых грибов, водорослей, мхов и папоротников.

Функции клеточного центра :

1) образование полюсов деления и формирование микротрубочек веретена деления.

Рибосомы - мелкие сферические органоиды, от 15 до 35 нм. Состоят из двух субъединиц большой (60S) и малой (40S). Содержат около 60% белка и 40% рибосомальной РНК. Молекулы рРНК образуют ее структурный каркас. Большинство белков специфически связано с определенными участками рРНК. Некоторые белки входят в состав рибосом только во время биосинтеза белка. Субъединицы рибосом образуются в ядрышках. и через поры в ядерной оболочке поступают в цитоплазму, где располагаются либо на мембране ЭПА, либо на наружной стороне ядерной оболочки, либо свободно в цитоплазме. Сначала на ядрышковой ДНК синтезируются рРНК, которые затем покрываются поступающими из цитоплазмы рибосомальными белками, расщепляются до нужных размеров и формируют субъединицы рибосом. Полностью сформированных рибосом в ядре нет. Объединение субъединиц в целую рибосому происходит в цитоплазме, как правило, во время биосинтеза белка. По сравнению с митохондриями, пластидами, клетками прокариот рибосомы в цитоплазме эукариотических клеток крупнее. Могут объединяться по 5-70 единиц в полисомы.

Функции рибосом :

1) участие в биосинтезе белка.

Рис. 287. Рибосома: 1 - малая субъединица; 2 - большая субъединица.

Реснички, жгутики выросты цитоплазмы, покрытые элементарной мембраной, под которой находится 20 микротрубочек, образующих 9 пар по периферии и две одиночные в центре. У основания ресничек и жгутиков расположены базальные тельца. Длина жгутиков достигает 100 мкм. Реснички – это короткие – 10-20 мкм – жгутики. Движение жгутиков винтовое, а ресничек – веслообразное. Благодаря ресничкам и жгутикам передвигаются бактерии, протисты, ресничные, перемещаются частицы или жидкости (реснички мерцательного эпителия дыхательных путей, яйцеводов), половые клетки (сперматозоиды).

Рис. Строение жгутиков и ресничек эукариот

Включения - временные компоненты цитоплазмы, то возникающие, то исчезающие. Как правило, они содержатся в клетках на определенных этапах жизненного цикла. Специфика включений зависит от специфики соответствующих клеток тканей и органов. Включения встречаются преимущественно в растительных клетках. Они могут возникать в гиалоплазме, различных органеллах, реже в клеточной стенке.

В функциональном отношении включения представляют собой либо временно выведенные из обмена веществ клетки соединения (запасные вещества - крахмальные зерна, липидные капли и отложения белков), либо конечные продукты обмена (кристаллы некоторых веществ).

Крахмальные зерна . Это наиболее распространенные включения растительных клеток. Крахмал запасается у растений исключительно в виде крахмальных зерен. Они образуются только в строме пластид живых клеток. В процессе фотосинтеза в зеленых листьях образуется ассимиляционный , или первичный крахмал. Ассимиляционный крахмал в листьях не накапливается и, быстро гидролизуясь до сахаров, оттекает в части растения, в которых происходит его накопление. Там он вновь превращается в крахмал, который называют вторичным. Вторичный крахмал образуется и непосредственно в клубнях, корневищах, семенах, то есть там, где он откладывается в запас. Тогда его называют запасным . Лейкопласты, накапливающие крахмал, называют амилопластами . Особенно богаты крахмалом семена, подземные побеги (клубни, луковицы, корневища), паренхима проводящих тканей корней и стеблей древесных растений.

Липидные капли . Встречаются практически во всех растительных клетках. Наиболее богаты ими семена и плоды. Жирные масла в виде липидных капель - вторая по значению (после крахмала) форма запасных питательных веществ. Семена некоторых растений (подсолнечник, хлопчатник и т.д.) могут накапливать до 40% масла от массы сухого вещества.

Липидные капли, как правило, накапливаются непосредственно в гиалоплазме. Они представляют собой сферические тела обычно субмикроскопического размера. Липидные капли могут накапливаться и в лейкопластах, которые называют элайопластами .

Белковые включения образуются в различных органеллах клетки в виде аморфных или кристаллических отложений разнообразной формы и строения. Наиболее часто кристаллы можно встретить в ядре - в нуклеоплазме, иногда в перинуклеарном пространстве, реже в гиалоплазме, строме пластид, в расширениях цистерн ЭПР, матриксе пероксисом и митохондриях. В вакуолях встречаются как кристаллические, так и аморфные белковые включения. В наибольшем количестве кристаллы белка встречаются в запасающих клетках сухих семян в виде так называемых алейроновых 3 зерен или белковых телец .

Запасные белки синтезируются рибосомами во время развития семени и откладываются в вакуоли. При созревании семян, сопровождающемся их обезвоживанием, белковые вакуоли высыхают, и белок кристаллизуется. В результате этого в зрелом сухом семени белковые вакуоли превращаются в белковые тельца (алейроновые зерна).

Органелла - это крошечная клеточная структура, которая выполняет определенные функции внутри . Органеллы встроены в цитоплазму . В более сложных эукариотических клетках органеллы часто окружены собственной мембраной. Подобно внутренним органам тела, органеллы специализированы и выполняют конкретные функции, необходимые для нормальной работы клеток. Они имеют широкий круг обязанностей: от генерирования энергии до контроля роста и размножения клеток.

Эукариотические органеллы

Эукариотические клетки представляют собой клетки с ядром. Ядро - важная органелла, окруженная двойной мембраной, называемая ядерной оболочкой, отделяющая содержимое ядра от остальной части клетки. Эукариотические клетки также содержат , и различные клеточные органеллы. Примерами эукариотических организмов являются животные, растения, и . и содержат много одинаковых или отличающихся органелл. Есть также некоторые органеллы, обнаруженные в растительных клетках, но не встречающиеся в клетках животных и наоборот. Примеры основных органелл, содержащихся в клетках растений и животных включают:

  • - связанная с мембраной структура, которая содержит наследственную (ДНК) информацию, а также контролирует рост и размножение клетки. Это обычно самая важная органелла в клетке.
  • , как производители энергии, преобразуют энергию в формы, которые может использовать клетка. Они также участвуют в других процессах, таких как , деление, рост и .
  • - обширная сеть трубочек и карманов, синтезирующая мембраны, секреторные белки, углеводы, липиды и гормоны.
  • - структура, которая отвечает за производство, хранение и доставку определенных клеточных веществ, особенно из эндоплазматического ретикулума.
  • - органеллы, состоящие из РНК и белков и отвечают за биосинтез белка. Рибосомы расположены в цитозоле или связаны с эндоплазматическим ретикулумом.
  • - эти мембранные мешочки ферментов перерабатывают органический материал клетки путем переваривания клеточных макромолекул, таких как нуклеиновые кислоты, полисахариды, жиры и белки.
  • , как и лизосомы связаны мембраной и содержат ферменты. Они способствуют детоксикации спирта, образует желчную кислоту и разрушает жиры.
  • - заполненные жидкостью замкнутые структуры, чаще всего встречаются в растительных клетках и грибах. Они отвечают за широкий спектр важных функций, включая хранение питательных веществ, детоксикацию и вывод отходов.
  • - пластиды, содержащиеся в клетках растений, но отсутствующие в животных клетках. Хлоропласты поглощают энергию солнечного света для .
  • - жесткая внешняя стенка расположенная рядом с плазматической мембраной в большинстве растительных клеток, обеспечивающая поддержку и защиту клетки.
  • - цилиндрические структуры встречаются в клетках животных и помогают организовать сборку микротрубочек во время

Органоиды – это постоянные, обязательно присутствующие структуры клетки, выполняющие специфические функции и имеющие определенное строение.

Органоиды (синоним: органеллы) - это органы клетки, маленькие органы. По строению органоиды можно разделить на две группы: мембранные , в состав которых обязательно входят мембраны, и немембранные . В свою очередь, мембранные органоиды могут быть одномембранными – если образованы одной мембраной и двумембранными – если оболочка органоидов двойная и состоит из двух мембран.

Включения - это непостоянные структуры клетки, которые появляются в ней и исчезают в процессе метаболизма. Различают трофические, секреторные, экскреторные и пигментные включения.

Следует различать органоиды и включения.

Видео: Обзор клеточных структур


Органоиды (органеллы)

Видео: Протеасомы.

Фагосомы

Микрофиламенты . Каждый микрофиламент - это двойная спираль из глобулярных молекул белка актина. Поэтому содержание актина даже в немышечных клетках достигает 10 % от всех белков.
В узлах сети микрофиламентов и в местах их прикрепления к клеточным структурам находятся белок a-актинин, а также, белки миозин и тропомиозин.
Микрофиламенты образуют в клетках более или менее густую сеть. Так, например, в микрофаге насчитывается около 100.000 микрофиламентов. Функции микрофиламентов:
- миграция клеток в эмбриогенезе,
- передвижение макрофагов,
- фаго- и пиноцитоз,
- рост аксонов (у нейронов),
- образование каркаса для микроворсинок и обеспечение всасывания в кишечнике и реабсорбции в почечных канальцах.

Промежуточные филаменты . Являются компонентом цитоскелета. Они толще микрофиламентов и имеют тканеспецифическую природу:
- в эпителии они образованы белком кератином,
- в клетках соединительной ткани - виментином,
- в гладких мышечных клетках - десмином,
- в нервных клетках они называются нейрофиламентами и тоже образованы особым белком.
Промежуточные филаменты часто располагаются параллельно поверхности клеточного ядра.

Микротрубочки . Микротрубочки образуют в клетке густую сеть. Она начинается от перинуклеарной области (от центриоли) и радиально распространяется к плазмолемме, следуя за изменениями её формы. Также микротрубочки идут вдоль длинной оси отростков клеток. В клетках с ресничками микротрубочки образуют аксонему (осевую нить) ресничек.
Стенка микротрубочки состоит из одного слоя глобулярных субъединиц белка тубулина.
На поперечном срезе видно 13 таких субъединиц, образующих кольцо.
Его параметры таковы:
- внешний диаметр - dex = 24 нм,
- внутренний диаметр - din = 14 нм,
- толщина стенки - l стенки = 5 нм.
Как и микрофиламенты, микротрубочки образуются путём самосборки. Это происходит при сдвиге равновесия между свободной и связанной формами тубулина в сторону связанной формы.
В неделящейся интерфазной клетке создаваемая микротрубочками сеть играет роль цитоскелета, поддерживающего форму клетки.
Транспорт веществ по длинным отросткам нервных клеток идёт не внутри микротрубочек, а вдоль них по перитубулярному пространству. Но микротрубочки выступают при этом в роли направительных структур: Белки-транслокаторы (динеины и кинезины), перемещаясь по внешней поверхности микротрубочек, "тащат" за собой и мелкие пузырьки с транспортируемыми веществами.
В делящихся клетках сеть микротрубочек перестраивается и формирует веретено деления. Они связывают хроматиды хромосом с центриолями и способствуют правильному расхождению хроматид к полюсам делящейся клетки.

Клеточный центр .

Пластиды .

Вакуоли . Вакуоли – одномембранные органоиды. Они представляют собой мембранные «ёмкости», пузыри, заполненные водными растворами органических и неорганических веществ. В образовании вакуолей принимают участие ЭПС и аппарат Гольджи. Вакуоли характерны для растительных клеток. Молодые растительные клетки содержат много мелких вакуолей, которые затем по мере роста и дифференцировки клетки сливаются друг с другом и образуют одну большую центральную вакуоль. Центральная вакуоль может занимать до 95% объема зрелой клетки, ядро и органоиды оттесняются при этом к клеточной оболочке. Мембрана, ограничивающая растительную вакуоль, называется тонопластом. Жидкость, заполняющая растительную вакуоль, называется клеточным соком. В состав клеточного сока входят водорастворимые органические и неорганические соли, моносахариды, дисахариды, аминокислоты, конечные или токсические продукты обмена веществ (гликозиды, алкалоиды), некоторые пигменты (антоцианы). Из органических веществ чаще запасаются сахара и белки. Сахара – чаще в виде растворов, белки поступают в виде пузырьков ЭПР и аппарата Гольджи, после чего вакуоли обезвоживаются, превращаясь в алейроновые зерна. В животных клетках имеются мелкие пищеварительные и автофагические вакуоли, относящиеся к группе вторичных лизосом и содержащие гидролитические ферменты. У одноклеточных животных есть еще сократительные вакуоли, выполняющие функцию осморегуляции и выделения.
Функции вакуолей. Растительные вакуоли отвечают за накопление воды и поддержание тургорного давления, накопление водорастворимых метаболитов – запасных питательных веществ и минеральных солей, окрашивание цветов и плодов и привлечение тем самым опылителей и распространителей семян. Пищеварительные и автофагические вакуоли – разрушают органические макромолекулы; сократительные вакуоли регулируют осмотическое давление клетки и выводят ненужные вещества из клетки.
Эндоплазматическая сеть, аппарат Гольджи, лизосомы, пероксисомы и вакуоли образуют единую вакуолярную сеть клетки, отдельные элементы которой могут переходить друг в друга.

Включения

Включения . Включения - это непостоянные структуры клетки, которые появляются в ней и исчезают в процессе метаболизма. Различают трофические, секреторные, экскреторные и пигментные включения.
Группа трофических включений объединяет углеводные, липидные и белковые включения. Наиболее распространенным представителем углеводных включений является гликоген - полимер глюкозы. На светооптическом уровне наблюдать включения гликогена можно при использовании гистохимической ШИК-реакции. В электронном микроскопе гликоген выявляется как осмиофильные гранулы, которые в клетках, где гликогена много (гепатоцитах), сливаются в крупные конгломераты - глыбки.
Липидными включениями наиболее богаты клетки жировой ткани - липоциты, резервирующие запасы жира для нужд всего организма, а также стероидпродуцирующие эндокринные клетки, использующие липид холестерин для синтеза своих гормонов. На ультрамикроскопическом уровне липидные включения имеют правильную округлую форму и в зависимости от химического состава характеризуются высокой, средней или низкой электронной плотностью.
Белковые включения, например, вителлин в яйцеклетках, накапливается в цитоплазме в виде гранул. Секреторные включения представляют собой разнообразную группу.
Секреторные включения синтезируются в клетках и выделяются (секретируются) в просветы протоков (клетки экзокринных желез), в межклеточную среду (гормоны, нейромедиаторы, факторы роста и др.), кровь, лимфу, межклеточные пространства (гормоны). На ультрамикроскопическом уровне секреторные включения имеют вид мембранных пузырьков, содержащих вещества разной плотности и интенсивности окраски, что зависит от их химического состава.
Экскреторные включения - это, как правило, продукты метаболизма клетки, от которых она должна освободиться. К экскреторным включениям относятся также инородные включения - случайно, либо преднамеренно (при фагоцитозе бактерий, например,) попавшие в клетку субстраты. Такие включения клетка лизирует с помощью своей лизосомальной системы, а оставшиеся частицы выводит (экскретирует) во внешнюю среду. В более редких случаях попавшие в клетку агенты остаются неизменными и могут не подвергнуться экскреции - такие включения более правильно именовать чужеродными (хотя чужеродными для клетки являются и включения, которые она лизирует).
Пигментные включения хорошо выявляются как на светооптическом, так и на ультрамикроскопическом уровнях. Очень характерный вид они имеют на электронных микрофотографиях - в виде осмиофильных структур разных размеров и формы. Данная группа включений характерна для пигментоцитов. Пигментоциты, присутствуя в дерме кожи, защищают организм от глубокого проникновения опасного для него ультрафиолетового излучения, в радужке, сосудистой оболочке и сетчатке глаза пигментоциты регулируют поток света на фоторецепторные элементы глаза и предохраняют их от перераздражения светом. В процессе старения очень многие соматические клетки накапливают пигмент липофусцин, по присутствию которого можно судить о возрасте клетки. В эритроцитах и симпластах скелетных мышечных волокон присутствуют соответственно гемоглобин или миоглобин - пигменты-переносчики кислорода и углекислоты.

Органоиды клетки — стойкие клеточные органы, структуры, которые обеспечивают осуществление ряда функций в процессе жизнедеятельности клетки: сохранение и передачу генетической информации, движение, деление, перенос веществ, синтез и другие.

К органеллам клеток эукариот входят:

  • хромосомы;
  • рибосомы;
  • митохондрии;
  • клеточная мембрана;
  • микрофиламенты;
  • микротрубочки;
  • комплекс Гольджи;
  • эндоплазматическая сеть;
  • лизосомы.

Также обычно ядро относят к органоидам клеток эукариот. Основная особенность растительной клетки — это наличие пластид.

Строение растительной клетки:

Как правило, растительная клетка включает:

  • мембрана;
  • цитоплазма с органоидами;
  • целлюлозная оболочка;
  • вакуоли с клеточным соком;
  • ядро.

Строение животной клетки:

Строение животной клетки состоит из:

  • цитоплазма с органоидами;
  • ядро с хромосомами;
  • наличие наружной мембраны.

Какую функцию выполняют клеточные органоиды — таблица

Название органоида Строение органоида Функции органоида
Эндоплазматическая сеть (ЭПС) Система плоские слоев, которая создает полости и каналы. Существует два типа: гладкая и гранулированная (есть рибосомы).

1. Разделяет цитоплазму клетки на изолированные пространства, с целью отсоединить большинство параллельно идущих реакций.

2. На гладкой ЭПС синтезируются углеводы и жиры, а на гранулированной — белки.

3. Нужна для доставки и циркуляции питательных веществ внутри клетки.

Митохондрии

Размеры составляют от 1 до 7 мкм. Число митохондрий может равняться до десятков тысяч в клетке. Внешняя оболочка митохондрий наделена двухмембранной структурой. Наружная мембрана гладкая. Внутренняя состоит из выростов крестообразной формы с дыхательными ферментами.

1. Обеспечивают синтез АТФ.

2. Энергетическая функция.

Клеточная мембрана Имеет трехслойную структуру. Содержит липиды трех классов: фосфолипиды, гликолипиды, холестерол.

1. Поддержание структуры мембран.

2. Перемещение различных молекул.

3. Выборочная проницаемость.

4. Получение и изменение сигналов из окружающей среды.

Ядро Самая большая органелла, которая помещена в оболочку из двух мембран. Имеет хроматин, а также содержит структуру «ядрышко».

1. Хранение генетической информации, а также передача её дочерним клеткам в процессе деления.

2. Хромосомы содержат ДНК.

3. В ядрышке формируются рибосомы.

4. Контроль жизнедеятельности клетки.

Рибосомы Мелкие органоиды, которые имеют сферическую или эллипсоидную форму. Диаметр обычно составляет 15-30 нанометров. 1. Обеспечивают синтез белка.
Цитоплазма

Внутренняя среда клетки, которая содержит ядро и прочие органоиды. Структура — мелкозернистая, полужидкая.

1. Транспортная функция.

2. Нужна для взаимодействия органоидов.

2. Регулирует скорость протекания обменных биохимических процессов.

Лизосомы Обычный сферический мембранный мешочек, который заполненный пищеварительными ферментами.

1. Различные функции, которые связаны с распадом молекул или структур.

Клеточные органеллы — видео

Мельчайшими единицами живого. Однако многие высокодифференцированные клетки эту способность утратили. Цитология как наука В конце 19 в. главное внимание цитологов было направлено на подробное изучение строения клеток, процесса их деления и выяснение их роли как важнейших единиц, обеспечивающих физическую основу наследственности и процесса развития. Развитие новых методов. Вначале при...

Как «прекрасный май, который цветет лишь однажды, и никогда более» (И. Гете), исчерпала себя и была смещена христианским Средневековьем . 2. Клетка как структурная и функциональная единица живого. Состав и строение клетки Современная клеточная теория включает следующие положения: 1. Все живые организмы состоят из клеток. Клетка – структурная, функциональная единица живого, ...

0,05 - 0,10 Кальций Магний Натрий Железо Цинк Медь Йод Фтор 0,04 - 2,00 0,02 - 0,03 0,02 - 0,03 0,01 - 0,015 0,0003 0,0002 0,0001 0,0001 Содержание в клетке химических соединений Соединения (в %) Неорганические Органические Вода Неорганические вещества 70 - 80 1,0 - 1,5 Белки Углеводы Жиры Нуклеиновые кислоты 10 - 20 0,2 ...

И эти два органоида, как отмечено выше, представляют единый аппарат синтеза и транспортировки образующихся в клетке белков. Комплекс Гольджи. Комплекс Гольджи – органоид клетки, названный так по имени итальянского ученого К. Гольджи, который впервые увидел его в цитоплазме нервных клеток (1898) и обозначил как сетчатый аппарат. Сейчас комплекс Гольджи обнаружен во всех клетках растительных и...

Похожие публикации