Гейнца-эрлиха тельца. Клинические признаки гемобартонеллеза. Основные термины и понятия

(R. Heinz, 1865-1924, нем. патолог; P. Ehrlich, 1854-1915, нем. ученый; син. Эрлиха тельца) округлые эозинофильные (при окраске по Романовскому-Гимзе) или темно-фиолетовые (при окраске по Маю-Грюнвальду) включения, обнаруживаемые в зрелых эритроцитах при метгемоглобинемии.

  • - ядрышкоподобные тельца, возникающие на стадии синапсиса у некоторых растений Rich.)...

    Словарь ботанических терминов

  • - взаимодействие 4-диметиламинобензальдегида с триптофаном или его остатками в белках по схеме: Р-цию осуществляют в кислой среде...

    Химическая энциклопедия

  • - гомогенные или слоистые округлые микроскопические включения, образующиеся в органах и тканях вследствие отложения в них белков: не следует отождествлять с амилоидом...

    Большой медицинский словарь

  • - см. алейроновые зерна...

    Словарь ботанических терминов

  • - вирионы, выявляемые в содержимом везикул больного ветряной оспой...

    Большой медицинский словарь

  • - палочковидные белковые включения красного цвета в цитоплазме моноцитов, миелоцитов и миелобластов, выявляемые при окраске по Лейшману...

    Большой медицинский словарь

  • - нейтральный краситель, состоящий из смеси насыщенных водных растворов оранжа G, кислого фуксина и метилового зеленого; применяется в гистологической технике...

    Большой медицинский словарь

  • - микроскопические структуры в невриномах, образованные веретенообразными клетками с палочковидными ядрами, между которыми расположены тонкие аргирофильные волокна...

    Большой медицинский словарь

  • - окраска крови раствором метилового фиолетового в 0,6% водном растворе хлористого натрия; используется для выявления включений метгемоглобина в зрелых эритроцитах...

    Большой медицинский словарь

  • Большой медицинский словарь

  • - см. Эрлиха гематоксилин...

    Большой медицинский словарь

  • - см. Лаброцит...

    Большой медицинский словарь

  • - мн., Р. теле/ц...

    Орфографический словарь русского языка

  • - тельца́ мн. Небольшие образования в составе какой-либо живой ткани...

    Толковый словарь Ефремовой

  • - тельц"а, тел"ец, тельц"...

    Русский орфографический словарь

  • - /B сущ...

    Словарь ударений русского языка

"Гейнца-Эрлиха тельца" в книгах

Дело Эрлиха и Альтера

Из книги В тени Катыни автора Свяневич Станислав

Дело Эрлиха и Альтера Кроме исчезновения пленных офицеров, был и еще один инцидент, случившийся во время моего приезда в Куйбышев. Я имею в виду дело Альтера и Эрлиха. Генрик Эрлих и Виктор Альтер были социалистами, активными членами Бунда - еврейского крыла Польской

Вдова Гейнца Неймана

Из книги Дело Кравченко автора Берберова Нина Николаевна

Вдова Гейнца Неймана После перерыва слово предоставляется женщине, еще молодой, небольшого роста, говорящей по-немецки. Это - немецкая коммунистка, вдова погибшего в России Гейнца Неймана, члена германского Политбюро и члена (до войны) Коминтерна.Ее свидетельство было

Заговор Тельца

Из книги Как избавиться от порчи и сглаза. Приметы, обереги, заговоры, обряды, молитвы автора Южин Владимир Иванович

Заговор Тельца Если на дворе весна, время с 21 апреля по 20 мая, то лучше всего подойдет заговор с преобладанием стихии земли и упоминанием Венеры времен раннего христианства – Богородицы, ведь именно мягкая и женственная Венера является планетой – управителем

Питание Тельца

автора Мудрова Анна Юрьевна

Питание Тельца Правильно подобранное и сбалансированное питание может сыграть неоценимую роль для поддержания в форме своего тела и организма. В питании Тельцам следует употреблять больше растительной пищи и молочных продуктов. Рекомендуются тушеные овощи и салаты из

Блюда для Тельца

Из книги 100 рецептов для разных знаков зодиака. Вкусно, полезно, душевно, целебно автора Мудрова Анна Юрьевна

Блюда для Тельца Сельдь рубленая с морской капустойСостав: сельдь 250–300 г, хлеб пшеничный 50–100 г, вода 1/2 стакана, лук репчатый 1–2 шт., яблоки 1 шт., яйцо куриное 1 шт., масло растительное 1–2 ст. ложки, морская капуста свежезамороженная 100–150 г, уксус 3 %-ный 1–2 ст. ложки.Сельдь

Под знаком Тельца

Из книги Святая Русь. Космические истоки автора Аноприенко А. Я.

Под знаком Тельца Южная ориентация «земного Ориона» предполагает наличие на юго-западе от него земного аналога созвездия Тельца, что со всей очевидностью выражено во множестве дошедших до нас древнейших названиях этого региона.Во-первых, это Таврия - древнее название

Растения Тельца

Из книги Комнатные растения: энергетические защитники или вампиры автора Певная Татьяна

Растения Тельца Крепкие, низкорослые и красиво цветущие растения Тельца можно порекомендовать завести всем тем, кого мучают денежные проблемы. К ним относятся фиалка, каланхоэ, цикламен. Невысокие, но очень крепкие, с мощными стеблями, они не только наполнят дом

4.1.2. Созвездие Тельца

Из книги Новая Хронология Египта - I [с иллюстрациями] автора

4.1.2. Созвездие Тельца За Овном на эклиптике располагается созвездие Тельца. На рис.4.3 приведены изображения Тельца на египетских зодиаках и на средневековой звездной карте А.Дюрера. Во всех случаях египетские рисунки не оставляют сомнения, что это – именно Телец, а не

Миф № 11. Наци № 2 и будущий руководитель люфтваффе рейхсмаршал Герман Геринг учился летать в секретной советской летной школе в Липецке (там были подготовлены многие гитлеровские летчики, впоследствии бомбившие Советский Союз). Знаменитого танкиста Третьего рейха генерала Гейнца Гудериана научили в

Из книги На пути к Мировой войне автора Мартиросян Арсен Беникович

Миф № 11. Наци № 2 и будущий руководитель люфтваффе рейхсмаршал Герман Геринг учился летать в секретной советской летной школе в Липецке (там были подготовлены многие гитлеровские летчики, впоследствии бомбившие Советский Союз). Знаменитого танкиста Третьего рейха

«ДЕЛО ЭРЛИХА-АЛЬТЕРА».

Из книги Тайная политика Сталина. Власть и антисемитизм автора Костырченко Геннадий Васильевич

«ДЕЛО ЭРЛИХА-АЛЬТЕРА». Важное место в этих планах Берии занимали находившиеся на «попечении» его ведомства два польских гражданина еврейского происхождения - Генрик Эрлих и Виктор Альтер. Оба являлись видными руководителями Бунда и потому были арестованы советской

6.4. Пляшущие тельца

Из книги автора

6.4. Пляшущие тельца Все живое состоит из клеток. Внутри каждой клетки есть ядро. Внутри его - крошечные тельца, которые названы хромосомами. Мендель не знал о них. Он лишь предполагал, что наследственные задатки где-то хранятся внутри клеток. Иначе почему признак, которого

4.2.5.4. Созвездие Тельца

Из книги Древние зодиаки Египта и Европы. Датировки 2003–2004 годов [Новая хронология Египта, часть 2] автора Носовский Глеб Владимирович

4.2.5.4. Созвездие Тельца Лист 7 внизу, рис. 4.15 и рис. 4.52. Перед нами обычное изображение Тельца, а именно, – бык с рогами. На рис. 4.53 показано созвездие Тельца на звездной карте А. Дюрера. Больше ни одного быка (тельца) в верхней и нижней каймах ковра из Байе нет. Вообще, на ковре

13.2. Принесение в жертву Тельца-Христа Культ Митры и жертвоприношение Тельца-Быка

Из книги автора

13.2. Принесение в жертву Тельца-Христа Культ Митры и жертвоприношение Тельца-Быка Проанализируем рассказ Тита Ливия.1) В книге «Реконструкция», гл. 16:2, мы уже много говорили, что Овен или Агнец - один из известнейших образов Христа. Который тесно связан именно с распятием

Из книги Литературные заметки. Книга 1 ("Последние новости": 1928-1931) автора Адамович Георгий Викторович

< «ЦВЕТЫ ЗЛА» ШАРЛЯ БОДЛЕРА В ПЕРЕВОДЕ АДР. ЛАМБЛЕ. – «СОФЬЯ ПЕРОВСКАЯ ВОЛЬФА ЭРЛИХА. – «ИГРА В ЛЮБОВЬ» ЛЬВА ГУМИЛЕВСКОГО > «Переводчик в прозе – раб, переводчик в стихах – соперник». Это знаменитое изречение Жуковского вошло в нашу литературу, как догма. «Рабские»

Пьедестал тельца Пьедестал тельца Вера Галактионова, Екатерина Глушик 11.07.2012

Из книги Газета Завтра 971 (28 2012) автора Завтра Газета

Темы _

14.1. Метаболизм эритроцитов

14.2. Особенности метаболизма фагоцитирующих клеток

14.3. Основные биохимические механизмы гемостаза

14.4. Основные свойства белковых фракций крови и значение их определения для диагностики заболеваний

Цели изучения Уметь:

1. Объяснять причины, вызывающие гемолиз эритроцитов.

2. Описывать молекулярные механизмы возникновения нарушений свертывания крови.

3. Аргументировать целесообразность применения некоторых лекарственных препаратов для лечения нарушений свертывания крови.

4. Обосновывать основные причины возникновения гипо- и гиперпроте-

инемий. Знать:

1. Особенности метаболизма эритроцитов, пути образования и обезвреживания в них активных форм кислорода.

2. Роль активных форм кислорода в фагоцитозе.

3. Структуру ферментных комплексов прокоагулянтного этапа свертывания крови, последовательность их взаимодействия, механизмы регуляции и этапы образования фибринового тромба.

4. Роль и молекулярные основы функционирования противосвертывающей и фибринолитической систем крови.

5. Молекулярные механизмы нарушений свертывания крови и современные способы их коррекции.

6. Основные свойства и функции белков плазмы крови.

ТЕМА 14.1. МЕТАБОЛИЗМ ЭРИТРОЦИТОВ

Эритроциты - высокоспециализированные клетки, которые переносят кислород от легких к тканям и диоксид углерода, образующийся при метаболизме из тканей к альвеолам легких. В результате дифференцировки эритроциты теряют ядро, рибосомы, митохондрии, эндоплазматический ретикулум. Эти клетки имеют только плазматическую мембрану и цитоплазму. Они не содержат ядра, поэтому неспособны к самовоспроизведению и репарации возникающих в них повреждений. Двояковогнутая форма эритроцитов имеет большую площадь поверхности по сравнению с клетками сферической формы такого же размера. Это облегчает газообмен между клеткой и внеклеточной средой. Вместе с тем такая форма и особенности строения

цитоскелета и плазматической мембраны обеспечивают большую пластичность эритроцитов при прохождении ими мелких капилляров.

Метаболизм глюкозы в эритроцитах представлен анаэробным гликолизом и пентозофосфатным путем превращения глюкозы. Эти процессы обусловливают сохранение структуры и функций гемоглобина, целостность клеточной мембраны и образование энергии для работы ионных насосов.

1. Гликолиз обеспечивает энергией работу транспортных АТФаз, а также протекающие с затратой АТФ гексокиназную и фосфофруктокиназную реакции гликолиза. NADH, образующийся в ходе анаэробного гликолиза, является коферментом метгемоглобинредуктазы, катализирующей восстановление метгемоглобина в гемоглобин. Кроме того, в эритроцитах присутствует фермент бисфосфоглицератмутаза, превращающий промежуточный метаболит этого процесса 1,3-бисфосфоглицерат в 2,3-бисфосфоглицерат. Образующийся только в эритроцитах 2,3-бисфосфоглицерат служит важным аллостерическим регулятором связывания кислорода с гемоглобином. На окислительном этапе пентозофосфатного пути превращения глюкозы образуется NADPH, участвующий в восстановлении глутатиона. Последний используется в антиоксидантной защите эритроцитов (рис. 14.1).

Рис. 14.1. Образование и обезвреживание активных форм кислорода в эритроцитах:

1 - источник супероксидного аниона в эритроцитах - спонтанное окисление Fe 2 + в геме гемоглобина; 2 - супероксиддисмутаза превращает супероксидный анион в пероксид водорода и О 2 ; 3 - пероксид водорода расщепляется каталазой или глутатионпероксидазой; 4 - глутатионредуктаза восстанавливает окисленный глутатион; 5 - на окислительном этапе пентозофосфатного пути превращения глюкозы образуется NADPH, необходимый для восстановления глутатиона; 6 - в глицеральдегидфосфатдегидрогеназной реакции гликолиза образуется NADH, участвующий в восстановлении железа метгемоглобина метгемоглобинредуктазной системой

2. Большое содержание кислорода в эритроцитах определяет высокую скорость образования супероксидного анион-радикала O 2 - , пероксида водорода Н 2 О 2 и гидроксил-радикала ОН".

Постоянным источником активных форм кислорода в эритроцитах является неферментативное окисление железа гемоглобина:

Активные формы кислорода могут вызвать гемолиз эритроцитов. Эритроциты содержат ферментативную систему, предотвращающую токсическое действие радикалов кислорода и разрушение мембран эритроцитов.

3. Нарушение любого звена ферментативной системы обезвреживания активных форм кислорода приводит к снижению скорости этого процесса. При генетическом дефекте глюкозо-6-фосфатдегидрогеназы и приеме некоторых лекарств, являющихся сильными окислителями, потенциал глутатионовой защиты может оказаться недостаточным. Это приводит к повышению содержания в клетках активных форм кислорода, вызывающих окисление SH-групп молекул гемоглобина. Образование дисульфидных связей между протомерами гемоглобина и метгемоглобина приводит к их агрегации - образованию телец Хайнца (рис. 14.2).

Рис. 14.2. Схема образования телец Хайнца - агрегации молекул гемоглобина.

В норме супероксиддисмутаза катализирует образование пероксида водорода, который под действием глутатионпероксидазы превращается в Н 2 О. При недостаточной активности ферментов обезвреживания активных форм кислорода происходит окисление SH-групп в остатках цистеина протомеров метгемоглобина и образование дисульфидных связей. Такие структуры называются тельцами Хайнца

Последние способствуют разрушению эритроцитов при попадании их в мелкие капилляры. Активные формы кислорода, вызывая перекисное окисление липидов мембран, разрушают мембраны.

ТЕМА 14.2. ОСОБЕННОСТИ МЕТАБОЛИЗМА ФАГОЦИТИРУЮЩИХ КЛЕТОК

Фагоцитоз обеспечивает защиту организма от бактерий. Моноциты и нейтрофилы мигрируют из кровяного русла к очагу воспаления и эндоцитозом захватывают бактерии, образуя фагосому.

1. Фагоцитоз требует увеличения потребления кислорода, который является главным источником O 2 - , H 2 O 2 , OH" в фагоцитирующих клетках (рис. 14.3). Этот процесс, продолжающийся 30-40 минут, сопровождается резким повышением поглощения кислорода и поэтому называется респираторным взрывом.

2. В макрофагах бактерицидное действие оказывает оксид азота NO, источником которого является реакция превращения аргинина в NO и цитруллин под действием NO-синтазы. Супероксид анион образует с оксидом азота соединения, обладающие сильными бактерицидными свойствами:

NO + О 2 - → ONOO - → ОН* + NO 2 .

Пероксинитрит ONOO - , оксид азота, диоксид азота, гидроксил радикал вызывают окислительное повреждение белков, нуклеиновых кислот и липидов бактериальных клеток.

Рис. 14.3. Образование активных форм кислорода в процессе респираторного взрыва активированными макрофагами, нейтрофилами и эозинофилами.

Активация NADPH-оксидазы, которая локализована на мембране клетки, вызывает образование супероксидных анионов. При фагоцитозе мембрана впячивается, затем образуется эндосома и супероксидсинтезирующая система вместе с бактериальной клеткой оказывается в эндосоме. Супероксидные анионы генерируют образование других активных молекул, включая Н 2 О 2 и гидроксильные радикалы. Миелопероксидаза - гемсодержащий фермент, находящийся в гранулах нейтрофилов. Она поступает в эндосому, где образует НС1О. В результате мембраны и другие структуры бактериальной клетки разрушаются

ТЕМА 14.3. ОСНОВНЫЕ БИОХИМИЧЕСКИЕ МЕХАНИЗМЫ

ГЕМОСТАЗА

Прекращение кровотечения после травмы кровеносных сосудов, раство рение сгустков крови - тромбов - и сохранение крови в жидком состоянии обеспечивает гемостаз. Этот процесс включает четыре этапа:

Рефлекторное сокращение поврежденного сосуда в первые секунды после травмы;

Образование в течение 3-5 минут тромбоцитарной пробки (белого тромба в результате взаимодействия поврежденного эндотелия с тромбоцитами;

Формирование в продолжение 10-30 мин фибринового (красного" тромба: растворимый белок плазмы крови фибриноген под действием фермента тромбина превращается в нерастворимый фибрин, который откладывается между тромбоцитами белого тромба;

Фибринолиз - растворение тромба под действием протеолитических ферментов, адсорбированных на фибриновом сгустке. На этом этапе просвет кровеносного сосуда освобождается от отложений фибрина и предотвращается закупорка сосуда фибриновым тромбом.

1. Свертывание крови - важнейшая часть гемостаза. В процессе формирова ния фибринового тромба можно выделить четыре этапа.

Превращание фибриногена в фибрин-мономер. Молекула фибриногена состоит из шести полипептидных цепей трех типов - 2Аа, 2Вр, 2γ. Они связаны между собой дисульфидными связями и образуют три домена А- и В-участки находятся на N-концах цепей Аа и Вр соответственно Эти участки содержат много остатков дикарбоновых аминокислот и поэтому заряжены отрицательно, что препятствует агрегации молекул фибриногена (рис. 14.4). Тромбин, который относится к группе серино вых протеаз, отщепляет А- и В-пептиды от фибриногена; в результате образуется фибрин-мономер.

Рис. 14.4. Строение фибриногена.

Фиброген состоит из шести полипептидных цепей 3 типов: 2Λα , 2Ββ и 2γ, образующих три домена (обозначены штрихами). Λ и В - отрицательно заряженные участки цепей Λα и Ββ препятствуют агрегации молекул фибриногена

Образование нерастворимого геля фибрина. В молекулах фибринамономера имеются участки, комплементарные к другим молекулам фибрина, - центры связывания, между которыми образуются нековалентные связи. Это приводит к полимеризации молекул фибрина и формированию нерастворимого геля фибрина (рис. 14.5). Он непрочен, так как образован слабыми нековалентными связями.

Рис. 14.5. Образование геля фибрина.

Фибриноген, освобождаясь под действием тромбина от отрицательно заряженных пептидов 2А и 2В, превращается в фибрин-мономер. Взаимодействие комплементарных участков в доменах молекул фибрина-мономера с другими такими же молекулами приводит к образованию геля фибрина

Стабилизация геля фибрина. Фермент трансглутамидаза (фактор XIIIa) образует амидные связи между радикалами аминокислот Глн и Лиз мономеров фибрина и между фибрином и гликопротеином межклеточного матрикса фибронектином (рис. 14.6.)

Сжатие геля осуществляет сократительный белок тромбоцитов тромбостенин в присутствии АТФ.

2. Свертывание крови может идти по внешнему или внутреннему пути.

Внешний путь свертывания крови инициируется при взаимодействии белков свертывающей системы с тканевым фактором (Тф) - белком, который экспонируется на мембранах поврежденного эндотелия и активированных тромбоцитов, внутренний путь - при контакте белков свертывающей системы с отрицательно заряженными участками поврежденного эндотелия.

Рис. 14.6. Образование амидных связей между остатками Глн и Лиз в мономерах фибрина

Коагуляции (образованию фибринового тромба) предшествует ряд последовательных реакций активации факторов свертывания крови. Эти реакции инициируются на поврежденной или измененной тромбогенным сигналом клеточной мембране и заканчиваются активацией протромбина.

Каскад реакций прокоагулянтного этапа имеет ряд особенностей:

Все ферменты являются протеазами и активируются частичным протеолизом;

Все реакции локализованы на поврежденных мембранах клеток крови и эндотелия, поэтому тромб образуется на этих участках;

Максимальную активность ферменты проявляют в составе мембранных комплексов, включающих фермент, фосфолипиды клеточных мембран, белок-активатор, Са 2 +.

Большинство факторов свертывания активируется по механизму положительной обратной связи.

В прокоагулянтном каскаде реакций внешнего пути последовательно образуются три мембранных комплекса (рис. 14.7). Каждый из них включает:

белок-активатор протеолитического фермента - тканевой фактор (Тф) (не требует активации), факторы V или VIII (активируются частичным протеолизом);

отрицательно заряженные фосфолипиды мембран эндотелия или тромбоцитов. При травме или поступлении тромбогенного сигнала нарушается поперечная асимметрия мембран, на поверхности появляются отрицательно заряженные фосфолипиды, экспонируется тканевой фактор и таким образом формируются тромбогенные участки;

ионы Са 2 +, взаимодействуя с полярными «головками» отрицательно заряженных фосфолипидов, обеспечивают связывание ферментов прокоагулянтного пути с мембранами клеток. В отсутствии Са 2 + кровь не свертывается;

Рис. 14.7. Прокоагулянтный этап внешнего пути свертывания крови и превращение фибриногена в фибрин.

Стрелка - активация факторов свертывания крови; стрелка с точками - активация факторов свертывания по принципу положительной обратной связи; - - мембранный фосфолипидный компонент ферментных комплексов, в рамке - белкиактиваторы.

1, 2 - фактор VIIa мембранного комплекса УПа-Тф-Са 2+ активирует факторы IX и X; 3 - фактор 1Ха мембранного комплекса IXa-VIIIa-Ca 2 + (тенназа) активирует фактор X; 4, 5 - фактор Ха мембранного комплекса Ха-Уа-Са 2 + (протромбиназа) превращает протромбин (фактор II) в тромбин (фактор Па) и активирует фактор VII по принципу положительной обратной связи; 6-10 - тромбин (фактор Па) превращает фибриноген в фибрин, активирует факторы V, VII, VIII и XIII

Один из протеолитических ферментов (сериновую протеазу) - фактор VII, IX или X. Эти белки содержат на N-концах молекул 10-12 остатков γ-карбоксиглутаминовой кислоты. Посттрансляционное карбоксилирование факторов VII, IX, X, а также протромбина, плазминогена и протеина С катализирует γ-глутамилкарбоксилаза. Коферментом этого фермента является восстановленная форма витамина K, которая образуется в печени под действием NADPH-зависимой витамин К-редуктазы (рис. 14.8).

Структурные аналоги витамина К - дикумарол и варфарин - являются конкурентными ингибиторами NADPH-зависимой витамин K-редуктазы.

Они снижают скорость восстановления витамина К и, следовательно, активность γ-глутамилкарбоксилазы. Производные варфарина и дикумарола используют как непрямые антикоагулянты для предотвращения тромбозов.

Инициирующий мембранный комплекс содержит белок-активатор Тф, фермент фактор VII и ионы Са 2 +. Фактор VII обладает небольшой активностью, но в комплексе VII-Тф-Са 2+ его активность в результате конформационных изменений возрастает, и он частичным протеолизом активирует фактор X.

Рис. 14.8. Посттрансляционное карбоксилирование остатков глутаминовой кислоты в молекулах сериновых протеаз свертывающей системы крови; роль Са 2 + в связывании этих ферментов на тромбогенных участках клеточных мембран

Кроме того, инициирующий комплекс активирует фактор IX. Мембранные комплексы IXа-VIIIa-Са 2 + (тенназа) и VIIа-Тф-Са 2 + образуют активный фактор Xа. Последний в составе протромбиназного комплекса Xа-Vа-Са 2 + может превращать небольшое количество протромбина (фактор II) в тромбин (фактор На). Образовавшийся тромбин активирует (по принципу положительной обратной связи) факторы V, VIII, VII, которые включаются в состав мембранных комплексов.

Протромбин - это гликопротеин плазмы крови, который синтезируется в печени. Молекула протромбина состоит из одной полипептидной цепи, содержит одну дисульфидную связь и остатки γ-карбоксиглутамата. Последние, взаимодействуя с Са 2 +, связывают профермент с мембраной (рис. 14.9).

Фактор Xa протромбиназного комплекса гидролизует две пептидные связи в молекуле протромбина, и он превращается в тромбин. Тромбин состоит из двух полипептидных цепей, связанных дисульфидной связью, и не содержит остатков γ-карбоксиглутамата (рис. 14.10).



эндотелия формируются три ферментных комплекса, каждый из которых содержит один из протеолитических ферментов - фактор калликреин или фактор и белок-активатор высокомолекулярный кининоген (ВМК). Калликреин - сериновая протеаза, субстратами которой являются фактор XII и некоторые белки плазмы крови, например плазминоген. Комплекс фактор XIIa-ВМК превращает прекалликреин в калликреин, который вместе с ВМК по принципу положительной обратной связи активирует фактор XII, включающийся в комплекс XIIa-BMK. В его составе фактор XIIa протеолитически активирует фактор XI, который в комплексе с ВМК превращает фактор IX в активный IXа. Последний включается в состав мембранного комплекса IXа-УШа-Са2+, который частичным протеолизом образует фактор Xа, являющийся протеолитическим ферментом протромбиназы Xа-Vа-Са2+) (рис. 14.11).

Рис. 14.11. Схема внутреннего и внешнего путей свертывания крови:

ВМК - высокомолекулярный кининоген; Тф - тканевой фактор. Обозначения см. на рис. 14.7

Все ферменты свертывающей системы крови являются протеазами и активируются частичным протеолизом:

1 - активируемый контактом с субэндотелием фактор XII превращает прекалликреин в калликреин; 2 - калликреин комплекса калликреин-ВМК частичным протеолизом активирует фактор XII; 3 - фактор XIIa комплекса XIIа-BMK активирует фактор XI;

4 - активированный частичным протеолизом фактор XIIa комплекса XIIa-ВМК превращает прекалликреин в калликреин по принципу положительной обратной связи;

5 - фактор XIa комплекса XIa-ВМК активирует фактор IX; 6 - фактор IXа мембранного комплекса IXа-УШа-Са2+ активирует фактор X; 7, 8 - фактор УПа мембранного комплекса УПа-Тф-Са 2 + активирует факторы IX и X; 9 - фактор Xa протромбиназного комплекса активирует фактор II (протромбин); 10, 11 - фактор IIа (тромбин) превращает фибриноген в фибрин и активирует фактор XIII (трансглутамидазу); 12 - фактор XIIIa катализирует образование амидных связей в геле фибрина;

5. Таким образом, каскад реакций внешнего и внутреннего путей свертывания крови приводит к образованию протромбиназы. Этапы, одинаковые для обоих путей, называют общим путем свертывания крови.

Каждое ферментативное звено реакций свертывания крови обеспечивает усиление сигнала, а положительные обратные связи обусловливают лавинообразное ускорение всего процесса, быстрое образование тромба и прекращение кровотечения.

6. Гемофилии. Снижение свертываемости крови приводит к гемофилиям - заболеваниям, сопровождающимся повторяющимися кровотечениями. Причина кровотечений при этих заболеваниях - наследственная недостаточность белков свертывающей системы крови.

Гемофилия А обусловлена мутацией гена фактора VIII, локализованного в X-хромосоме. Дефект этого гена проявляется как рецессивный признак, поэтому этой формой болезни страдают только мужчины. Гемофилия А сопровождается подкожными, внутримышечными и внутрисуставными кровоизлияниями, опасными для жизни.

Гемофилия В связана с генетическим дефектом фактора IX, который встречается гораздо реже.

7. Противосвертывающая система крови ограничивает распространение тромба и сохраняет кровь в жидком состоянии. К ней относятся ингибиторы ферментов свертывания крови и антикоагулянтная система (антикоагулянтный путь).

Антитромбин III - белок плазмы крови, который инактивирует ряд сериновых протеаз: тромбин, факторы IXa, Xa, XIIa, плазмин, калликреин. Этот ингибитор образует комплекс с ферментами, в составе которого они теряют свою активность. Активатором антитромбина III является гетерополисахарид гепарин. Гепарин поступает в кровь из тучных клеток соединительной ткани, взаимодействует с ингибитором, изменяет его конформацию, повышая его сродство к сериновым протеазам (рис. 14.12).

Ингибитор тканевого фактора (антиконвертин) синтезируется клетками эндотелия и локализуется на поверхности плазматической мембраны. Он образует с фактором Xa комплекс, который связывается с фосфолипидами мембран и тканевым фактором. В результате этого комплекс УПа-Тф-Са 2 + не образуется и становится невозможной активация факторов X и IX.

A 2 -Макроглобулин взаимодействует с активными сериновыми протеазами и подавляет их протеолитическую активность.

а 1 -Антитрипсин ингибирует тромбин, фактор XIa, калликреин, а также панкреатические и лейкоцитарные протеазы, ренин, урокиназу.

Антикоагулянтная система (система протеина С) включает последовательное образование двух ферментных комплексов. Взаимодействие тромбина с белком-активатором тромбомодулином (Тм) в присутствии ионов Са 2+ приводит к образованию первого мембранного комплекса

Рис. 14.12. Инактивация антитромбином III сериновых протеаз.

Гепарин связывается с антитромбином III, изменяет его конформацию и увеличивает сродство к сериновым протеазам.

Присоединение протеазы к комплексу гепарин-антитромбин III снижает сродство гепарина к ингибитору. Гетерополисахарид освобождается из комплекса и может активировать другие молекулы антитромбина III

антикоагулянтной системы Па-Тм-Са 2+ . В его составе тромбин, с одной стороны, теряет способность активировать факторы V и VIII, а также превращать фибриноген в фибрин, а с другой - частичным протеолизом активирует протеин С. Активированный протеин С (Са), взаимодействуя с белком активатором S, образует с помощью Са 2 + на мембране комплекс протеин Са-S-Са 2 +. В этих условиях активированный протеин С (Са) катализирует гидролиз белков-активаторов факторов Va и VIIIa (рис. 14.13).


Разрушение этих белков-активаторов приводит к торможению каскада реакций внешнего пути свертывания крови и остановке образования тромба.

8. Фибринолиз - это гидролиз фибрина в составе тромба с образованием растворимых пептидов, которые удаляются из кровотока. Этот этап гемостаза предотвращает закупорку сосуда фибриновым тромбом. Формирование фибринового тромба сопровождается осаждением на нем профермента плазминогена и его активаторов. Неактивный плазминоген синтезируется в печени и поступает в кровь. В крови он превращается в активный фермент плазмин частичным протеолизом. Эту реакцию катализируют протеолитические ферменты: тканевой активатор плазминогена (ТАП), урокиназа, фактор XIIa и калликреин (рис. 14.14).

Рис. 14.14. Фибринолитическая система крови:

1 - плазминоген под действием активаторов (ТАП, калликреина, урокиназы, фактора XIIa) частичным протеолизом превращается в плазмин; 2 - плазмин гидролизует фибрин с образованием растворимых пептидов; 3 - ТАП поступает в кровоток и ингибируется специфическими ингибиторами I и II типа; 4 - плазмин ингибируют неспецифические ингибиторы сериновых протеаз

Образующийся плазмин разрушает фибриновые волокна. Освобождающиеся из тромба плазмин и его активаторы поступают в кровоток. В крови плазмин инактивируется неспецифическими ингибиторами сериновых протеаз, а активаторы плазминогена - ингибиторами активаторов плазминогена I и II типа. Наследственная или приобретенная недостаточность белков фибринолитической системы сопровождается тромбозами.

ТЕМА 14.4. ОСНОВНЫЕ СВОЙСТВА БЕЛКОВЫХ ФРАКЦИЙ КРОВИ И ЗНАЧЕНИЕ ИХ ОПРЕДЕЛЕНИЯ ДЛЯ ДИАГНОСТИКИ ЗАБОЛЕВАНИЙ

Белки плазмы крови:

Образуют буферную систему крови и поддерживают рН крови в пределах 7,37-7,43;

Поддерживают осмотическое давление, удерживая воду в сосудистом русле;

Транспортируют метаболиты, витамины, ионы металлов, лекарства;

Определяют вязкость крови, играя важную роль в гемодинамике кровеносной системы;

Являются резервом аминокислот для организма;

Выполняют защитную роль.

1. Общий белок плазмы крови составляет 60-80 г/л, альбумин - 40- 60 г/л, глобулины 20-30 г/л.

Белки плазмы крови электрофоретически можно разделить на фракции, количество которых в зависимости от условий электрофореза может составлять от пяти до шестидесяти. При электрофорезе на бумаге белки делятся на пять фракций: альбумин (55-65%), - α1-глобулины (2-4%), α 2 -глобулины (6-12%), β-глобулины (8-12%) и γ-глобулины (12-22%). Альбумин имеет наибольшую, а γ-глобулины наименьшую подвижность в электрическом поле.

Большинство белков плазмы крови синтезируется в печени, однако некоторые образуются и в других тканях. Например, γ-глобулины синтезируются В-лимфоцитами, а пептидные гормоны в основном секретируют эндокринные железы.

2. Белок альбумин синтезируется в печени, имеет небольшую молекулярную массу и составляет большую часть белков плазмы крови. Благодаря высокому содержанию дикарбоновых аминокислот альбумин удерживает катионы, главным образом Na+, Са 2 +, Zn 2 +, и играет основную роль в сохранении коллоидно-осмотического давления. Альбумин является важнейшим транспортным белком. Он транспортирует жирные кислоты, неконъюгированный билирубин, триптофан, тироксин, трийодтиронин, альдостерон, многие лекарства.

3. Глобулины составляют четыре фракции: α 1 , α 2 , β и γ. В эти фракции входят белки, которые выполняют специфические и защитные функции, например, тироксин- и кортизолсвязывающие белки, трансферрин, церулоплазмин (ферроксидаза), интерфероны, иммуноглобулины.

4. Содержание белков в плазме крови может изменяться при патологических состояниях. Такие изменения называются диспротеинемией.

Гиперпротеинемия - это повышение концентрации белков в плазме крови.

Гиперпротеинемия может быть вызвана потерей воды организмом при полиурии, диарее, рвоте или обусловлена повышением содержания γ-глобулинов и некоторых других белков при острых воспалительных процессах, травмах, миеломной болезни. Их называют белками острой фазы, и к ним относят, например, С-реактивный белок (называемый так потому, что взаимодействует с С-полисахаридами пневмококков), гаптоглобин (образует комплекс с гемоглобином, который поглощается макрофагами, что предотвращает потерю железа), фибриноген.

Гипопротеинемия в основном является следствием нарушения синтеза или потери организмом альбумина, то есть является гипоальбуминемией. Она наблюдается при нефрите, гепатите, циррозе печени, ожогах, продолжительном голодании. Уменьшение содержания альбумина в крови приводит к снижению осмотического давления, а также нарушению распределения жидкости между сосудистым руслом и межклеточным пространством, что проявляется в виде отеков.

ЗАДАНИЯ ДЛЯ ВНЕАУДИТОРНОЙ РАБОТЫ

1. Нарисуйте в тетради схему метаболизма эритроцитов (рис. 14.15) и завершите ее, указав:

а) ферменты, обозначенные цифрами 1, 2, 3 и т. д.;

б) коферменты, обозначенные # и *;

в) ферменты метаболизма глюкозы, которые катализируют реакции восстановления NADP+ и NAD+;

Рис. 14.15. Метаболизм эритроцитов:

#, * - коферменты, #Н, *Н - восстановленные коферменты

г) аллостерический регулятор, снижающий сродство гемоглобина к кислороду в тканях;

д) ферменты катаболизма глюкозы, обеспечивающие синтез АТФ.

2. Напишите реакции:

а) образования активных форм кислорода в эритроцитах;

б) восстановления глутатиона;

в) устранения Н 2 О 2 ;

г) восстановления метгемоглобина в гемоглобин.

3. Нарисуйте в тетради схему прокоагулянтного этапа свертывания крови (рис. 14.16), заменив знак вопроса соответствующим фактором.

Рис. 14.16. Прокоагулянтный этап свертывания крови и образование геля фибрина

4. Напишите реакцию образования амидной связи между радикалами остатков глутамина и лизина мономеров фибрина, укажите фермент, его профермент, активатор и механизм активации. Объясните значение этой реакции в формировании фибринового тромба.

5. Представьте схему, показывающую роль тромбина на прокоагулянтном этапе свертывания крови и в антикоагулянтном пути, дописав названия отсутствующих белков и кофакторов (рис. 14.17). Укажите механизмы действия каждого фактора и его роль в гемостазе.

Рис. 14.17. Роль тромбина на прокоагулянтном этапе и в антикоагулянтном пути свертывания крови

6. Сравните результаты, полученные при электрофоретическом разделении на бумаге белков плазмы крови (протеинограммы) в норме и при некоторых патологических состояниях (рис. 14.18). Укажите возможные причины, вызвавшие изменения количества белков некоторых фракций при этих состояниях организма.

Рис. 14.18. Протеинограммы белков плазмы крови в норме и при некоторых патологических состояниях

7. Заполните табл. 14.1, указав функции белков плазмы крови. Таблица 14.1. Функции некоторых белков плазмы крови

ЗАДАНИЯ ДЛЯ САМОКОНТРОЛЯ

1. Установите правильную последовательность событий.

При обезвреживании активных форм кислорода в эритроцитах:

A. Супероксиддисмутаза катализирует образование пероксида водорода

Б. Гемоглобин спонтанно окисляется в метгемоглобин

B. Глутатионпероксидаза разрушает пероксид водорода

Г. Глутатионредуктаза восстанавливает окисленный глутатион Д. Глюкозо-6-фосфатдегидрогеназа восстанавливает NADP+

2. Выберите правильные ответы. В фагоцитирующих клетках:

A. Глутатионпероксидаза окисляет глутатион Б. NADPn-оксидаза восстанавливает О 2

B. Активные формы кислорода вызывают свободнорадикальные реакции

Г. Супероксиддисмутаза превращает супероксидный анион в Н 2 О 2 Д. Миелопероксидаза катализирует образование НОСl

3. Выполните «цепное» задание:

а) в результате механического или химического повреждения клеток эндотелия на поверхности экспонируется белок:

A. Тромбомодулин Б. Фактор V

B. Трансглутамидаза Г. Тканевой фактор Д. Протеин С

б) он активирует сериновую протеазу инициирующего комплекса свертывающей системы крови:

A. Тканевой фактор Б. Тромбомодулин

B. Протеин S Г. Фактор VII Д. Фактор II

в) этот активированный фермент в составе мембранного комплекса действует на субстрат:

A. Фибриноген Б. Протеин С

B. Гепарин

Г. Протромбин Д. Фактор X

г) протеолитическая активация этого субстрата приводит к образованию:

A. Фибрина

Б. Активированного протеина С

B. Фактора ХШа Г. Тромбина

Д. Фактора Ха

д) этот белок вызывает:

A. Активацию протеина С

Б. Превращение плазминогена в плазмин

B. Образование комплекса с гепарином Г. Активацию тканевого фактора

Д. Отщепление пептида от профермента

е) в результате этого образуется:

A. Плазмин

Б. Активная трансглутамидаза

B. Фибрин-мономер

Д. Тромбин

ж) этот белок участвует в реакции:

A. Частичного протеолиза Б. Фосфорилирования

B. Карбоксилирования Г. Полимеризации

Д. Конъюгации

з) в результате этой реакции происходит:

A. Образование белого тромба Б. Агрегация тромбоцитов

B. Ретракция геля фибрина

Г. Формирование красного тромба

Д. Превращение фибриногена в фибрин

4. Выполните «цепное» задание:

а) посттрансляционной модификацией ферментов свертывающей системы крови является:

A. Фосфорилирование серина Б. Окисление лизина

B. Гликозилирование серина

Г. Карбоксилирование глутамата Д. Гидроксилирование пролина

б) в этой реакции участвует кофермент:

A. NADP+ Б. FAD

Д. Восстановленная форма витамина K (КН 2)

в) структурным аналогом этого кофермента является лекарственный препарат:

A. Сульфаниламид Б. Фенобарбитал

B. Дитилин Г. Варфарин

Д. Аллопуринол

г) лечение этим препаратом вызывает (выберите правильные ответы):

A. Повышение свертываемости крови

Б. Нарушение образования ферментных мембранных комплексов

B. Снижение свертываемости крови

Г. Ускорение трансляции протеолитических ферментов внешнего

пути свертывания крови Д. Повышение скорости полимеризации фибрина.

5. Выберите правильные ответы.

Ингибиторами свертывания крови являются:

A. а 2 -Макроглобулин Б. Антитромбин III

B. Плазмин

Г. Антиконвертин Д. а^Антитрипсин

6. Выполните «цепное» задание.

а) тромбомодулин активирует:

A. Протеин С Б. Протеин S

B. Тканевой фактор Г. Протромбин

Д. Тромбин

б) этот белок изменяет свою конформацию и приобретает способность активировать:

A. Фактор VIII Б. Фактор V

B. Протеин S Г. Протеин С

Д. Антитромбин III

в) активация выбранного вами белка стимулирует образование следующего мембранного комплекса, в котором белком-активатором является:

A. Протеин S Б. Протеин С

B. Плазмин Г. Фактор V

г) этот активатор повышает сродство сериновой протеазы к субстратам (выберите правильные ответы):

A. Фактору Vа Б. Фактору VIIa

B. Фибрину

Г. Фактору VIIIa Д. Тромбину

7. Выберите правильные ответы.

Плазмин:

A. Образуется в результате частичного протеолиза из профермента. Б. Является сериновой протеазой

B. Активируется гепарином Г. Гидролизует фибрин

Д. Ингибируется α 2 -макроглобулином

8. Выберите правильные ответы. Гипоальбуминемия наблюдается при:

Б. Нефротическом синдроме

B. Злокачественных новообразованиях в печени Г. Циррозе печени

Д. Желчнокаменной болезни.

9. Выберите правильные ответы.

Гиперпротеинемия наблюдается при:

Б. Полиурии

B. Инфекционных болезнях Г. Повторяющейся рвоте

Д. Длительных кровотечениях

ЭТАЛОНЫ ОТВЕТОВ К «ЗАДАНИЯМ ДЛЯ САМОКОНТРОЛЯ»

1. Б→А→В→Т→Д

2. Б, В, Г, Д

3. а) Г, б) Г, в) Д, г)Д, д) Д, е) Д, ж) А, з) Д

4. а) Г, б) Д, в) Г, г) Б, В

5. А, Б, Г, Д

6. а) Д, б) Г, в) А, г) А, Г

7. А, Б, Г, Д

8. Б, В, Г

9. А, Б, В, Г

ОСНОВНЫЕ ТЕРМИНЫ И ПОНЯТИЯ

1. Метгемоглобинредуктаза

2. Бисфосфоглицератмутаза

3. Супероксиддисмутаза

4. Глутатионредуктаза

5. Тельца Хайнца

6. Гемостаз

7. Адгезия и агрегация тромбоцитов

8. Гемофилии

9. Тромбозы

10. Свертывание крови (внешний и внутренний пути свертывания крови)

11. Факторы свертывания крови

12. Витамин К

13. Противосвертывающая система (антитромбин III, антиконвертин, а 2 -макроглобулин, система протеина С)

14. Фибринолиз

15. Белки плазмы крови (альбумин, α 1 -глобулины, α 2 -глобулины, β-глобулины и γ-глобулины)

16. Гиперпротеинемия. Гипопротеинемия

ЗАДАНИЯ ДЛЯ АУДИТОРНОЙ РАБОТЫ

Решите задачи

1. Парацетамол - жаропонижающее и болеутоляющее вещество, которое входит в состав некоторых лекарств, например гриппостада, фервекса. Однако такие препараты противопоказаны людям, имеющим генетический дефект глюкозо-6-фосфатдегидрогеназы эритроцитов. Какие последствия может вызвать прием лекарств, содержащих парацетамол, у пациентов с недостаточностью этого фермента? Для ответа на вопрос напишите:

а) реакцию образования супероксидного аниона в эритроцитах;

б) схему обезвреживания активных форм кислорода в эритроцитах и объясните значение окислительных реакций пентозо-фосфатного пути для нормального протекания этого процесса.

2. У пациента, страдающего хроническим грануломатозом, обнаружена наследственная недостаточность NADPH-оксидазы. При этом заболевании некоторые микроорганизмы сохраняют жизнеспособность внутри фагоцитов, а их антигены вызывают клеточный иммунный ответ и образование гранулем. Объясните роль NADPH-оксидазы в фагоцитозе. Для этого:

а) напишите реакцию, которую катализирует этот фермент;

б) укажите вещества, синтез которых снижается в фагоцитирующих клетках при недостаточности NADPH-оксидазы.

3. В слюнных железах медицинской пиявки содержится ингибитор тромбина - пептид гирудин. В крови человека гирудин образует комплекс с тромбином, в котором фермент теряет способность превращать фибриноген в фибрин. Почему гирудотерапию (лечение пиявками) используют для профилактики тромбозов при сердечно-сосудистых заболеваниях? Для ответа на вопрос опишите:

а) этапы образования фибринового тромба;

б) особенности строения протромбина и механизм его превращения в тромбин.

4. Для профилактики тромбозов и тромбоэмболии после инфаркта миокарда врач назначил пациентке препарат варфарин и рекомендовал диету, исключающую на время лечения продукты, богатые витамином К (капусту, шпинат, салат, зеленый чай). Обоснуйте рекомендацию врача. Для этого:

а) укажите кофермент, образующийся в организме из витамина К;

б) объясните значение посттрансляционной модификации сериновых протеаз, в которой участвует этот кофермент;

в) опишите роль протеаз в мембранных ферментных комплексах внешнего пути свертывания крови.

5. В отсутствии ионов Са 2 + кровь не свертывается. Какую роль играет Са 2 + в свертывании крови? Для ответа на вопрос:

а) опишите состав мембранных комплексов прокоагулянтного этапа внешнего пути свертывания крови и последовательность их взаимодействия;

б) укажите роль Са 2+ в формировании этих комплексов.

6. У новорожденного с наследственным дефицитом протеина С обнаружена легочная эмболия. Почему ребенок, гомозиготный по такой мутации, может погибнуть сразу после рождения, если ему не проводить заместительную терапию протеином С? Для ответа на вопрос:

а) напишите схему реакций системы протеина С;

б) объясните роль тромбина в гемостазе.

7. Пациентке, страдающей тромбофлебитом, для профилактики тромбоза назначили лечение тканевым активатором плазминогена (ТАП). Объясните механизм действия рекомендованного врачом препарата. Для этого представьте схему фибринолитической системы крови и укажите роль ТАП, ингибитора активатора плазминогена и ингибиторов плазмина.

8. Редкое наследственное аутосомно-рецессивное заболевание анальбуминемия сопровождается почти полным отсутствием альбумина. Почему у пациентов с такой патологией наблюдаются отеки? Для ответа на вопрос укажите:

а) особенности аминокислотного состава альбумина;

б) функции этого белка плазмы крови.

S Tasker, MR Lappin. Haemobartonella felis: recent
developments in diagnosis and,
treatment – Journal of
Feline Medicine and Surgery (2002) 4, 3–11

Немного истории

В 1942 году Кларк описал инфекционное заболевание у кошки с анемией в Южной Африке, назвав возбудителя Eperythrozoon felis . Позднее Flint & Moss (1953) опубликовали данные об аналогичном микроорганизме, вызвавшего инфекционную анемию у кошек в США. С 1955 года возбудитель данного заболевания переименован в Haemobartonella felis .

Инфекционная анемия кошек, вызванная H . Felis , распространена по всему миру. Возбудитель инфекционной анемии кошек (гемобартонеллез кошек) – Haemobartonella felis – плеоморфная некультивируемая безоболочечная гемотрофная бактерия.

Несмотря на то, что Haemobartonella felis является доказанной причиной развития инфекционной анемии у кошек, до сих пор остается много не раскрытых вопросов, касающихся эпизоотологии заболевания. Одним из сдерживающих факторов, ограничивающих полномасштабные исследования, является тот факт, что бактерию очень сложно культивировать вне организма хозяина. Однако в последние годы получили распространение молекулярно-генетические методы исследования. Филогенетический анализ, проведенный путем секвенирования гена 16S рРНК, указывает на близкое родство с родом Mycoplasma , а не с риккетсиями, как предполагалось ранее. Молекулярно-биологические методы позволили доказать, что Haemobartonella felis поражает эритроциты, а количество выделенной ДНК коррелирует с числом микроорганизмов в крови (Cooper и др., 1999). Последние работы зарубежных исследователей свидетельствуют о наличии нескольких штаммов и даже видов Haemobartonella .

До недавнего времени в связи с невозможностью культивирования микроорганизма, основным методом диагностики была цитология мазка крови. Погрешность этого метода очень высока. Существует множество факторов, приводящих как к ложноотрицательным, так и к ложноположительным результатам. Полимеразная цепная реакция (ПЦР) в настоящее время является методом выбора для диагностики гемобартенеллеза.

Диагностика гемобартонеллеза кошек

Наиболее распространенный метод диагностики гемобартонеллеза – микроскопическое исследование мазка крови с визуализацией микроорганизмов на поверхности эритроцитов. Возбудитель инфекционной анемии в таком случае должен быть дифференцирован от других включений в эритроциты, например тельца Хауэлла-Жолли или тельца Паппенгеймера, которые могут быть представлены в виде мелких синих гранул. Окраска мазка крови акридин оранжевого, а также флюоресцентные методы с использованием меченых антител более чувствительны, чем стандартная окраска по Романовскому. Однако, для проведения таких исследований необходим флуоресцентный микроскоп.

Фото 1. Окраска мазка крови по Райту-Гимза (увеличение ×1000). Кокковидные и круглые микроорганизмы H . felis на поверхности почти 50% эритроцитов.

Помимо окраски по Романовскому возможно использование других красителей (Грюнвальд-Гимза, Райта и Райта-Гимза). Возбудитель обычно расположен на периферии эритроцитов поодиночке, попарно или находится свободно рядом с клетками крови. Довольно часто ложноположительный диагноз ставится из-за артефактов, возникающих в результате неправильной сушки или фиксации мазка, кроме того возбудителя легко спутать с седиментом краски. Использование свежеприготовленного красителя с предварительной фильтраций является обязательным условием при диагностике гемобартонеллеза кошек микроскопическим методом. При наличии седимента красителя в мазке он обычно находится выше плоскости фокуса эритроцитов и имеет более интенсивную окраску в сравнении с Haemobartonella felis .

Тельца Хауэлла-Жолли – это остатки ядра эритроцита, которые могут быть дифференцированы от Haemobartonella felis по размеру (более крупные, 1-2 мкм в диаметре). Тельца Папенгеймера – скопления железа, в мазке визуализируются как мелкие слегка окрашенные синие гранулы внутри эритроцита.

Фото 2. Окраска мазка крови собаки по Райту (увеличение ×1000). Очень маленькие, плохо различимые светло-голубые зерна в некоторых эритроцитах – тельца Паппенгеймера. Эритроцит в центре поля содержит маленькую круглую темно-пурпурную структуру, которая является тельцем Хауэлла-Жолли.

Фото 3. Окраска мазка крови собаки по Райту (увеличение ×1000). В четырех эритроцитах содержатся темно-пурпурные цитоплазматические включения – тельца Хауэлла-Жолли, которые являются ядерными фрагментами.

При использовании цитологического метода следует учитывать, что высокие концентрации стабилизатора ЭДТА приводят к отщеплению бактерий с поверхности эритроцитов, что делает диагностику затруднительной. Поэтому оптимальным вариантом является приготовление мазков непосредственно сразу после забора крови или использование стабилизаторов, не обладающих таким эффектом, например, гепарин (Alleman и др., 1999).

Наиболее чувствительным и специфичным методом исследования является ПЦР, позволяющая обнаруживать ДНК возбудителя в крови больных животных. Наличие всего лишь 52 бактерий в крови кошки может быть обнаружено методом ПЦР (Cooper и др., 1999). Секвенирование последовательностей 16S рРНК возбудителя позволило сделать вывод о наличии нескольких штаммов Haemobartonella felis с разной патогенностью. Кроме того, филогенетический анализ показал родство данного микроорганизма с Eperythrozoon suis .

Широкое использование ПЦР позволило обнаружить, что 19,5% исследованных в США кошек являются носителем инфекции (Jensen и др., 2001). Аналогичные исследования были проведены в Великобритании. Распространенность этой инфекции приближалась к 18%.

ПЦР показывает высокую диагностическую эффективность в сравнении с другими методами. ПЦР позволяет выявить возбудителя уже в первые 8 дней после заражения. Однако, если исследование проводится в период применения антибиотиков, возможно получение ложноотрицательного результата. Поэтому кровь для исследования необходимо отбирать для анализа до начала курса антибиотикотерапии.

Если заболевание протекало бессимптомно, кошки являются источником возбудителя, по крайней мере, в течение 6 месяцев. Исследования клинически здоровых кошек в США и Великобритании показали, что 14,5% и 10% животных соответственно давали положительные результаты при исследовании методом ПЦР. Таким образом, становится очевидным, что интерпретировать результат ПЦР необходимо с учетом клинической картины и гематологического анализа крови.

В настоящее время диагностика гемобартонеллеза методом ПЦР доступна в Центре диагностики и профилактики болезней животных, в сети ветеринарных клиник «Вита». Исследование проводится с использованием технологии Real-time PCR, позволяющей проводить полуколичественный анализ содержания ДНК возбудителя в крови пациента.

Клинические признаки гемобартонеллеза

На клиническое проявление гемобартонеллеза влияет множество факторов, в том числе патогенность штамма и состояние иммунной системы животного. Животные с хронической инфекцией, как правило, выглядят здоровыми (Berent et al, 1998). С другой стороны, есть исследования, свидетельствующие о выраженной гемолитической анемией у всех зараженных животных, что более вероятно связано с патогенностью штамма.

Клинические признаки у больных животных неспецифичны и характеризуются анемией, вялостью, анорексией, потерей веса и депрессией. Часто наблюдается интермитирующая лихорадка, особенно при острой форме болезни. Возможны лимфаденопатия, спленомегалия, иктеричность слизистых оболочек в результате гемолиза эритроцитов. Гемобартонеллез обычно вызывает регенеративную анемию, сопровождающуюся ретикулоцитозом, анизоцитозом, микроцитозом и полихромазией. Тяжесть анемии зависит от стадии инфекции. Уровень гематокрита, как правило, падает ниже 20% и в среднем варьирует в пределах 15-18% (Foley и др., 1998, VanSteenhouse и др., 1993). В мазке крови можно обнаружить нормобласты.

Лечение

Haemobartonella felis чувствительна к тетрациклинам, которые специфически ингибируют синтез белка прокариот. Тетрациклин и окситетрациклин могут вызывать медикаментозную гипертермию (Wilkinson , 1968) и требуют использование каждые 8 часов. Препаратом выбора при данной инфекции является доксициклин за счет меньшего количества побочных эффектов. Рекомендуемая доза доксициклина составляет 5-10 мг/кг перорально 1 раз в день. Терапия должна продолжаться от 14 до 21 дней в зависимости от реакции на лечение.

Считается, что фторхинолоны являются эффективными в лечение микоплазменных инфекций. Однако использование энрофлоксацина в дозе 10 мг/кг перорально ежедневно в течение, по крайней мере, 14 дней показало относительно низкую эффективность в терапии гемобартонеллеза.

Азитромицин – макролид, использующийся при лечении микоплазмозов у человека, оказался также малоэффективным при лечении гемобартонеллеза в дозе 15 мг/кг перорально 2 раза в день (Westfall et al, 2001).

Анемия, вызванная гемобартонеллезом, требует использования глюкокортикоидов (VanSteenhouse et al, 1993). Однако, прежде должны быть исключены заболевания, которые могут обостряться при использовании глюкокортикоидов, например, токсоплазмоз. Рекомендуемая доза преднизолона составляет 2 мг/кг в сутки перорально параллельно с антибактериальной терапией. Дозировка преднизолона должна постепенно снижаться в течение 3 недель.

Итак, несколько выводов:

    Если у кошки есть клинические признаки гемобартонеллеза и возбудитель обнаружен цитологически или методом ПЦР, лечение необходимо осуществлять незамедлительно;

    Если исследование мазка крови является единственным доступным методом и при его исследовании получен отрицательный результат, который не согласуется с клинической картиной, кошку следует считать больной в связи с частыми ложноотрицательными случаями;

    Если результат ПЦР отрицательный (забор крови до лечения), то кошка с высокой степенью вероятности свободна от возбудителя;

    Поскольку при хронической инфекции невозможно обнаружить возбудителя в мазках крови, все кошки, использующиеся в качестве доноров крови, должны быть обследованы с использованием метода ПЦР;

    Препаратом выбора при лечении гемобартонеллеза является доксициклин в дозировке 5-10 мг/кг перорально 1 раз в день в течение 14-21 дней.

Литература

    Alleman AR, Pate MG, Harvey JW, Gaskin JM, Barbet AF (1999) Western immunoblot analysis of the antigens of Haemobartonella felis with sera from experimentally infected cats. Journal of Clinical Microbiology 37, 1474–1479

    Berent LM, Messick JB, Cooper SK (1998) Detection of Haemobartonella felis in cats with experimentally induced acute and chronic infections, using a polymerase chain reaction assay. American Journal of Veterinary Research 59, 1215–1220

    Cooper SK, Berent LM, Messick JB (1999) Competitive, quantitative PCR analysis of Haemobartonella felis in the blood of experimentally infected cats. Journal of Microbiological Methods 34, 235–243

    Flint JC, Moss LC (1953) Infectious anaemia in cats. Journal of the American Veterinary Medical Association 122, 45–48

    Foley JE, Harrus S, Poland A, Chomel B, Pedersen NC (1998) Molecular, clinical, and pathologic comparison of two distinct strains of Haemobartonella felis in domestic cats. American Journal of Veterinary Research 59, 1581–1588

    Jensen WA, Lappin MR, Kamkar S, Reagen WJ (2001) Use of a polymerase chain reaction assay to detect and differentiate two strains of Haemobartonella felis infection in naturally infected cats. American Journal of Veterinary Research 62, 604–608

    VanSteenhouse JL, Millard JR, Taboada J (1993) Feline haemobartonellosis. Compendium of Continuing Education for the Practising Veterinarian 15, 535–545

    Westfall DS, Jensen WA, Reagan WJ, Radecki SV, Lappin MR (2001) Inoculation of two genotypes of Haemobartonella felis (California and Ohio variants) to induce infection in cats and the response to treatment with azithromycin. American Journal of Veterinary Research 62, 687–681

    Wilkinson GT (1968) A review of drug toxicity in the cat. Journal of Small Animal Practice 9, 21–32

Здоровья Вам и Вашим питомцам.

к.в.н. Ключников А.Г.

Тельца Жолли (тельца Хауэлла-Жолли ) - мелкие круглые фиолетово-красные включения размером 1 - 2 мкм, встречаются по 1 (реже по 2 - 3) в одном эритроците. Предсталяют собой остаток ядра после удаления его РЭС. Выявляются при интенсивном гемолизе и "прегрузке" РЭС, после спленэктомии, при мегалобластной анемии.

Микрофотографии телец Жолли:

Кольца Кебота

Кольца Кебота - остатки оболочки ядра эритрокариоцита в виде восьмерки или кольца, окрашиваются в красный цвет. Обнаруживаются преимущественно при мегалобластной анемии и при свинцовой интоксикации.

Микрофотографии колец Кебота:

Базофильная зернистость эритроцитов (базофильная пунктация эритроцитов)

Базофильная зернистость (пунктация) эритроцитов - гранулы сине-фиолетового или синего цвета, различного размера, располагаются чаще по периферии эритроцита или нормобласта, представляет собой агрегированную базофильную субстанцию (остатки рибосом). Встречаются при интоксикации свинцом или тяжелыми металлами, талассемии, алкогольной интоксикации, цитотоксическом действии лекарственных препаратов, тяжелых анемиях.

Эритроциты с базофильной пунктацией выявляются в фиксированных мазках крови, окрашенных по Романовскому, но лучше выявляются при окраске метиленовым синим (по Фрейфельд): мазок после фиксации в течение 3 мин. в метиловом спирте заливают на 1 час краской (из расчета 5 капель 1% водного раствора метиленового синего на 20 мл водопроводной воды), затем смывают, мазок высушивают и микроскопируют. Считают 10 000 эритроцитов и отмечают количество эритроцитов с базофильной зернистостью.У здоровых людей количество эритроцитов с базофильной пунктацией колеблется от 0 до 3 - 4 на 10 000 эритроцитов.

Базофильная пунктация эритроцитов (фотографии):

Сидерозные (железосодержащие) гранулы

Сидерозные (железосодержащие) гранулы - представляют собой связанное с митохондриями внутриклеточное железо (гемосидерин, ферритин), не включенное в гемоглобин, которое окрашивается берлинской лазурью в синий цвет. Содержащие такие гранулы нормобласты называют сидеробластами (или кольцевыми сидеробластами , если гранулы окружают ядро), а эритроциты - сидероцитами . У здоровых людей в костном мозге содержится 15 - 40% сидеробластов, в периферической крови - 0,3 - 0,8% сидероцитов. Увеличение их количества наблюдается при гемолитической анемии, сидеробластной анемии, после спленэктомии, отравлении свинцом, реже - при пернициозной анемии и талассемии. Уменьшение сидероцитов и сидеробластов наблюдается при железодефицитной анемии.

Иногда сидерозные гранулы выявляются в виде светло-фиолетовых телец и при обычной окраске мазка. В этом случае их называют тельцами Паппенгейма .

Микрофотографии сидеробластов:

Микрофотографии телец Паппенгейма:

Тельца Гейнца-Эрлиха

Тельца Гейнца-Эрлиха - маленькие округлые включения (единичные или множественные) размером 1 - 2 мкм, образуются из денатурированного гемоглобина. Выявляются при помощи окраски метиловым фиолетовым (метод Дейчи): в пробирке смешивают равные количества крови и 0,5% раствора метилового фиолетового в изотоническом растворе хлорида натрия. Смесь оставляют стоять на 10 мин, затем делают мазки. Тельца Гейнца окрашиваются в пурпурно-красный цвет. В норме наблюдается образование в эритроцитах единичных телец Гейнца. При патологии их количество в эритроцитах увеличивается (4 - 5 и более), что можно наблюдать при отравлении некоторыми лекарствами (сульфаниламиды) и токсинами (фенилгидразин, нитробензол, анилин, пиридин, толуилендиамин и др.), при анемиях, связанных с дефицитом ферментов (Г-6ФДГ, глютатионредуктазы и др.), у носителей нестабильных гемоглобинов. Тельца Гейнца считаются первым признаком наступающего гемолиза и токсического поражения крови.

Включения при малярии

Включения при малярии - обычно наблюдаются ранние кольцевидные формы. Они синеватого цвета и могут иметь на концах красную точку (точки). P.falciparum распознаются по характерной конфигурации в виде наушников и бананообразному макрогаметоциту. При инвазии P.vivax и P.ovale наблюдаются гранулы Шюффнера - мелкие розово-красные включения, иногда в значительном количестве (20 - 30). При тропической малярии включения крупнее (в виде пятнышек), часто неодинаковые по размерам, но количество их меньше (10 - 15). Эти включения называют пятнистостью Маурера .

Фотографии включений при малярии:

Литература:

  • Л. В. Козловская, А. Ю. Николаев. Учебное пособие по клиническим лабораторным методам исследования. Москва, Медицина, 1985 г.
  • Руководство к практическим занятиям по клинической лабораторной диагностике. Под ред. проф. М. А. Базарновой, проф. В. Т. Морозовой. Киев, "Вища школа", 1988 г.
  • Справочник по клиническим лабораторным методам исследования. Под ред. Е. А. Кост. Москва "Медицина" 1975 г.
  • Фред Дж. Шиффман. "Патофизиология крови". Пер. с англ. - М. - СПб.: "Издательство БИНОМ" - "Невский Диалект", 2000 г.

В итоге в основе образования телец Геинца лежит окисление или блокада двух реактивных тиоловых групп глобина при условии, что превращение феррогема в ферригем (т.е. переход гемоглобина в метгемоглобин) значительно повышает вероятность окисления тиоловых групп глобина, а следовательно, и денатурированного пигмента.

Окисление, равно как и восстановление уже окисленных тиоловых групп глобина , во многом зависит от восстановленного глютатиона (Г-SH). Последний, помимо защиты тиоловых групп глобина, препятствует инактивации тиоловых ферментов и сульфгидрильных групп мембраны эритроцитов. Недаром Г-SH получил название "тиоловый щит эритроцитов", который поддерживает красящее вещество крови в деятельном состоянии. Как правило, под влиянием веществ-метгемоглобинобразователей запасы Г-SH истощаются, хотя не исключено и увеличение уровня Г-SH, что может рассматриваться как компенсаторная реакция, связанная с усиленной потребностью в нем при восстановлении метгемоглобина. Важную роль в денатурации кровяного пигмента играют также SH-группы мембраны эритроцитов, поскольку они являются первичным диффузным барьером по предотвращению проникновения веществ-окислителей внутрь клеток.

По данным D.Allen , наряду с инактивацией SH-групп мембраны эритроцитов происходит окисление сначала двух реактивных тиоловых групп глобина, а затем и остальных 4 SH-групп, что приводит к денатурации молекулы гемоглобина. Денатурированный гемоглобин связывает молекулы Г-SH, полимеризуется через водородные связи и выпадает в виде телец Гейнца. Размеры последних прямо пропорциональны времени денатурации гемоглобина и количеству молекул Г-SH.

Схематично процесс образования телец Гейнца может быть представлен следующим образом:
1. Окисление гемоглобина в метгемоглобин до равновесного состояния гемоглобин - метгемоглобин.
2. Окисление двух реактивных SH-групп глобина.
3. Окисление оставшихся SH-групп глобина.
4. Денатурация и осаждение пигмента в виде телец Гейнца.

Как правило, эритроциты, содержащие тельца Гейнца , под их влиянием разрушаются, что в итоге приводит к гемолизу с укорочением срока жизни эритроцитов. Однако в данном случае существенную роль играют размеры телец Гейнца. Известно, что при незначительной степени воздействия тех же нитро- и аминосоединений ряда бензола тельца Гейнца остаются мелкими, иногда имея пылевидную форму, сохраняются в эритроците до 3 нед без нарушения их целостности. Однако чаще всего, а при выраженных формах отравления всегда, тельца Гейнца достигают размеров до 1-2 u и более в диаметре, выделяясь из эритроцита уже на 3-4-й день и разрушая его. Но вместе с тем следует отметить удивительную способность селезенки удалять тельца Гейнца из эритроцитов, не разрушая последние. Естественно, что в первую очередь это касается мелких включений. Конечно же, более универсальная реакция - разрушение эритроцитов по выходе телец Гейнца из внутри- во внеклеточное пространство. В результате наряду с падением уровня гемоглобина падает и число эритроцитов, следствием является развитие гемолитической анемии с образованием продуктов распада метгемоглобина, при котором не происходит разрыва порфиринового кольца.

Особенность гемолиза под влиянием метгемоглобинобразователей заключается в том, что он является вторичным. Как следствие острого гемолиза развивается гиперхромная гемолитическая анемия регенераторного типа. Об омоложении красной крови свидетельствуют ретикулоциты, появление нормобластов, телец Жолли, повышение кислотоустойчивости эритроцитов, судя по уплощению кислотных эритрограмм или сдвигу вправо.

Гемолитическая анемия неизбежно приводит к развитию аноксемии и аноксии гемического типа. Как результат этого возможно токсическое влияние на эритропоэз, о чем свидетельствуют такие изменения клеток красной крови, как мегалобластоидия, кариорексис, атипизм митозов нормобластов анизо- и пойкилоцитоз.

Учитывая разную степень проявления мет- и сульфгемоглобинобразующей активности , а также анемизирующего действия амино- и нитропроизводных бензола предложена классификация соединений, принадлежащих к этому классу по степени гемотоксического действия. Она включает 5 градаций с учетом таких критериев, как пиковые значения сульф- и метгемоглобинемии, число телец Гейнца и падение уровня общего гемоглобина и оксигемоглобина. На примере более чем 40 веществ доказано, что более половины из них обладают гемотоксическими свойствами в чрезвычайно сильной или сильной степени по одному или нескольким признакам, хотя встречаются и такие, которые имеют их в слабой степени или даже отмечается полное их отсутствие.

В результате изучения сравнительной гемотоксической активности в стандартных условиях эксперимента убедительно доказано, что выраженной способностью избирательно поражать красную кровь по типу веществ-метгемоглобинобразователей, помимо анилина и нитробензола, обладают алкил- и алкоксипроизводные анилина (все изомеры толуидина, анизидины, р-фенетидин, цианпроизводные этиланилина), хлоранилины, нитрохлорбензолы, динитро- и тринитротолуол, p-нитрофенетол, m-- и p-нитро-о-аминоанизол.

Похожие публикации