Новости здоровья, медицины и долголетия. Классификация биологически активных веществ

Биологически активные вещества (БАВ) — (греч. Bios — жизнь, означает связь с жизненными процессами и соответствует слову «биол.» + Лат. Activus — активный, то есть вещество, которое имеет биологическую активность) — это соединения, которые в результате своих физико-химических свойств имеют определенную специфическую активность и выполняют, изменяют или влияют на каталитическую (ферменты, витамины, коферменты), энергетической (углеводы, липиды), пластическую (углеводы, липиды, белки), регуляторную (гормоны, пептиды) или другие функции в организме.

Смысл словосочетания может существенно меняться в зависимости от сферы применения. В научном смысле (нейрофизиологическом, психическом, химическом процессах) — повышение активности жизненных процессов организма. Иными словами, биологическое действие — это биохимические, физиологические, генетические и другие изменения, происходящие в живых клетках и организме в результате действия БАВ.

Вообще, полностью индифферентных веществ в природе нету. Все вещества выполняют какие-то функции в организме человека, животных, растений или используются для достижения определенных эффектов. Например вода, связанная с метаболическими функциями живой клетки, является активным участником транспортировки питательных веществ и продуктов обмена в организме, субстрата ряда ферментативных реакций.

Классификация

Общая

С целью классификации все БАР разделяют:

  • эндогенные
  • экзогенные

К эндогенным веществам относят

  • химические элементы (кислород, водород, калий, фосфор и др.)
  • низкомолекулярные (глюкоза, АТФ, этанол, адреналин и др.)
  • ВМС (ДНК, РНК, белки)

Они входят в состав организма, участвуют в обменных процессах веществ и имеют выраженную биологическую (физиологическую) активность.

Экзогенными считают БАР, поступающих в организм различными путями.

По действию на организм

С учетом взаимодействия с организмом БАР разделяют на

  • биоинертные, которые не усваиваются организмом (целлюлоза, гемицеллюлоза, лигнин, кремнийорганические полимеры, поликарбонат и др.)
  • биосовместимые, которые медленно растворяются или ферментируются в организме (полисахариды, поливинилпирролидон, Полиакриламид, поливиниловый спирт, полиэтиленоксид, водорастворимые эфиры целлюлозы и др.)
  • бионесумисни, которые вызывают поражения ткани организма (полиантрацены, некоторые полиамиды и многие др.)
  • биоактивные направленного действия (винилин полимеры в сочетании с лекарственными веществами).

Биоинертные и биосовместимые вещества широко используются в производстве лекарств как вспомогательные вещества, а также для получения тары, упаковочных и конструкционных материалов и т.

По токсичности

  • По токсичности сама биологически активная и токсичное вещество является тоналка Марины Вельгус

Проявление токсичности зависит от концентрации (дозы) БАР, путей поступления в организм, чувствительности последнего, поведения БАР в организме и других факторов (например. Ядовитые вещества используются как лекарства в определенных дозах).

По происхождению

БАР бывают

  • природные
  • синтетические

Природные БАР образуются в процессе жизнедеятельности живых организмов. Они могут образовываться в процессе обмена веществ, выделяться в окружающую среду (экзогенные) или накапливаться внутри организма (эндогенные).

Другие варианты классификации

Возможны другие подходы к классификации БАР, например. в зависимости от природы (растительного или животного происхождения), мл. м., размера частиц, устойчивости к температуре, возможности накапливаться в организме, выявлять наркотические и другие свойства.

Функции

Основными функциями БАР являются:

  • клеточный обмен веществ в организме
  • преобразования веществ;
  • синтез необходимых веществ;
  • катализация биореакций в организме.

Свойства

Основными характерными свойствами БАР являются:

— Термолабильность,

— Биологическая активность,

— Воздействие на них активаторов и ингибиторов,

— Стерильность получения и др.

Одним из важнейших свойств БАВ является их биологическая активность. Она зависит от уровня рН среды, температуры и может теряться в процессе нагревания в результате повышения локальных значений температур, образования неравномерности потоков раствора, перегрева пристенного слоя раствора более температур термической устойчивости и длительном времени обработки.

Биологическая активность

За единицу биологической активности химического вещества принимают минимальное количество этого вещества, способной подавлять развитие или задерживать рост определенного числа клеток, тканей стандартного штамма (биотеста) в единице питательной среды.

Для каждого вида БАР существуют свои методы определения биологической активности. Так, для ферментов, метод определения активности Е заключается в регистрации скорости исчезновения субстрата (S) (вещества, на которую действует фермент) или скорости образования продуктов реакции ([Р]). Активность выражают в международных единицах (МЕ — это такое количество фермента, которая при заданных условиях катализирует превращение 1 мкмоль субстрата за 1 мин.). При проведении исследований активность опытного образца сравнивают с активностью стандартного образца при одинаковых условиях и рассчитывают активность А в соответствующих единицах МЕ.

Для каждого витамина существует свой метод определения активности (количества витамина в опытном образце (например, таблетках) в единицах МЕ). Эти методы сложны и требуют использования высокоточного, дорогого и сложного оборудования (спектрофотометров, флуорометр и др.), Многих химических реактивов и проведения сложных расчетов. При проведении исследований необходимо иметь опыт работы с оборудованием, химическими веществами, иметь навыки построения калибровочных графиков. К наиболее распространенным методам относятся методы визуального титрования, высокоэффективной хроматографии и инверсионной вольтамперометрии.

При производстве БАР на стадиях указанных в технологическом регламенте проводят контроль качества полученной продукции по различным критериям. Среди них, одним из главных, заданная для определенного вида БАР биологическая активность. Поэтому при производстве БАР очень важно правильно подобрать технологические режимы их обработки, обеспечивающие максимальное качество при минимальных затратах тепловой энергии.

Источники поступления в организм

Главным источником поступления БАР в организм лекарство, пищевые и другие продукты. Многие БАР попадает в организм с окружающей среды с воздухом и питьевой водой. В условиях растущего химического загрязнения окружающей среды в организм человека может попадать большое количество ксенобиотиков, которые могут вызвать заболевание. Биологическую активность имеют алкоголь, ядовитые вещества, содержащиеся в табачном дыме и наркотических веществах.

Изображения по теме



Многие слышали словосочетание «биологически активные вещества лекарственных растений», рассмотрю, что это за группа химических соединений и что именно выделяет их на фоне остальных, наделяя биологической активностью, а также, какова их функция.

Основные понятия

Строго говоря, под биологически активным веществом (БАВ) следует понимать любое химическое соединение; происхождение его не имеет принципиального значения, способное прямо или опосредованно воздействовать на живые системы: человека, животных, представителей микроскопического мира и даже растений.

Под это понятие можно подвести практически любое вещество, поскольку так или иначе, большинство химических соединений, вне зависимости от структуры, могут оказывать воздействие на живой организм. Что же тогда выделяет БАВы на фоне прочих субстанций?

Большинство специалистов сходятся во мнении, что под биологически активное вещество следует подводить только то химическое соединение, которое способно воздействовать на живой организм, находясь при этом в ничтожно малой концентрации. Так, к примеру, алкалоид атропин, содержащийся в белладонне, способен приводить к частичной блокировке м-холинорецепторов нервной системы, находясь при этом в количестве, не превышающем 0,2 миллиграмма.

Биологически активные вещества повсеместно используются в медицине, как в народной, так и в традиционной. Часть из них добывается из растений, следовательно, отличается натуральным происхождением, другая, искусственно синтезируется, но полностью соответствует структуре своих биологических аналогов.

Классификация биологически активных веществ растений

Все действующие вещества лекарственных растений, в зависимости от химической природы, принято разделять на следующие отдельные группы: алкалоиды, гликозиды, органические кислоты, кроме того, флавоноиды, жирные кислоты, а также пектины, эфиры, минералы, и ещё несколько десятков прочих категорий, каждая из которых, в свою очередь, подразделяется еще на несколько отдельных подкатегорий.

Применяются и другие классификации, в которых основные действующие вещества растений подразделяются согласно механизму влияния на живую систему. Так, принято выделять следующие категории биологически активных веществ: антисептики (фитонциды), дубильные вещества, вяжущие соединения, витамины, кроме того, противовоспалительные, желчегонные, анальгезирующие, цитостатические (противоопухолевые) и так далее. Этот список, по аналогии с первым, можно продолжать ещё очень долго.

Функции биологически активных веществ

Алкалоиды

Все всякого сомнения, представители этой группы веществ можно обнаружить практически в любом растении. С химической точки зрения, речь идёт о сложных, азотсодержащих компонентах органического происхождения, большая часть из которых обладает свойствами слабого основания.

Общая характеристика

Практически все алкалоиды нерастворимы в воде. Любопытный факт, первым представителем этой группы, выделенным в далёком 1804 году является морфин, а растение, из которого его добыли - естественно, опийный мак.

Эти вещества обладают значительной биологической активностью, и потому способны оказывать сильный терапевтический эффект, находясь в очень малых количествах. Кроме того, что немаловажно, некоторые из них даже токсичны для организма, и могут вызвать сильнейшие отравления, а при неумелом использовании способны привести к летальному исходу. И мы на www.!

Следует заметить, что не все представители царства растений содержат одинаковое количество алкалоидов. Так, максимальные концентрации этих веществ можно обнаружить в паслёновых и маковых, бобовых, в листьях белены, семенах чилибухи, и некоторых прочих.

В химическом составе растений алкалоиды, чаще всего, находятся в виде солей органических или неорганических кислот, которые отлично растворимы в воде. Большинство их них обладают выраженным горьким вкусом.

Использование в медицине

Чаще всего, алкалоиды входят в состав сильнодействующих лекарственных средств, применяемых для лечения заболеваний нервной системы. К примеру, они могут являться активными веществами препаратов, применяемых в качестве психостимуляторов, для лечения депрессий или психических расстройств.

Колхицин, винкамин, эметин, кодеин, кроме того, винбластин, винкристин, атропин, скополамин, хинин, а также резерпин.

Гликозиды

Это обширная группа соединений, молекулы которых состоят из двух частей: углеводной и неуглеводной. Как и представители предыдущей категории, эти вещества обнаруживаются в подавляющем количестве лекарственных растений, многие из которых произрастают на территории России.

Общая характеристика

Гликозиды характеризуются кристаллической структурой и только некоторые из них являются аморфными веществами. Все представители этой группы хорошо растворимы в воде и в спирте. Обладают преимущественно горьковатым вкусом, возможно с незначительным сладким оттенком. Большая часть представителей этой группы химических веществ находятся в листьях растений, реже обнаруживаются в корнях.

Использование в медицине

Большая часть представителей этой группы БАВ способны оказывать выраженный терапевтический эффект на организм человека. По направленности воздействия все гликозиды принято подразделять на сердечные, потогонные, цереброзиды и некоторые прочие.

В медицине в основном используются сердечные гликозиды, способные увеличивать сократительные способности миокарда, устранять нарушения ритма, повышать сердечный выброс, кроме того, препятствовать прогрессированию признаков недостаточности кровообращения, а также замедлять гипертрофию миокарда и так далее.

Другие представители этой группы входят в состав различных отхаркивающих препаратов, мочегонных, слабительных, а также гормоноподобных средств и так далее.

Наиболее известные представители группы

Эскулин, фраксин, дафнин, амигдалин, кроме того, пруназин, дигитоксин, коргликон, строфантин, целанид, а также скиммин и так далее.

Полифенолы

Представители группы полифенолов, более известные знатокам медицины как дубильные вещества, по химической природе являются высокомолекулярными соединениями, название которых произошло благодаря способности вызывать денатурацию коллагена, проще говоря, они использовались для дубления шкур животных.

Общая характеристика

Эти вещества широко распространены, они входят в состав многих растений, а именно в состав листьев, корней, а также стеблей, кроме того, встречаются и в плодах представителей флоры. Признаком наличия полифенолов является характерный вяжущий вкус.

Использование в медицине

Наиболее известный представитель группы полифенолов - это, безусловно, танин. Он содержится в значительных количествах в чае, а также в коре дуба. Именно по этой причине представители народной медицины часто используют эти растения в качестве средства для борьбы с такими недугами: диарея, воспалительные заболевания глаз, кожных покровов и так далее.

Кроме того, дубящие вещества часто назначаются при наличии отравлений различными веществами, поскольку снижают способность слизистой кишечника к всасыванию токсинов и ядов, образуя на внутренней выстилке кишечной трубки своеобразный защитный барьер.

Способность дубящих веществ образовывать плотную защитную плёнку на пораженных поверхностях часто используется в медицине, например, при наличии воспалительных недугов органов желудочно-кишечного тракта часто пользуются отварами коры дуба.

Наиболее известные представители группы

Флавоноиды, танины.

Органические кислоты

Это группа органических веществ, обладающая кислой реакцией. В наибольших количествах кислоты содержатся в плодах растений, в частности, в смородине, яблоках, винограде, крыжовнике, кроме того, в облепихе, малине и во многих прочих.

Использование в медицине

Польза органических кислот для организма человека очевидна. Они важны, прежде всего, для поддержания нормального качественного и количественного состава микрофлоры кишечника, вследствие сдерживания процессов гниения и устранения условий, благоприятных для роста и развития патогенных микроорганизмов.

Важно помнить ещё и о способности органических кислот оказывать раздражающее воздействие на слизистую оболочку кишечника, что в конечном итоге выражается в регулярном опорожнении, а также в поддержании нормального функционирования организма.

Тартроновая кислота - это важное действующее вещество, препятствующее процессам ожирения. Под его влиянием ускоряются реакции расщепления внутренних жировых депо, кроме того, блокируются процессы образования новых липидов из углеводов.

Наиболее известные представители группы

Яблочная, лимонная, винная, кроме того, тартроновая, уксусная, янтарная, а также молочная кислоты.

Пектиновые вещества

Это сложные органические соединения, в составе которых помимо простых углеводов находятся соли уроновых или карболовых кислот. Отличительной чертой этих веществ является особая студнеобразная консистенция. Это обстоятельство является предпосылкой для использования пектинов не только в пищевой промышленности, но и в качестве средства для лечения многих заболеваний.

Использование в медицине

Одна важная особенность определяет применение пектиновых вещества в медицинской практике. Речь идёт о неспособности всасываться из кишечника человека, обладая при этом выраженными адсорбирующими качествами. Находясь в кишечнике, пектины могут вступать в реакции с различными потенциально опасными для человека веществами, образуя стойкие соединения, что оказывает детоксикационный эффект.

Используется эта особенность для лечения различных отравлений солями тяжелых металлов, а также для лечения лучевой болезни. Помимо этого существуют данные о способности пектинов тормозить процессы роста патогенной микрофлоры кишечника.

Эфирные масла

Группа органических веществ, характеризующихся сложной химической природой, обладающая одной важной особенностью - способностью переходить в газообразное состояние при незначительном повышении окружающей температуры. Все представители этой группы хорошо растворимы в спирте, липидах и совершенно нерастворимы в воде.

Использование в медицине

В медицинской практике эфирные масла применяются с несколькими целями. Во-первых, отдельные представители этой группы способны оказывать противомикробный эффект. По этой причине эфирные масла часто входят в состав антисептических препаратов для наружного использования.

Во-вторых, известна способность эфирных масел особым образом воздействовать на определённые структуры нервной системы, при этом оказывая выраженный успокаивающий эффект.

В-третьих, эти вещества входят в состав различных косметических препаратов, способных значительно улучшить состояние кожи, оказывать защитный, противовоспалительный, антиоксидантный и антивозрастной эффекты.

Витамины

Это весьма обширная группа разнородных химических веществ, которую объединяет одна важная особенность - они не принимают непосредственного участия в обменных процессах, но выполняют жизненно важную регуляторную функцию. При дефиците витаминов, многие метаболические реакции протекают не слишком эффективно.

Использование в медицине

Воздействие витаминов на организм человека сложно переоценить! К примеру, витамин C, способен в значительной степени усиливать неспецифические защитные реакции организма, препятствуя возникновению множества заболеваний, прежде всего простудных.

Витамины группы B, очень важны для поддержания кожи и слизистых оболочек в здоровом состоянии. Кроме того, они нужны для нормального функционирования нервной ткани.

Витамин D, крайне важен для правильного и полного усвоения кальция и фосфора, без которых невозможно представить здоровую костную ткань и крепкую зубную эмаль.

Витамин E обладает выраженными антиоксидантными характеристиками, следовательно, препятствует появлению онкологической и возрастной патологии.

Наиболее известные представители группы

Аскорбиновая кислота, ретинол, рибофлавин, холин, пиридоксин, биотин, холекальциферол, эргокальциферол, никотиновая кислота,кроме того, холин, цианокобаламин и так далее.

Заключение

Конечно, перечень этих важных химических соединений не претендует на то, чтобы считаться исчерпывающим. Но, тем не менее, приведённые сведения достаточны для понимания важности БАВ лекарственных растений для организма человека.

Биологически активные органические соединения

К биологически активным веществам относятся: ферменты, витамины, гормоны и лекарства. Это жизненно важные и необходимые соединения, каждое из которых выполняет незаменимую и очень важную роль в жизнедеятельности организма.

Переваривание и усвоение пищевых продуктов происходит при участии ферментов. Синтез и распад белков, нуклеиновых кислот, липидов, гормонов и других веществ в тканях организма представляет собой также совокупность ферментативных реакций. Без ферментов нет жизни. В основе многих заболеваний человека лежат нарушения ферментативных процессов. Витамины могут быть отнесены к группе биологически активных соединений, оказывающих свое действие на обмен веществ в ничтожных концентрациях. Это органические соединения различной химической структуры, которые необходимы для нормального функционирования практически всех процессов в организме. Они повышают устойчивость организма к различным экстремальным факторам и инфекционным заболеваниям, способствуют обезвреживанию и выведению токсических веществ и т. д. Гормоны – это продукты внутренней секреции, которые вырабатываются специальными железами или отдельными клетками, выделяются в кровь и разносятся по всему организму в норме, вызывая определенный биологический эффект. Сами гормоны непосредственно не влияют на какие-либо реакции клетки. Только связавшись с определенным, свойственным только ему рецептором вызывается определенная реакция. Термином» гормоны» следует обозначать только те активные продукты обмена веществ, которые образуются в специальных образованиях – железах внутренней секреции.

Витамины

Общая характеристика

Витамины (от лат. YITA – жизнь) – группа органических соединений разнообразной химической природы, необходимых для питания человека и животных и имеющих огромное значение для нормального обмена веществ и жизнедеятельности организма Витамины выполняют в организме те или иные каталитические функции и требуются в ничтожных количествах по сравнению с основными питательными веществами (белками, жирами, углеводами и минеральными солями.)

История открытия витаминов

Ко второй половине 19 века было выяснено, что пищевая ценность продуктов питания определяется содержанием в них в основном следующих веществ: белков, жиров, углеводов, минеральных солей и воды. Считалось общепризнанным, что если в пищу человека входят в определенных количествах все эти питательные вещества, то она полностью отвечает биологическим потребностям организма. Однако практический опыт врачей и клинические наблюдения издавна с несомненностью указывали на существование ряда специфических заболеваний, непосредственно связанных с дефектами питания, хотя последнее полностью отвечало указанным выше требованиям.

Настоящим бичом для мореплавателей долгое время была цинга.Практический опыт ясно указывал на то, что цинга и некоторые другие болезни связанны с дефектами питания, что даже самая обильная пища сама по себе еще далеко не всегда гарантирует от подобных заболеваний и что для предупреждения и лечения таких заболеваний необходимо вводить в организм какие-то дополнительные вещества, которые содержатся не во всякой пище. Основоположником учения о витаминах, является русский учёный Николай Иванович Лунин, который ещё в 1880 году провёл весьма показательные опыты, изучая пищевые потребности животного организма.

Доказательство существования витаминов завершилось работой польского учёного Казимира Функа. В 1911 году он выделил это вещество в кристаллическом виде (оказавшееся, как потом выяснилось, смесью витаминов).По своим химическим свойствам это вещество принадлежало к органическим соединениям и содержало аминогруппу.Так как первое вещество этой группы жизненно необходимых соединений содержало аминогруппу и обладало некоторыми свойствами аминов, Функ (1912) предложил назвать весь этот класс веществ витаминами (лат. vita – жизнь). Впоследствии, однако, оказалось, что многие вещества этого класса не содержат аминогруппы.

Классификация витаминов

Витамины делят на две большие группы: витамины растворимые в жирах, и витамины, растворимые в воде. Каждая из этих групп содержит большое количество различных витаминов, которые обычно обозначают буквами «латинского алфавита».

  1. ВИТАМИНЫ, РАСВОРИМЫЕ В ЖИРАХ.
  • Витамин A (антиксерофталический).
  • Витамин D (антирахитический).
  • Витамин E (витамин размножения).
  • Витамин K (антигеморрагический)
  1. ВИТАМИНЫ,РАСВОРИМЫЕ В ВОДЕ.
  • Витамин В1 (антиневритный).
  • Витамин В2 (рибофлавин).
  • Витамин PP (антипеллагрический).
  • Витамин В6 (антидермитный).
  • Пантотен (антидерматитный фактор).
  • Биотит (витамин Н, фактор роста для грибков, дрожжей и бактерий, антисеборейный).
  • Инозит. Парааминобензойная кислота (фактор роста бактерий и фактор пигментации).
  • Фолиевая кислота (антианемический витамин, витамин роста для цыплят и бактерий).
  • Витамин В12 (антианемический витамин).
  • Витамин В15 (пангамовая кислота).
  • Витамин С (антискорбутный).
  • Витамин Р (витамин проницаемости).

Ферменты

Общая характеристика

Ферме́нты или энзи́мы (от лат. fermentum, греч. ζύμη, ἔνζυμον - закваска) - обычно белковые молекулы или молекулы РНК (рибозимы) или их комплексы, ускоряющие (катализирующие) химические реакции в живых системах. Реагенты в реакции, катализируемой ферментами, называются субстратами, а получающиеся вещества - продуктами. Ферменты специфичны к субстратам (АТФаза катализирует расщепление только АТФ, а киназа фосфорилазы фосфорилирует только фосфорилазу). Ферментативная активность может регулироваться активаторами и ингибиторами (активаторы - повышают, ингибиторы - понижают). Белковые ферменты синтезируются на рибосомах, а РНК - в ядре.

История открытия

Термин «фермент» (fermentum по-латыни означает «бродило», «закваска») был предложен голландским ученым Ван-Гельмонтом в начале XYII века. Так он назвал неизвестный агент, принимающий активное участие в процессе спиртового брожения. Экспериментальное изучение ферментативных процессов началось в XYIII столетии, когда французский естествоиспытатель Р. Реомюр поставил опыты, чтобы выяснить механизм переваривания пищи в желудке хищных птиц.
Значительно позже (1836 г.) Т. Шванн открыл в желудочном соке фермент пепсин (от греческого слова pepto – «варю») под влиянием которого и происходит переваривания мяса в желудке. Эти работы послужили началом изучения так называемых протеолитических ферментов. Важным событием в развитии науки о ферментах явились работы К.С. Кирхгоффа. В 1814 г. действительный член Петербургской Академии наук К.С. Кирхгофф выяснил, что проросший ячмень способен превращать полисахарид крахмал в дисахарид мальтозу, а экстракт дрожжей расщеплял свекловичный сахар на моносахариды – глюкозу и фруктозу. Это были первые исследования в ферментологии. Хотя на практике применение ферментативных процессов было известно с незапамятных времен (сбраживание винограда, сыроварение и др.) В разных изданиях применяются два понятия: «ферменты» и «энзимы». Эти названия идентичны. Они обозначают одно и тоже – биологические катализаторы.
Основоположник микробиологии Л. Пастер утверждал, что деятельность ферментов определяется жизнью клетки. Если клетку разрушить, то прекратиться и действие фермента. Химики во главе с Ю. Либихом развивали чисто химическую теорию брожения, доказывая, что активность ферментов не зависит от существования клетки. В 1871 г. русский врач М.М. Манассеина разрушила дрожжевые клетки, растирая их речным песком. Клеточный сок, отделенный от остатков клеток, сохранял свою способность сбраживать сахар. Через четверть века немецкий ученый Э. Бухнер получил бесклеточный сок прессованием живых дрожжей под давлением до 5*10 Па. Этот сок, подобно живым дрожжам, сбраживал сахар с образованием спирта и оксида углерода.
Работы А.Н. Лебедева по исследованию дрожжевых клеток и труды других ученых положили конец виталистическим представления в теории биологического катализа, а термины «фермент» и «энзим» стали применять как равнозначные.

Свойства ферментов

Будучи белками, ферменты обладают всеми их свойствами. Вместе с тем биокатализаторы характеризуются рядом специфических качеств, тоже вытекающих из их белковой природы. Эти качества отличают ферменты от катализаторов обычного типа. Сюда относятся термолабильность ферментов, зависимость их действия от значения рН среды, специфичность и, наконец, подверженность влиянию активаторов и ингибиторов.

  • Термолабильность ферментов объясняется тем, что температура, с одной стороны, воздействует на белковую часть фермента, приводя при слишком высоких значениях к денатурации белка и снижению каталитической функции, а с другой стороны, оказывает влияние на скорость реакции образования фермент-субстратного комплекса и на все последующие этапы преобразования субстрата, что ведет к усилению катализа.Температура, при которой каталитическая активность фермента максимальна, называется его температурным оптимумом. Температурный оптимум для различных ферментов неодинаков. В общем, для ферментов животного происхождения он лежит между 40 и 50 °С, а растительного – между 50 и 60 °С.
  • Зависимость активности фермента от значения рН среды была установлена свыше 50 лет назад. Для каждого фермента существует оптимальное значение рН среды, при котором он проявляет максимальную активность. Большинство ферментов имеет максимальную активность в зоне рН поблизости от нейтральной точки. В резко кислой или резко щелочной среде хорошо работают лишь некоторые ферменты. Переход к большей или меньшей (по сравнению с оптимальной) концентрации водородных ионов сопровождается более или менее равномерным падением активности фермента. Влияние концентрации водородных ионов на каталитическую активность ферментов состоит в воздействии ее на активный центр. Кроме того, рН среды влияет на степень ионизации субстрата, фермент-субстратного комплекса и продуктов реакции, оказывает большое влияние на состояние фермента, определяя соотношение в нем катионных и анионных центров, что сказывается на третичной структуре белковой молекулы. Последнее обстоятельство заслуживает особого внимания, так как определенная третичная структура белка-фермента необходима для образования фермент-субстратного комплекса.

Гипотеза Кошланда об индуцированном соответствии

  • Специфичность – одно из наиболее выдающихся качеств ферментов. Эго свойство их было открыто еще в прошлом столетии, когда было сделано наблюдение, что очень близкие по структуре вещества – пространственные изомеры расщепляются по эфирной связи двумя совершенно разными ферментами. Таким образом, ферменты могут различать химические соединения, отличающиеся друг от друга очень незначительными деталями строения.По образному выражению, нередко употребляемому в биохимической литературе, фермент подходит к субстрату, как ключ к замку. Это знаменитое правило было сформулировано Э. Фишером в 1894 г. исходя из того, что специфичность действия фермента предопределяется строгим соответствием геометрической структуры субстрата и активного центра фермента. В 1958 г. Дениел Кошланд предложил модификацию модели «ключ-замок» . Ферменты, в основном, - не жесткие, а гибкие молекулы. Активный центр фермента может изменить конформацию после связывания субстрата. Боковые группы аминокислот активного центра принимают такое положение, которое позволяет ферменту выполнить свою каталитическую функцию. В некоторых случаях молекула субстрата также меняет конформацию после связывания в активном центре. В отличие от модели «ключ-замок», модель индуцированного соответствия объясняет не только специфичность ферментов, но и стабилизацию переходного состояния. Эта модель получила название «рука-перчатка».

Классификация ферментов

По первой в истории изучения ферментов классификации их делили на две группы: гидролазы, ускоряющие гидролитические реакции, и десмолазы, ускоряющие реакции не гидролитического распада.

Затем была сделана попытка разбить ферменты на классы по числу субстратов, участвующих в реакции. В соответствии с этим ферменты классифицировали на три группы.

  1. Катализирующие превращения двух субстратов одновременно в обоих направлениях: А+В) С+D.
  2. Ускоряющие превращения двух субстратов в прямой реакции и одного в обратной: А+В) С.
  3. Обеспечивающие каталитическое видоизменение одного субстрата как в прямой, так и в обратной реакции: А) В.

По типу биохимических процессов все ферменты делят на 6 классов.

  1. Оксидоредуктазы – ускоряют реакции окисления – восстановления.
  2. Трансферазы – ускоряют реакции переноса функциональных групп и молекулярных остатков.
  3. Гидролазы – ускоряют реакции гидролитического распада.
  4. Лиазы – ускоряют не гидролитическое отщепление от субстратов определенных групп атомов с образованием двойной связи (или присоединяют группы атомов по двойной связи).
  5. Изомеразы – ускоряют пространственные или структурные перестройки в пределах одной молекулы.
  6. Лигазы – ускоряют реакции синтеза, сопряженные с распадом богатых энергией связей.

Эти классы и положены в основу новой научной классификации ферментов.

Группа Ферменты

Гормоны

Серотонин

Общая характеристика

Гормоны- специфические вещества, которые вырабатываются в организме и регулируют его развитие и функцианирование. В переводе с греческого – гормоны- означают двигаю, возбуждаю. Гормоны образуются специальными органами – железами внутренней секреции (или эндокринными железами). Гормоны, в широком смысле слова, являются биологически активными веществами и носителями специфической информации, с помощью которой осуществляется связь между различными клетками и тканями, что необходимо для регуляции многочисленных функций организма. Информация, содержащаяся в гормонах, достигает своего адресата благодаря наличию рецепторов, которые переводят ее в пострецепторное действие (влияние), сопровождающееся определенным биологическим эффектом.

В настоящее время различают следующие варианты действия гормонов:

  1. гормональное, или гемокринное, т.е. действие на значительном удалении от места образования;
  2. изокринное, или местное, когда химическое вещество, синтезированное в одной клетке, оказывает действие на клетку, расположенную в тесном контакте с первой, и высвобождение этого вещества осуществляется в межтканевую жидкость и кровь;
  3. нейрокринное, или нейроэндокринное (синаптическое и несинаптическое), действие, когда гормон, высвобождаясь из нервных окончаний, выполняет функцию нейротрансмиттера или нейромодулятора, т.е. вещества, изменяющего (обычно усиливающего) действие нейротрансмиттера;
  4. паракринное - разновидность изокринного действия, но при этом гормон, образующийся в одной клетке, поступает в межклеточную жидкость и влияет на ряд клеток, расположенных в непосредственной близости;
  5. юкстакринное – разновидность паракринного действия, когда гормон не попадает в межклеточную жидкость, а сигнал передается через плазматическую мембрану рядом расположенной другой клетки;
  6. аутокринное действие, когда высвобождающийся из клетки гормон оказывает влияние на ту же клетку, изменяя ее функциональную активность;
  7. солинокринное действие, когда гормон из одной клетки поступает в просвет протока и достигает таким образом другой клетки, оказывая на нее специфическое воздействие (например, некоторые желудочно-кишечные гормоны).

Cвойства гормонов

Особый интерес представляет способность организма сохранять гормоны в инактивированном (недеятельном) состоянии.

Гормоны, являясь специфическими продуктами желез внутренней секреции, не остаются стабильными, а изменяются структурно и функционально в процессе обмена веществ. Продукты превращения гормонов, могут обладать новыми биокаталитическими свойствами и играть определенную роль в процессе жизнидеятельности.

Работа гормонов осуществляется под контролем и в теснейшей зависимости с нервной системой.

Специфичность физиологического действия гормонов является относительной и зависит от состояния организма как целого. Большое значение имеет изменение состава среды, в которой действует гормон, в частности, увеличение или уменьшение концентрации водородных ионов, сульфгидрильных групп, солей калия и кальция, содержание аминокислот и прочих продуктов обмена веществ, влияющих на реактивность нервных окончаний и взаимоотношения гормонов с ферментными системами.

Доказано, что гормоны находятся в тесной зависимости от условий внешней среды, влияние которой опосредуется рецепторами нервной системы. Раздражение болевых, температурных, зрительных и др. рецепторов оказывает влияние на выделение гормона гипофиза, щитовидной железы, надпочечника и др. желез.

Некоторые химические вещества, вводимые в организм, могут специфически нарушать гормонообразование.

Классификация гормонов

По химической природе гормоны делятся на белковые, стероидные (или липидные) и производные аминокислот.

Белковые гормоны подразделяют на пептидные: АКТГ, соматотропный (СТГ), меланоцитостимулирующий (МСГ), пролактин, паратгормон, кальцитонин, инсулин, глюкагон, и протеидные – глюкопротеиды: тиротропный (ТТГ), фолликулостимулирующий (ФСГ), лютеинизирующий (ЛГ), тироглобулин. Гипофизотропные гормоны и гормоны желудочно-кишечного тракта принадлежат к олигопептидам, или малым пептидам.

К стероидным (липидным) гормонам относятся кортикостерон, кортизол, альдостерон, прогестерон, эстрадиол, эстриол, тестостерон, которые секретируются корой надпочечника и половыми железами. К этой группе можно отнести и стеролы витамина D – кальцитриол. Производные арахидоновой кислоты являются, как уже указывалось, простагландинами и относятся к группе эйкозаноидов.

Адреналин и норадреналин, синтезируемые в мозговом слое надпочечника и других хромаффинных клетках, а также тироидные гормоны являются производными аминокислоты тирозина.

Белковые гормоны гидрофильны и могут переноситься кровью как в свободном, так и в частично связанном с белками крови состоянии. Стероидные и тироидные гормоны липофильны (гидрофобны), отличаются небольшой растворимостью, основное их количество циркулирует в крови в связанном с белками состоянии.

Гормоны осуществляют свое биологическое действие, комплексируясь с рецепторами – информационными молекулами, трансформирующими гормональный сигнал в гормональное действие. Большинство гормонов взаимодействуют с рецепторами, расположенными на плазматических мембранах клеток, а другие гормоны – с рецепторами, локализованными внутриклеточно, т.е. с цитоплазматическими и ядерными эффектом.

Группа Гормоны

Лекарственные средства

Общая характеристика

Лекарственные средства - фармакологические средства (вещества или смеси веществ), прошедшие клинические испытания и разрешенные к применению для профилактики, диагностики и лечения заболеваний уполномоченным на то органом страны в установленном порядке, полученные из крови, плазмы крови, а также органов, тканей человека или животных, растений, минералов, методом синтеза или с применением биотехнологий.

Таким образом, к лекарственным средствам относятся вещества растительного, животного или синтетического происхождения, обладающие фармакологической активностью и предназначенные для производства и изготовления лекарственных форм.

История открытия

Лекарства как химические вещества, способные купировать всевозможные патологические состояния организма, приобретают все большее значение в жизни общества. Сейчас известно уже более 12 тысяч таких препаратов.

Уже в глубокой древности люди пытались спасти свою жизнь, используя различные природные лекарственные вещества. Чаще всего это были растительные экстракты, но применялись и препараты, которые получали из сырого мяса, дрожжей и отходов животных. Первые ученые инстинктивно чувствовали, что во многих живых организмах находятся вещества, которые могут помочь в борьбе с болезнями, но лишь по мере развития химии люди убедились, что лечебный эффект таких веществ заключается в избирательном воздействии на организм определенных химических соединений. Прошло еще какое-то время, и такие соединения стали получать в лабораториях путем синтеза.

Биологически активные вещества лекарственных растений

1. Классификация биологически активных веществ

Растения

Органические вещества

Минеральные вещества

Вещества первичного биосинтеза

Вещества вторичного биосинтеза

Минеральные соли

Алкалоиды

Микроэлементы

Гликозиды

Углеводы

Сапонины

Органические кислоты

Дубильные вещества

Флаваноиды

Эфирные масла

Растительные гормоны

Витамины

Биологически активные вещества – это такие вещества, которые оказывают влияние на биологические процессы в организме человека и животных.

Они могут быть продуктами первичного (витамины, жиры, углеводы, белки) и вторичного биосинтеза (алкалоиды, гликозиды, дубильные вещества).

В растениях всегда содержится комплекс биологически активных веществ, но терапевтическим и профилактическим действием обладает одно или несколько. Их называют Действующими веществами и используют при производстве лекарственных препаратов.

В растениях также содержаться так называемые Сопутствующие вещества . Это условное название продуктов первичного и вторичного синтеза в растениях (ментол, папаверин, танин). Некоторые сопутствующие вещества позитивно влияют на организм человека, так как дополняют действие основного действующего вещества. Например, витамины, минеральные вещества, флаваноиды усиливают всасываемость действующих веществ, усиливают полезное действие или ослабляют вредное действие сильнодействующих соединений. Наряду с полезными сопутствующими веществами в растениях содержаться и вредные, которые необходимо удалять. Например, в семенах клещевины, кроме касторового масла содержится и вещество ядовитое вещество рицин, которое можно разрушить при термической обработке. В коре крушины содержатся окисленные гликозиды, которые оказывают лечебное действие, и неокисленные, которые вызывают боль в желудке и рвоту. Удалить эти вещества можно при термической обработке или при хранении в течение одного года.

Наряду с сопутствующими веществами выделяют группу Балластных веществ (фармакологически индифферентные). К ним в основном относятся продукты первичного синтеза. Понятие балластные – условное, так как и эти вещества влияют на организм человека и животного. Например, клетчатка стимулирует перистальтику кишечника, нормализует холестериновый обмен, усиливает выделение желудочного сока. Если эти вещества используют в медицине и фармации, то их относят к основным.

Все биохимические процессы в растении происходят в водной среде. Содержание воды в лекарственных растениях составляет 50-90%. Большая часть ее – в свободном состоянии, примерно 5% - в связанном. Поэтому растения сравнительно легко высыхают.

Все вещества растений можно разделить на две группы: минеральные и органические. Минеральные делятся на микроэлементы и макроэлементы.

2. Алкалоиды

Это сложные азотсодержащие соединения щелочного характера, которые вырабатываются в организме растений. Они могут быть кислородсодержащие (твердые) и безкислородные (жидкие). В растениях содержатся в форме солей блочной, щавелевой, лимонной, винной и других кислот. Алкалоиды есть во всех частях растения, но распределены неравномерно: у одних растений – в плодах, у других – в коре и корнях. Содержание алкалоидов зависит от экологических условий, биологических особенностей растения и стадии его развития.

Алкалоиды добывают из растений методом экстракции, одновременно с этим из сырья поступают дубильные вещества, слизи, смолы. Алкалоиды относятся к сильнодействующим веществам широкого спектра действия. Некоторые из них отличаются малой токсичностью и избирательным действием, так как в организме животных разлагаются на производные, сходные с присущими для их биосинтеза. Например, алкалоиды группы кофеина (производные пурина) распадаются в организме на гипоксантин, ксантин и мочевинную кислоту. В организме животных подобный распад есть в белковом обмене. Поэтому токсичность низкая.

Сами алкалоиды в воде не растворяются, но их соли растворяются хорошо. Содержание их в растениях от следовых количеств до 2-3% в сухом продукте (в хинной коре до 16%). Большинство растений содержит несоколько разных алкалоидов, например в маке снотворном и чистотеле их по 26. Образование алкалоидов присуще для растений из семейств маковых, лютиковых, пасленовых, бобовых.

Самые известные алкалоиды: морфин – в головках мака снотворного, атропин – белладонна обыкновенная, никотин – в листьях табака. К этой группе относят и некоторые стимуляторы нервной системы – производные ксантина – кофеин – в семенах кофейного дерева, колы и какао, листьях чайного куста; теобромин – в семенах какао, теофилин – в чайных листьях.

Лекарства, сделанные на основе алкалоидов, оказывают сложное и многостороннее действие на организм. Они активизируют деление клеток, повышают артериальное давление, усиливают общий обмен веществ, улучшают секрецию пищеварительных желез.

Из алкалоидных растений чаще всего используют мак снотворный, чистотел большой, барбарис обыкновенный, головатень круглоголовый, головня ржи, листья чая, корень раувольфии обыкновенной, семена ореха рвотного.

3. Гликозиды

Состоят из соединений глюкозы или других сахаров с разными веществами. Гликозиды легко распадаются на углеродную часть – гликон и одну или несколько несахаристых соединений – агликоны или генины. Агликоны гликозидов по химическому строению бывают алифатическими, ароматическими, гетероциклическими соединениями.

Лекарственными свойствами обладают агликоны. Но в чистом виде они плохо растворяются в воде и из-за этого плохо всасываются желудочным трактом и усваиваются. В то же время, гликозиды легко растворяются и всасываются и поэтому более активны.

К алкалоидам относятся: альдегиды, алкалоиды, спирты, терпены, флавоны, органические кислоты. Распад гликозидов происходит при кипячении в воде, нагревании с разведенными кислотами или основаниями, а также под действием ферментов – гликозидаз. Гликозиды – преимущественно кристаллические, реже – аморфные вещества, хорошо растворяющиеся в воде, спирте, горькие на вкус. Из растений их экстрагируют водой или этанолом низкой концентрации.

В зависимости от химической природы гликозиды подразделяют на три группы:

1. О-гикозиды, агликоны которых не содержат азота (гликозиды группы наперстянки), наиболее часто встречающиеся в природе

2. N-гликозиды, в составе агликонов которых есть азот (нитрилгликозиды, циангликозиды - амигдалин)

Амигдалин образуется в семенах косточковых фруктовых пород (абрикос, вишня, миндаль, слива, персик, терн и другие), а также при экстремальных условиях (вытаптывание, градобой, ливень) в сорго обыкновенном, суданской траве, клевере полевом и ползучем, льне полевом. Амигдалин, расщепляясь образует синильную кислоту (сильный яд).

3. S-гликозиды, агликоны которых содержат азот и серу (тиогликозиды, горчичные гликозиды)

В медицине используют такие основные группы этих соединений:

А) фенилгликозиды, которые в агликоне содержат фенильный радикал (одноатомные и многоатомные фенолы);

Б) антрагликозиды, в составе которых есть проиводное антрахинона (выделены из крушины, ревеня, алоэ)

В) флавоновые гликозиды, агликон которых – производное флавона (рутин, катехин)

Г) стероидные гликозиды или сердечные (О-гликозиды), в агликоне содержат стероидную группу и действуют на сердечную мышцу (гликозиды ландыша майского, горицвета весеннего, наперстянки).

Д) тиогликозиды – наименее распространенная группа среди растений. Они содержат серу, обнаружены в семенах растений семейства капустные.

По действию на организм выделяют такие гликозиды: сердечные, антрагликозиды, тиогликозиды, сапонины, горькие (несердечные) гликозиды.

1. Сердечные или стероидные гликозиды.

Химические соединения, действующие на сердечную мышцу, усиливая ее сокращение (кардиотоническое влияние). Некоторые из них успокаивающе действуют на центральную нервную систему. При передозировке могут вызвать летальный исход.

Химический состав их однотипный. Их агликоны являются производными циклопентано-пергидрофенантрена и принадлежат к классу стероидов.

Сердечные гликозиды уменьшают содержание ионов калия в клетках и повышают содержание ионов натрия и кальция, улучшают процесс проникновения сахаров через клеточную мембрану, активизируют клеточное дыхание, увеличивают общее содержание белков или увеличивают количество небелкового азота. Эта группа гликозидов нормализует ферментативные процессы углеводно-фосфорного обмена в сердечной мышце и облегчает усвоение ими АТФ.

Сердечные гликозиды содержат горицвет весенний, наперстянка, ландыш майский, строфант.

2. Антрагликозиды

Агликоны этой группы гликозидов представляют собой мономеры: антранолы, антроны, антрахиноны и их димеры. Они содержатся в алоэ, коре и плодах крушины ломкой, листьях и корнях ревеня. Содержание действующих веществ в алоэ древовидном не менее 18%, в листьях сены 2,5-3%, в коре крушины ломкой – до 7%, в корнях ревеня 2,6%. Экстракты и отвары смеси антрагликозидов проявляют более сильный эффект, чем выделенные в чистом виде. Оказывают синергическое действие по отношению к другим препаратам, и антагонистическое по отношению к дубильным веществам.

3. Триогликозиды.

Соединения, в состав агликонов которых входит сера, принимающая участие в освобождении сахаристого компонента. Эти соединения горькие, острые на вкус. Они возбуждают аппетит, способны раздражать слизистые оболочки и кожу, благодаря чему усиливают кровеоборот при внешнем применении, проявляют активное бактерицидное и бактериостатическое действие на патогенные группы микроорганизмов, вызывающих воспаление кожи, подкожной основы и мышц. В небольшом количестве возбуждают аппетит, усиливают кровеоборот.

4. Сапонины

Это гетерозидные соединения стероловых или тритерпеновых агликонов с разными сахарами (глюкоза, рамноза, арабиноза, галактоза), а также с глюкуроновой кислотой. Они содержаться в многих растениях, особенно из семейств первоцветных и гвоздичных, а в некоторых (мыльнянка аптечная, первоцвет весенний, остудник голый) накапливаются в значительном количестве. Сапонины хорошо растворяются в воде, образуя коллоидные растворы, а при вибрации – густую пену. Даже в очень концентрированных растворах они находятся в молекулярном или ионном состоянии. Характерная особенность сапонинов – их способность образовывать сложные соединения с определенными алкоголями и фенолами, особенно с холестерином. Такого типа соединения дают возможность сапонинам находиться в инертном состоянии, и лишь при разложении под действием высокой температуры их действие активизируется.

– стероидные сапонины принадлежат к группе природных гликозидов, которым свойственная высокая гемолитическая активность. Они обнаружены в растениях разных семейств, но главным образом, в растениях семейств диоскорейные, бобовые, лютиковые, лилейные. Стероидные сапонины обладают фунгицидным, противоопухолевым, цитостатическим действием. Они понижают артериальное давление, нормализируют сердечный ритм, делают дыхание более ровным и глубоким. Эти сапонины используются как производное сырье для синтеза стероидных гормонов.

– тритерпеновые сапонины в большинстве обладают гемолитическим действием. Они разрушают оболочку эритроцитов и освобождают гемоглобин. Сапонины имеют едкий горький вкус, раздражают слизистую оболочку глотки, желудка и кишечника, вызывают рвоту и усиливают бронхиальную секрецию. Их назначают при тяжелом легочном кашле для откашливания.

Сапонины разных растений обладают разным действием. Так сапонины солодки голой имеют эстрогенную активность, элеутерококка – повышают иммунитет, женьшеня – дают адаптогенный эффект.

Сапонины способствуют выделению желчи и ее разреженности, активизируют выделение желудочного и кишечного сока, сока поджелудочной железы.

Растительные препараты с содержанием сапонинов, принимаемые перорально, даже в небольших дозах раздражают нервные окончания слизистой желудка и вызывают тошноту. Одновременно вызывается раздражение дыхательного центра, углубляется и учащается дыхание. Образующаяся водянистая слизь облегчает кашель, а усиленное дыхание способствует удалению слизи из дыхательных путей.

Сапонины увеличивают проницаемость стенок слизистой оболочки пищеварительного канала и улучшают всасываемость солей кальция, железа, сердечных гликозидов. Эта их особенность имеет большое значение для усвоения витаминов или минеральных солей, содержащихся в томатах, фасоли и других плодах и овощах, в которых есть сапониновые гликозиды.

Сапонины, введенные парентерально (внутримышечно или подкожно) раздражают ткани, вызывают их воспаление, нагноение, некроз. Действуют как сильнейший протоплазматический яд. В первую очередь действие сапонинов проявляется на паренхиматозных органах. Значительно поражается капиллярная система печени, почек, сердечной мышцы, возникают кровеизлияния и деструктивные изменения в альвеолярной системе легких и тонкого кишечника.

Образуя комплексные соединения с холестерином и стероидными веществами, сапонины приводят к гемолизу, гемолитической анемии, тяжелых повреждений гемопоетической функции и костного мозга. Некоторые из них (токсические) чрезмерно усиливают гемолиз эритроцитов, а другие (малотоксичные), наоборот, замедляют этот процесс: соединяются с альбуминами крови в достаточно устойчивые комплексы.

Введенные внутримышечно в большом количестве, они сначала возбуждают, а потом поражают важные отделы головного и спинного мозга, дыхательный центр, сердечную мышцу.

Сапонинсодержащие растения используются в медицине как отхаркивающие средства при заболеваниях дыхательных путей, как мочегонные, общеукрепляющие, стимулирующие, тонизирующие лекарства. Значительную их часть применяется при лечении болезней сердечно-сосудистой системы, как седативные и противосклеротичные средства. Эффективны при лечении атеросклероза сосудов головного мозга, атеросклерозе совместно с гипертонической болезнью и злокачественными новообразованиями.

5. Горькие (несердечные) гликозиды

Очень горькие на вкус. В отличие от горьких алкалоидов и горьких сердечных гликозидов не опасны и применяются в медицинской практике для усиления секреторной функции желудка, лучшего усвоения пищи. К горьким гликозидам относятся абсинтин (из полыни горькой), аукубин (из вероники лекарственной), эритаурин (из золототысячника малого). Горькие гликозиды относят также к группе горечей.

6. Гликоалколоиды

В растениях образуются как «гибриды» между алкалоидами и гликозидами. Впервые был выделен гликоалкалоид из ягод паслена черного, который долгое время не находил применения в медицине. Долгое время для синтеза гормонов, и в частности кортизона, использовали кору надпочечников, что было экономически невыгодно. В 1935 году из них добывали 20 гормонов для медицины. Эти вещества применяют как мощный регулятор обмена веществ в организме.

Необходимо было найти растительный аналог для получения гормонов. Таким растением оказался паслен дольчатый, произрастающий в Австралии. В этом растении содержатся наиболее сложно синтезируемые молекулы соласодина для фармацевтической промышленности по производству гормональных препаратов.

Все биологически активные вещества или отдельные элементы, вызывающие отравления животных или нормальное функциони­рование отдельных систем организма, в зависимости от их целево­го назначения подразделяются на ряд групп.

Пестициды (pestis - вредное, caedere - убивать). Пестициды - средства борьбы с вредителями растений и животных. Для ветери­нарной токсикологии они имеют большее значение, чем токси­ческие вещества всех остальных групп. Именно среди пестицидов наибольшее количество химических соединений с высокой биоло­гической активностью. Однако ведение современного высокопро­дуктивного сельского хозяйства невозможно без их применения. Поэтому отмечается рост как ассортимента, так и объема приме­нения пестицидов. Пестициды имеют не только токсикологичес­кое, но и ветеринарно-санитарное значение, так как некоторые из них загрязняют объекты окружающей среды и накапливаются в тканях животных, выделяются с молоком и яйцами, что приводит к загрязнению их остатками продуктов питания животного проис­хождения.

Микотоксины. К микотоксинам относят токсичные вещества (метаболиты), образуемые микроскопическими грибами (плесе­нью). Среди них имеются соединения, обладающие исключи­тельно высокой биологической активностью, действующие экст-рогенно, канцерогенно, эмбриотоксически, гонадотоксически и тератогенно. Так, ЛД^о одного из метаболитов гриба из рода фузариум - Т-2-токсина для белых мышей составляет 3,8 мг/кг, примерно такой же токсичностью обладает афлатоксин В ь В на­стоящее время неизвестно другого такого соединения, применяе­мого для защиты растений или животных, с такой высокой токсичностью. ЛДзо карбофурана (фурадана) - одного из наиболее токсичных пестицидов, применяемого для обработки семян свек­лы и не допущенного к применению на животных, составляет 15 мг/кг, т. е. он в 4 раза менее токсичен, чем Т-2-токсины.

Во многих странах мира проводятся обширные исследования по выделению микотоксинов, изучению их химической структу­ры, определению биологической активности, разработке методов определения в кормах и тканях животных, факторов, влияющих на процесс токсинообразования.

Токсичные металлы и их соединения . Из соединений металлов наибольшее санитарно-токсикологическое значение имеют ртуть-, свинец-, кадмийсодержащие вещества и в меньшей степени -хром-, молибден-, цинксодержащие соединения.

До недавнего времени часто отмечали отравления сельскохо­зяйственных и диких животных соединениями ртути, которые применяли для протравливания семян. В нашей стране для этих целей использовали в основном этилмеркурхлорид (C 2 H 5 HgCl), который относится к группе сильнодействующих ядовитых ве­ществ (СДЯВ) и является действующим веществом протравителя гранозана. С 1997 г. гранозан исключен из списка пестицидов. От­равления другими соединениями тяжелых металлов встречаются реже, однако представляют опасность как загрязнители продуктов питания, в том числе животного происхождения - молока, мяса, яиц, рыбы. Основной источник загрязнения тяжелыми металлами и их соединениями - промышленные предприятия, использую­щие в технологическом процессе эти элементы. По мере развития промышленности, использующей тяжелые металлы и их соедине­ния, увеличивается их выброс в окружающую среду, повышается содержание соединений тяжелых металлов в почве, воде, растени­ях, животных и, следовательно, в продуктах питания. В связи с этим возрастает необходимость контроля за их накоплением в объектах окружающей среды, кормах и продуктах питания, с тем чтобы не допускать в пищу продукты питания, содержащие токсикоэлементы выше максимально допустимого уровня.

Токсичные металлоиды . К группе токсичных металлоидов отно­сят соединения мышьяка, фтора, селена, сурьмы, серы и др. Одна­ко причислить эти элементы и их соединения к ядам можно лишь условно. Токсичность металлоидов определяется дозой и видом соединения, поэтому она варьирует в очень широких пределах. Так, например, ЛД 50 натрия арсенита для крыс составляет 8- 15 мг/кг их массы, тогда как гербицида монокальций метиларсената - 4000 мг/кг (Н.Н.Мельников, 1975). Совсем недавно со­единения мышьяка в небольших дозах применяли в качестве стимуляторов роста. Используют их в качестве лекарственных препаратов (новарсенол, осарсол и др.), для уничтожения вред­ных грызунов (кальция арсенит). Фтор- и селенсодержащие ве­щества в небольших дозах применяются для лечения ряда заболеваний, в то время как большие дозы их вызывают отравления животных.

Элементы этой группы позволяют наиболее наглядно проде­монстрировать двойственное воздействие ядов на организм в за­висимости от дозы. Например, селеном возможно отравление сельскохозяйственных животных, в то время как небольшие коли­чества этого элемента, поступающие с кормом, предотвращают развитие у них ряда заболеваний (беломышечной болезни, токси­ческой дистрофии печени). Известно также, что этот элемент не­обходим для организма животных (В. В. Ермаков, В. В. Ковальс­кий, 1974). Могут быть причиной отравления животных плохо обесфторенные фосфаты, используемые в качестве кормовых до­бавок. В то же время в небольших концентрациях фтор добавляют в питьевую воду для предотвращения кариеса зубов.

Полихлорированные и полибромированные бифенилы (ПХБ, ПББ) . Токсические вещества этой группы близки по химическому строению к ДДТ и его метаболитам. ПХБ и ПББ - стойкие хлор- и броморганические соединения, широко применяемые в про­мышленности при производстве резины, пластмасс, в качестве пластификаторов. Токсичность этих веществ сравнительно неве­лика (ЛД 5 о азрола - наиболее распространенного соединения этой группы - составляет 1200 мг/кг массы животного). Однако некоторые из них действуют канцерогенно в опытах на лабора­торных животных. Исходя из этого, установлены очень низкие допустимые уровни их содержания в продуктах питания. ПХБ и ПББ очень медленно разрушаются в окружающей среде и накап­ливаются в органах и тканях животных. Отмечены случаи отрав­ления людей и животных ПХБ, а также высокий уровень загряз­нения их остатками кормов и продуктов питания животного про­исхождения. Особое внимание уделяется изучению биологичес­кой активности ПХБ и ПББ, отдаленных последствий их действия, а также миграции в объектах окружающей среды и организме животных.

Соединения азота . Из соединений этой группы санитарно-ток-сикологическое значение имеют нитраты (NO 3), нитриты (NO 2), нитрозоамины и в определенной степени мочевина - карбамид и др. Мочевина используется в качестве кормовой до­бавки животным. В связи с широкой химизацией сельского хозяй­ства и применением в больших масштабах азотистых удобрений существенно возрастает санитарно-токсикологическое значение нитратов и нитритов, которые могут в значительных количествах накапливаться в кормовых культурах, особенно в корнеклубне­плодах, за счет адсорбции из почвы.

Натрия хлорид (поваренная соль). Практически все виды сель­скохозяйственных животных одинаково чувствительны к натрия хлориду. Однако чаще других травятся свиньи и птицы. Это связа­но с тем, что зерновые корма, употребляемые для их кормления,

Яды растительного происхождения . В связи с окультуриванием пастбищ, развитием промышленного животноводства и перево­дом животных на круглогодичное стойловое содержание значение ядов растительного происхождения в отравлениях сельскохозяй­ственных животных снижается, хотя и не утрачивается полностью. Кроме того, некоторые яды, образуемые растениями в сравни­тельно небольших количествах, не вызывают острого отравления, зато действуют эмбритоксически и тератогенно. К ним относятся, например, алкалоиды люпина. В количествах, не вызывающих ос­трого отравления у коров, они оказывают тератогенное действие, в связи с чем у 50 % подопытных коров рождались телята с урод­ствами.

Растительные яды могут быть алкалоидами, тио- и цианогликозидами, токсичными аминокислотами и растительными фе-нольными соединениями.

Среди алкалоидов наибольшее ветеринарно-токсикологическое значение имеют алкалоиды растений рода люпина (спортеин и люпинин), аконита (липоктонин, относящийся к классу поли­циклических дитерпенов), живокости, триходесмы седой и неко­торых других.

Тиогликозиды в основном содержатся в растениях семейства крестоцветных. Они могут быть причиной острых и хронических отравлений животных. Кроме того, поступление с кормом боль­шого количества растений этого семейства может привести к сни­жению их продуктивности. Тиогликозиды взаимодействуют в организме с йодом, в результате чего могут наступить йодная не­достаточность и развитие патологического процесса.

Из растительных фенольных соединений наибольшее ветери-нарно-санитарное значение имеют дикумарин и госсипол.

Лекарственные средства и премиксы . Многие лекарственные препараты в терапевтических дозировках обладают побочным действием - вызывают аллергические реакции, поражают отдель­ные органы. В завышенных дозах они вызывают интоксикацию и гибель животных. Некоторые лекарственные препараты могут длительное время сохраняться в тканях животных, выделяться с молоком или яйцами. Например, антигельминтик гексахлорпа-раксилол обнаруживают в жире обработанных животных через 60 Дней после его однократного введения. В значительных количе­ствах он выделяется с молоком коров. В яйцах кур нередко обна­руживают антигельминтик фенотиазин, применяемый для обра­ботки птиц. Поэтому вопросы токсикологической и ветеринарно-санитарной оценки лекарственных препаратов приобретают особое значение. Решение этих вопросов - одна из задач ветеринар­ной токсикологии. Такое же значение имеют токсикологическая и ветеринарно-санитарная оценки премиксов.

Полимерные и пластические материалы . До последнего времени полимерные и пластические материалы являлись объектом иссле­дования медицинской токсикологии в связи с тем, что их исполь­зовали в основном в жилых и производственных помещениях, из­делиях бытового назначения и других предметах, с которыми кон­тактировал в основном человек. Однако в последнее время раз­личные отходы полимерных материалов и пластические массы широко применяют в животноводстве. Некоторые полимерные материалы для животноводческих помещений изготовляют непос­редственно на месте без необходимого технологического контро­ля. Были случаи отравления животных при использовании в жи­вотноводческих помещениях полимерных материалов, не прошед­ших токсикологической оценки. Поэтому все новые полимерные материалы, предназначенные для животноводческих помещений, должны проходить токсикологическую оценку. Они и являются предметом исследования и контроля ветеринарных токсикологи­ческих лабораторий.

Корма новых видов . В последнее время идут активные поиски новых биологических субстратов, которые могли бы быть исполь­зованы для кормления животных. Ведутся попытки использовать для этой цели куриный помет и навоз свиней, поскольку птицы и свиньи переваривают не более 50 % питательных веществ, содер­жащихся в кормах. Более 50 % дефицитного белка выбрасывается с фекалиями. Перспектива использования такого белка для корм­ления животных вполне реальна. Однако этому препятствуют два обстоятельства: психологический фактор и возможное присут­ствие в навозе токсических веществ, выделяемых организмом. Аналогичные затруднения возникают и при внедрении кормов других видов, например белково-витаминного концентрата, пред­ставляющего собой дрожжи или бактерии, выращенные на отхо­дах нефти или метанола и других продуктов. Все корма этих видов должны пройти токсикологическую и ветеринарно-санитарную оценку и являются объектом исследования ветеринарных токси­кологов.

Похожие публикации