Кто изобрел первый линзовый телескоп. История телескопов. История создания телескопа

В начале XVII в. сразу несколько изготовителей очков в голландском городе Мидцельбурге объявляли себя изобретателями «приборов дальнего видения». Наиболее обоснованными представляются притязания Ханса Литшерсгся, который в 1608 г. пытался получить привилегаю на изготовление зрительных труб. Липперсгей будто бы увидел однажды, как его дети шрают с выпуклой и вогнутой линзами, рассматривая церковную колокольню.

Сложив обе линзы, они смогли увидеть в подробностях флюгер на самом верху. Липперсгей вставил обе линзы в цилиндрический футляр и так создал первую подзорную трубу. Это вдохновило в 1609 г. итальянского ученого Галилео Галилея на постройку собственного телескопа, с помощью которого он сделал много важных астрономических открытий: описал детали лунного ландшафта, увидел кольца Сатурна и четыре крупных спутника Юпитера.

Прямое и перевернутое изображение

Телескоп Галилея был весьма компактен, поскольку геометрическая длина трубы равнялась разнице фокусных расстояний окуляра и объектива. Лучи света проходят через окуляр прежде, чем достигнут фокуса объектива, в результате чего получается прямое, неперевернутое изображение. По этому принципу до сих пор конструируются театральные бинокли. Телескоп же, сконструированный в 1611 г. немецким астрономом Иоганном Кеплером, состоит из двух собирающих линз, а длина трубы равна сумме их фокусных расстояний. Такой прибор даст перевернутое изображение, однако для астрономических наблюдений это не существенно. Дополнительные оборачивающие линзы или призмы, помещенные в подзорную трубу, позволяют получить прямое изображение, что очень желательно, например, на охоте, зато уменьшают евстосильность, весьма затрудняя наблюдение далеких созвездий.

Взгляд в бесконечность

В 1663 г. шотландец Джеймс Грегори открыл принцип зеркального телескопа (рефлектора). В его системе главное зеркало собирает пучок света, а вспомогательное зеркало меньшего размера отражает лучи в фокус главного зеркала, где и возникает изображение. Первый ахроматический телескоп-рефрактор создал в 1729 г. английский астроном-любитель Честер Мур Холл. В XIX и XX вв., с совершенствованием теоретической базы и появлением специальных стекол, телескопы стали намного мощнее.

1614 г.: Демисциан изобрел слово «телескоп» (от греческого «теле» — «даль» и «скопейн» — «смотреть»).

1645 г.: Антон Мария Ширлей де Рейта построил один из первых телескопов.

1789 г.: Витьям Гершель сконструировал офомный зеркальный телескоп с диаметром зеркала 122 см.

1894 г.: Эрнст Аббе создал первый удобный в применении нолевой бинокль.

Современные телескопы мало похожи на первый телескоп Галилея и представляют собой сложнейшие технические кон-струкции. Но принцип их устройства остаётся прежним. С по-мощью линзы или параболического зеркала собирается свет от небесного объекта и строится изо-бражение в фокусе линзы или зеркала. Здесь помещается при-ёмник излучения, который фиксирует изображение для даль-нейшего изучения.

Небесные светила изучают, собирая, принимая, реги-стрируя и исследуя приходящее от звёзд излучение. Глаз то-же является прибором, собирающим и регистрирующим пада-ющий на него свет. Свет от звезды, проходящий через зрачок глаза, собирается хрусталиком на сетчатке. Энергия падающе-го света вызывает отклик нервных окончаний. В мозг посту-пает сигнал, и мы видим звезду. Но энергии, приходящей от звезды, может быть слишком мало (звезда слабая). Тогда сет-чатка не прореагирует, и мы звезды не увидим.

Принципиально телескоп от глаза отличается только раз-мерами, способом концентрации света и природой регистрато-ра света.

Важнейшими характеристиками телескопа являют-ся его разрешающая и проницающая способности .

Разрешающая способность

Разрешающая способность телескопа определяется наи-меньшим угловым расстоянием между светящимися точка-ми, которые могут быть видны (разрешены) как отдельные объекты.

Разрешающая способность телескопа определяется его размерами. Дифракция световых лучей на краю отверстия приводит к тому, что невозможно в телескопе различить две светящиеся точки, если направления на них образуют угол меньше предельного.

Предельный угол

Предельный угол для идеального объектива и видимого света определяется по формуле

где α — предельный угол, выраженный в угловых секундах; D — диаметр телескопа (в см). Для человеческого глаза пре-дельный угол равен 28” (фактически 1—1,5’), для крупнейше-го в мире телескопа диаметром 10 м предельный угол равен 0,015". Реально предельный угол в несколько раз больше из-за влияния атмосферы.

Проницающая способность

Проницающая способность телескопа определяется наи-меньшей регистрируемой освещённостью, создаваемой светя-щимся объектом.

Проницающая способность телескопа определяется прежде всего его диаметром: чем больше диаметр, тем больше света он собирает. Важную роль играют и приёмники излучения. Если 200 лет назад в телескоп просто смотрели и пытались зарисовать то, что видят, а 40 лет назад в основном фотогра-фировали созданное телескопом изображение, то теперь поль-зуются электронными приёмниками изображения, которые мо-гут регистрировать примерно 60% падающих на него фотонов (фотопластинка регистрирует примерно в 10—100 раз мень-шую долю).

Сейчас наступает новый этап в создании наземных телескопов, которые можно с полным основанием назвать при-борами XXI в. Во-первых, они очень большие — диаметр их главного зеркала 8—10 м. Во-вторых, они построены с использованием новых принципов. Их зер-кала подстраиваются под изменения, происходящие в атмос-фере, так что расфокусировка изображения, вызванная пе-репадами плотности воздуха и его потоками, сводится к минимуму. Такая оптика, «умеющая» приспосабливаться к быстроменяющимся условиям, называется адаптивной . Для по-вышения разрешающей способности телескопов применяются также методы оптической интерферометрии с большой базой.

К новому поколению телескопов относятся 10-метровые телескопы Кека (США), 10-метровый телескоп Хобби-Эберли и 8-метровые телескопы Джемини, Субару, телескоп VLT (Very Large Telescope — Очень Большой Телескоп) Европейской юж-ной обсерватории, а также находящийся в стадии постройки Большой Бинокулярный Телескоп (Large Binocular Telescope) в Аризоне (США).

Очень важно то обстоятельство, что во всех этих телеско-пах главное зеркало образовано отдельными зеркалами, чис-ло которых различно в разных телескопах. Так, в телескопе Субару смонтировано 261 зеркало, в VLT — 150 осевых и 64 боковых зеркала, в телескопе Джемини — 128 зеркал. В Большом Бинокулярном Телескопе (LBT) имеется два главных зеркала, состоящие также из многих элементов. Диаметр глав-ных зеркал всех этих телескопов лежит в диапазоне от 8,1 до 8,4 м.

Зеркала в современных телескопах управляемы. У каждого имеется система при-способлений, которые могут, давя на зеркало, нужным обра-зом изменять его форму, что стало возможным, когда начали изготовлять очень тонкие и лёгкие зеркала. Материал с сайта

С помощью телескопа необходимо получать как можно более ясное изображение удалённой звез-ды, которое должно выглядеть одной точкой. Большие объек-ты, вроде галактик , могут рассматриваться как множество то-чек. Свет от далёкой звезды распространяется в виде сфери-ческой волны, проходящей огромное расстояние в космичес-ком пространстве. Фронт волны, достигшей Земли, можно счи-тать плоским из-за гигантского радиуса сферы — расстояния до звезды.

Если на телескоп падает плоская волна, то в фокальной плоскости появляется точка, размер которой определяется толь-ко дифракцией света, т. е. выполняется условие предельного угла. Именно это имеет место в космическом телескопе Хаб-бла, который, несмотря на то, что его диаметр всего 2.4 м, по-лучает изображение лучше, чем 4—6-метровые телескопы ста-рой конструкции.

Прежде чем попасть в телескоп, волна проходит через зем-ную атмосферу и турбулентность воздуха, что нарушает пло-скую форму фронта. Изображение искажается. Адаптивная оп-тика призвана скомпенсировать отклонения и восстановить из-начальную (плоскую) форму волнового фронта.

Слово «телескоп» является производным от двух греческих слов, в переводе на русский язык означающих «далекий» и «наблюдать» .


Телескопом называют специальный оптический прибор, позволяющий приближать очень удаленные предметы, делать их отчетливо видимыми человеческому глазу. Для того чтобы такое увеличение было возможно, используют мощные линзы.

Кто придумал телескоп?

Считается, что первым использовать линзы для приближения удаленных предметов догадался ученый Галилео Галилей. В 1610-м году он сконструировал телескоп, через который разглядел кратеры на Луне, спутники Юпитера и прочие интересные детали, расположенные на космическом расстоянии. Но вместе с тем, при раскопках Трои археологи нашли хрустальные линзы, и это значит – не исключено, что умением приближать предметы люди обладали и раньше.

Обычно телескопы устанавливают – специальных сооружениях, предназначенных для наблюдений за различными явлениями природы. Обсерватории, имеющие вращающийся купол и расположенные в основном на возвышенностях, оснащают целыми комплексами телескопов.

Телескопы и инновации

Чем дальше шло развитие астрономии и прочих наук, тем совершеннее становились телескопы. Объекты стало возможно изучать в электромагнитном спектре, при помощи сложных систем детекторов и датчиков. Такое оборудование работает в различных диапазонах волн.


Сегодня есть телескопы, работающие в рентген-диапазоне и радио-диапазоне. Все эти телескопы кардинально отличаются друг от друга, но при этом имеют одну общую функцию: они дают человеку возможность детально изучать объекты, расположенные на очень далеком расстоянии.

Современные телескопы (точнее, радиотелескопы) – это мощное оборудование, которое анализирует и накапливает электромагнитное излучение удаленного объекта и направляет его в фокус. А уже там образуется увеличенное изображение объекта или формируется усиленный сигнал, позволяющий детально рассмотреть изучаемый объект. Космос также можно исследовать при помощи космических тепловизоров, которые передают изображение поверхностей удаленных объектов в инфракрасном диапазоне.

Наверное, самый знаменитый телескоп на планете – космический телескоп «Хаббл». Это инновационное оборудование расположено на орбите Земли и представляет собой скорее космическую обсерваторию. Телескоп был назван в честь астронома из США Эдвина Хаббла. Запустили «Хаббл» на орбиту в 1990-м году.

В течение последующих пятнадцати лет орбитальный телескоп получил более миллиона изображений двадцати двух тысяч космических тел, в том числе галактик, планет, звезд и туманностей. Уникальный телескоп делал снимки и передавал их на Землю.

Типы телескопов

Оптические телескопы могут работать с разными типами фокусирующего элемента. Соответственно, их делят на рефракторы (линза) и рефлекторы (зеркало).


Телескоп-рефрактор имеет объектив на передней стороне трубы, в задней части – окуляр. Объектив такого телескопа – это обычно составная линза из нескольких элементов с большим фокусным расстоянием. Самый большой в мире рефрактор имеет линзу диаметром 101 см.

В рефлекторе вместо объектива предусмотрено вогнутое зеркало, которое расположено в задней части трубы. Рефлекторными являются все большие астрономические телескопы. Рефлекторами пользуются и любители – это оборудование обходится не так дорого, как рефрактор, и собрать его можно своими силами.

В таком телескопе свет собирается в точке перед первичным зеркалом (первичным фокусом), а затем посредством вторичного зеркала направляется к более удобному для работы месту. Различают несколько общепринятых систем фокусировки: ньютоновский фокус, кассегреновский фокус, фокус Куде, фокус Несмита.

В больших телескопах наблюдатель может работать в первичном фокусе в специальной кабине, установленной в главной трубе. Многоцелевые профессиональные телескопы конструируют таким образом, чтобы наблюдатель мог выбирать фокус. Ньютоновский фокус используется только в любительских оптических телескопах.

Первичные зеркала в рефлекторах обычно изготавливают из стекла или керамики, которая не реагирует на перепады температуры. Поверхность зеркала обрабатывают до получения сферической или параболической формы.


Для получения отражательных свойств на поверхность наносится тонкий слой алюминия. По-латыни «зеркальный» звучит как «speculum», поэтому для обозначения отражательного телескопа до сих пор иногда используют сокращение «spec».

Часто изобретение первого телескопа приписывают Гансу Липпершлею из Голландии, 1570-1619 годы, однако почти наверняка он не являлся первооткрывателем. Скорее всего, его заслуга в том, что он первый сделал новый прибор телескоп популярным и востребованным. А также именно он подал в 1608 году заявку на патент на пару линз, размещенный в трубке. Он назвал устройство подзорной трубой. Однако его патент был отклонен, поскольку его устройство показалось слишком простым.

Задолго до него Томас Диггес, астроном, в 1450 году попытался увеличить звезды с помощью выпуклой линзы и вогнутого зеркала. Однако у него не хватило терпения доработать устройство, и полу-изобретение вскоре было благополучно забыто. Сегодня Диггеса помнят за описание гелиоцентрической системы.

К концу 1609 года небольшие подзорные трубы, благодаря Липпершлею, стали распространены по всей Франции и Италии. В августе 1609 года Томас Харриот доработал и усовершенствовал изобретение, что позволило астрономам рассмотреть кратеры и горы на Луне.

Галилео Галилей и телескоп

Большой прорыв произошел, когда итальянский математик Галилео Галилей узнал о попытке голландца запатентовать линзовую трубу. Вдохновленный открытием, Галлей решил сделать такой прибор для себя. В августе 1609 года именно Галилео изготовил первый в мире полноценный телескоп. Сначала, это была всего лишь зрительная труба - ком-бинация очковых линз, сегодня бы ее назвали рефрактор. До Галилео, скорее всего, мало кто дога-дался использовать на пользу астро-номии эту развлекательную трубку. Благодаря прибору, сам Галилей открыл горы и кратеры на Луне, доказал сферичность Луны, открыл четыре спутника Юпитера, кольца Сатурна и сделал множество других полезных открытий.

Сегодняшнему человеку телескоп Галилео не покажется особенным, любой десятилетний ребенок может легко собрать гораздо лучший прибор с использованием современных линз. Но телескоп Галилео был единственным реальным работоспособным телескопом на тот день с 20-кратным увеличением, но с маленьким полем зрения, немного размытым изображением и другими недостатками. Именно Галилео открыл век ре-фрактора в астрономии — 17 век.

XVII век в истории наблюдений за звездами

Время и развитие науки позволяло создавать более мощные телескопы, которые давали видеть много больше. Астрономы начали использовать объективы с большим фокусным расстоянием. Сами телескопы превратились в большие неподъемные трубы по размеру и, конечно, были не удобны в использовании. Тогда для них изобрели штативы. Телескопы постепенно улучшали, дорабатывали. Однако его максимальный диаметр не превышал нескольких сантиметров — не удавалось изготавливать линзы большого размера.

К 1656 году Христиан Гюйенс сделал телескоп, увеличивающий в 100 раз наблюдаемые объекты, размер его был более 7 метров, апертура около 150 мм. Этот телескоп уже относят к уровню сегодняшних любительских телескопов для начинающих. К 1670-х годам был построен уже 45-метровый телескоп, который еще больше увеличивал объекты и давал больший угол зрения.

Исаак Ньютон и изобретение рефлектора

Но даже обычный ветер мог служить препятствием для получения четкого и качественного изображения. Телескоп стал расти в длину. Первооткрыватели, пытаясь выжать максимум из этого прибора, опирались на открытый ими оптический закон — уменьшение хроматической абер-рации линзы происходит с увеличением ее фокусно-го расстояния. Чтобы убрать хроматические помехи, исследователи делали телескопы самой не-вероятной длины. Эти трубы, которые назвали тогда телескопами, достигали 70 метров в длину и доставляли множество неудобств в работе с ними и настройке их. Недостатки рефракторов заставили великие умы искать решения к улучшению телескопов. Ответ и новый способ был найден: собирание и фокусировке лучей стала производиться с помощью вогнутого зеркала. Рефрактор переродился в рефлектор, полностью освободившийся от хроматизма.

Заслуга эта целиком и полностью принадлежит Исааку Ньютону , именно он сумел дать новую жизнь телескопам с помощью зеркала. Его первый рефлектор имел диаметр всего четыре сантиметра. А первое зеркало для телескопа диаметром 30 мм он сделал из сплава меди, олова и мышьяка в 1704 году. Изображение стало четким. Кстати, его первый телескоп до сих пор бережно хранится в астрономическом музее Лондона.

Но еще долгое время оптикам никак не удавалось делать полноценные зеркала для рефлекторов. Годом рождения нового типа телескопа принято считать 1720 год, когда англичане построили первый функциональный ре-флектор диаметром в 15 сантиметров. Это был прорыв. В Европе появился спрос на удобоносимые, почти компактные телескопы в два метра длиной. О 40-метровых трубах рефракторов стали забывать.

К концу 18 века компактные удобные телескопы пришли на замену громоздким рефлекторам. Металлические зеркала тоже оказались не слишком практичны - дорогие в производстве, а также тускнеющие от времени. К 1758 году с изобретением двух новых сортов стекла: легкого - крон и тяжелого - флинта, появилась возможность создания двухлинзовых объективов. Чем благополучно и воспользовался ученый Дж. Доллонд , который изготовил двухлинзовый объектив, впоследствии названный доллондовым.

Телескопы Гершеля и Росса


После изобретения ахроматических объективов победа рефрактора была абсолютная, оставалось лишь улучшать линзо-вые телескопы. О вогнутых зеркалах забыли. Возродить их к жизни удалось руками астрономов-любителей. Вильям Гершель, английский музыкант, в 1781 году открывший планету Уран. Его открытию не было равным в астрономии с глубокой древности. Причем Уран был открыт с помощью небольшого самодельного рефлектора. Успех побудил Гершеля начать изготовление рефлекторов большего разме-ра. Гершель собственноручно в мастерской сплавлял зеркала из меди и олова. Главный труд его жизни - большой телескоп с зеркалом диаметром 122 см. Это диа-метр его самого большого телескопа. Открытия не заставили себя ждать, благодаря этому телескопу, Гершель открыл шестой и седьмой спутники планеты Сатурн. Другой, ставший не менее известным, астроном-любитель английский землевладелец лорд Росс изобрел рефлектор с зер-калом с диаметром в 182 сантиметра. Благодаря телескопу, он открыл ряд неизвестных спиральных туманно-стей. Телескопы Гершеля и Росса обладали множеством недостатков. Объективы из зеркального металла оказались слишком тяжелыми, отражали лишь малую часть падающего на них света и тускнели. Требовался новый совершенный материал для зеркал. Этим материалом оказалось стекло. Французский физик Леон Фуко в 1856 году попробовал вставить в рефлектор зеркалом из посеребренного стекла. И опыт удался. Уже в 90-х годах астроном-любитель из Англии построил рефлектор для фотографиче-ских наблюдений со стеклянным зерка-лом в 152 сантиметра в диаметре. Очередной прорыв в телескопостроении был очевиден.

Этот прорыв не обошелся без участия русских ученых. Я.В. Брюс прославился разработкой специальных металлических зеркал для телескопов. Ломоносов и Гершель, независимо друг от друга, изобрели совершенно новую конструкцию телескопа, в которой главное зеркало наклоняется без вторичного, тем самым уменьшая потери света.

Немецкий оптик Фраунгофер поставил на конвейер производство и качество линз. И сегодня в Тартуской обсерватории стоит телескоп с целой, работающей линзой Фраунгофера. Но рефракторы немецкого оптика также были не без изъяна - хроматизма.

Расцвет рефракторной астрономии

Двухзеркальная система в телескопе предложена французом Кассегреном. Реализовать свою идею в полной мере Кассегрен не смог из-за отсутствия технической возможности изобретения нужных зеркал, но сегодня его чертежи реализованы. Именно телескопы Ньютона и Кассегрена считаются первыми «современными» телескопами, изобретенными в конце 19 века. Кстати, космический телескоп Хаббл работает как раз по принципу телескопа Кассегрена. А фундаментальный принцип Ньютона с применением одного вогнутого зеркала использовался в Специальной астрофизической обсерватории в России с 1974 года. Расцвет рефракторной астрономии произошел в 19 веке, тогда диа-метр ахроматических объективов постепенно рос. Если в 1824 го-ду диаметр был еще 24 сантиметра, то в 1866 году его размер вырос вдвое, в 1885 году диаметр стал составлять 76 сантиметров (Пулковская обсерватория в России), в к 1897 году изобретен иеркский рефрактор. Можно посчитать, что за 75 лет линзовый объектив увеличивался со скоро-стью одного сантиметра в год.

К концу 19 века изобрели новый метод производства линз. Стеклянные поверхности начали обрабатывать серебряной пленкой, которую наносили на стеклянное зеркало путем воздействия виноградного сахара на соли азотнокислого серебра. Эти принципиально новые линзы отражали до 95% света, в отличие от старинных бронзовых линз, отражавших всего 60% света. Л. Фуко создал рефлекторы с параболическими зеркалами, меняя форму поверхности зеркал. В конце 19 века Кросслей, астроном-любитель, обратил свое внимание на алюминиевые зеркала. Купленное им вогнутое стеклянное параболическое зеркало диаметром 91 см сразу было вставлено в телескоп. Сегодня телескопы с подобными громадными зеркалами устанавливаются в современных обсерваториях. В то время как рост рефрактора замедлился, разработка зеркального телескопа набирала обороты. С 1908 по 1935 года различные обсерватории мира соорудили более полутора десятков ре-флекторов с объективом, превышающим иеркский. Самый большой телескоп установлен в обсерватории Моунт-Внльсон, его диаметр 256 сантиметров. И даже этот предел соврем скоро превзойден вдвое. В Калифорнии смонтирован американский рефлектор-гигант, на сегодня его возраст более двадцати лет.

Новейшая история телескопов

Более 40 лет назад в 1976 году ученые СССР построили 6-метровый телескоп БТА - Большой Телескоп Азимутальный. До конца 20 века БРА считался крупнейшим в мире телескопом Изобретатели БТА были новаторами в оригинальных технических решениях, таких как альт-азимутальная установка с компьютерным ведением. Сегодня это новшества применяются практически во всех телескопах-гигантах. В начале 21 века БТА оттеснили во второй десяток крупных телескопов мира. А постепенная деградация зеркала от времени - на сегодня его качество упало на 30% от первоначального - превращает его лишь в исторический памятник науке.

К новому поколению телескопов относятся два больших телескопа 10-метровых близнеца KECK I и KECK II для оптических инфракрасных наблюдений. Они были установлены в 1994 и 1996 году в США. Их собрали благодаря помощи фонда У. Кека, в честь которого они и названы. Он предоставил более 140 000 долларов на их строительство. Эти телескопы размером с восьмиэтажный дом и весом более 300 тонн каждый, но работают они с высочайшей точностью. Принцип работы - главное зеркало диаметром 10 метров, состоящее из 36 шестиугольных сегментов, работающих как одно отражательное зеркало. Установлены эти телескопы в одном из оптимальных на Земле мест для астрономических наблюдений - на Гаваях, на склоне потухшего вулкана Мануа Кеа высотой 4 200 м. К 2002 году эти два телескопа, расположенных на расстоянии 85 м друг от друга, начали работать в режиме интерферометра, давая такое же угловое разрешение, как 85-метровый телескоп.

А в июне 2019 года NASA планирует вывести на орбиту уникальный инфракрасный телескоп (JWST) с 6,5-метровым зеркалом.

История телескопа прошла долгий путь - от итальянских стекольщиков до современных гигантских телескопов-спутников. Современные крупные обсерватории давно компьютеризированы. Однако любительские телескопы и многие аппараты, типа Хаббл, все еще базируются на принципах работы, изобретенных Галилеем.

Ирина Калина, 15.04.2014
Обновление: Татьяна Сидорова, 02.11.2018
Перепечатка без активной ссылки запрещена!


Брайан Грин

Слово «телескоп» в переводе с греческого обозначает «далеко смотреть» (τῆλε - далеко + σκοπέω - смотрю). Это прибор, предназначенный для наблюдения небесных тел.

Самые первые чертежи простейшего линзового телескопа (однолинзового и двухлинзового) были обнаружены ещё в записях Леонардо Да Винчи (1509 год). Сохранилась его запись: «Сделай стекла, чтобы смотреть на полную Луну». Леонардо строит или, по крайней мере, рисует станки для шлифовки вогнутых зеркал и разбирает производство очковых линз. Несомненно, что Леонардо не только мечтал о телескопических устройствах, но действительно их осуществлял. В кодексе А (лист 12) находятся следующие строки, поясненные рисунком: «Чем дальше отодвигаешь ты стекло от глаза, тем большими покажет оно предметы для глаз 50 лет; если глаза для сравнения глядят один через очковое стекло, другой вне его, то для одного предмет покажется большим, а для другого малым; но для этого видимые вещи должны быть удалены от глаза на 200 футов» . Леонардо передает здесь не все известное, но крайне просто повторимое наблюдение о значительных увеличениях, достигаемых при рассматривании простым глазом действительного изображения удаленного предмета от выпуклой линзы, если фокусное расстояния линзы больше, чем расстояние наилучшего зрения».
Годом изобретения телескопа, а точнее, зрительной трубы , считают 1608 год , а автором - голландского очкового мастера Иоанна Липперсгея , который продемонстрировал своё изобретение в Гааге. Но патент на изобретение ему не выдали, так как оказалось, что такие зрительные трубы были уже у других. Затем выяснилось, что такие трубы были еще раньше: в опубликованной в 1604 г. Кеплером работе было указано, что он рассмотрел ход лучей в оптической системе, состоящей из двояковыпуклой и двояковогнутой линз.

Таким образом, первенство изобретения прообраза телескопа (зрительной трубы) доказать трудно.

В 1609 году он создал свою первую зрительную трубу с трёхкратным увеличением. В том же году он построил телескоп длиной около полуметра с восьмикратным увеличением. Позже им был создан телескоп, дававший 32-кратное увеличение: длина телескопа была около метра, а диаметр объектива - 4,5 см. В сравнением с сегодняшними телескопами, это был очень несовершенный телескоп, обладавший всеми возможными аберрациями (ошибками или погрешностями изображения в оптической системе). Несмотря на это, с помощью этого несовершенного телескопа Галилей сделал ряд открытий.
Но сам Галилей свои астрономические зрительные трубы называл perspicillum .
Название «телескоп» предложил в 1611 году греческий математик Джованни Демизиани .
Первый телескоп Галилея имел апертуру (способность собирать свет и противостоять размытию деталей изображения) 4 сантиметра, фокусное расстояние около 50 сантиметров и степень увеличения 3x. Второй телескоп имел апертуру 4,5 сантиметра, фокусное расстояние 125 сантиметров, степень увеличения 34х. Несмотря на то, что телескопы Галилея были весьма несовершенны, в течение двух первых лет наблюдений ему удалось обнаружить четыре спутника планеты Юпитер, фазы Венеры, пятна на Солнце, горы на поверхности Луны (дополнительно была измерена их высота), наличие у диска Сатурна придатков в двух противоположных точках (природу этого явления Галилей разгадать не смог).

Устройство телескопа

Телескоп-рефрактор содержит два основных узла: линзовый объектив и окуляр. Объектив создаёт уменьшенное обратное изображение бесконечно удалённого предмета в фокальной плоскости (плоскость, на которой расположены точки, в которых собираются попавшие в систему плоскопараллельные пучки лучей). Это изображение рассматривается в окуляр как в лупу. В силу того, что каждая отдельно взятая линза обладает различными аберрациями (хроматической, сферической и проч.), обычно используются сложные объективы. Такие объективы представляют собой выпуклые и вогнутые линзы, составленные и склеенные с тем, чтобы минимизировать аберрации.

Телескоп Галилео Галилея

Телескоп Галилея имел в качестве объектива одну собирающую линзу, а окуляром служила рассеивающая линза. Такая оптическая схема даёт неперевернутое (земное) изображение. Главными недостатками этого телескопа являются очень малое поле зрения и сильная хроматическая аберрация. Такая система все ещё используется в театральных биноклях и иногда в самодельных любительских телескопах. В связи с тем, что телескоп Галилея дает прямое изображение, он может быть использован и как подзорная труба.

Похожие публикации