Источник энергии для организма. Энергия человека. Свойства и превращение белков в организме

ФИЗИОЛОГИЯ ОБМЕНА ВЕЩЕСТВ И ЭНЕРГИИ. РАЦИОНАЛЬНОЕ ПИТАНИЕ.

План лекции.

    Понятие об обмене веществ в организме животных и человека. Источники энергии в организме.

    Основные понятия и определения физиологии обмена веществ и энергии.

    Методы изучения энергетического обмена у человека.

    Понятие о рациональном питании. Правила составления пищевых рационов.

    Понятие об обмене веществ в организме животных и человека. Источники энергии в организме.

Организм человека представляет собой открытую термодина-мическую систему, которая характеризуется наличием обмена веществ и энергии.

Обмен веществ и энергии – это совокупность физических, биохимических и физиологических процессов превращения веществ и энергии в организме человека и обмен веществами и энергией между организмом и окружающей средой. Указанные процессы, протекающие в организме человека изучают многие науки: биофизика, биохимия, молекулярная биология, эндокринология и, конечно же, физиология.

Обмен веществ и обмен энергии тесно взаимосвязаны между собой, однако, с целью упрощения понятий, их рассматривают раздельно.

Обмен веществ (метаболизм) – совокупность химических и физических превращений, происходящих в организме и обеспечивающих его жизнедеятельность во взаимосвязи с внешней средой.

В обмене веществ различают две направленности процессов по отношению к структурам организма: ассимиляцию или анаболизм и диссимиляцию или катаболизм.

Ассимиляция (анаболизм) – совокупность процессов создания жи-вой материи. Указанные процессы потребляют энергию.

Диссимиляция (катаболизм) – совокупность процессов распада жи-вой материи. В результате диссимиляции энергия воспроизводится.

Жизнь животных и человека представляет из себя единство процес-сов ассимиляции и диссимиляции. Факторами, сопрягающими данные процессы, являются две системы:

    АТФ – АДФ (АТФ - аденозин три фосфат, АДФ – аденозин ди фосфат;

    НАДФ (окисленный) – НАДФ (восстановленный), где НАДФ – никотин амид ди фосфат.

Посредничество указанных соединений между процессами ассимиляции и диссимиляции обеспечивается тем, что молекулы АТФ и НАДФ выступают в роли универсальных биологических аккумуляторов энергии, ее переносчика, своеобразной «энергетической валютой» организма. Вместе с тем, прежде чем энергия аккумулируется в молекулах АТФ и НАДФ, ее необходимо извлечь из питательных веществ, которые поступают с пищей в организм. Такими пищевыми веществами являются известные вам белки, жиры и углеводы. К этому же следует добавить, что питательные вещества выполняют не только функцию поставщиков энергии, но и функцию поставщиков строительного материала (пластическая функция) для клеток, тканей и органов. Роль различных питательных веществ в реализации пластических и энергетических потребностей организма неодинакова. Углеводы в первую очередь выполняют энергетическую функцию, пластическая функция углеводов незначительна. Жиры в равной степени выполняют и энергетические и пластические функции. Белки являются основным строительным материалом для организма, но при определенных условиях могут являться и источниками энергии.

Источники энергии в организме.

Как уже отмечалось выше, основными источниками энергии в организме являются пищевые вещества: углеводы, жиры и белки. Освобождение энергии, содержащейся в пищевых веществах, в организме человека протекает в три этапа:

1 этап. Белки расщепляются до аминокислот, углеводы - до гексоз, например, до глюкозы или фруктозы, жиры – до глицерина и жирных кислот. На данном этапе организм в основном тратит энергию на расщепление веществ.

2 этап. Аминокислоты, гексозы и жирные кислоты в ходе биохимических реакций превращаются в молочную и пировиноградную кислоты, а также в Ацетил коэнзим А. На данном этапе из пищевых веществ высвобождается до 30% потенциальной энергии.

3 этап. При полном окислении все вещества расщепляются до СО 2 и Н 2 О. На данном этапе, в метаболическом котле Кребса, высвобождается оставшаяся часть энергии, около 70%. При этом не вся высвобождающаяся энергия аккумулируется в химическую энергию АТФ. Часть энергии распыляется в окружающую среду. Эта теплота получила название первичной теплоты (Q 1). Энергия аккумулированная АТФ в дальнейшем расходуется на различные виды работы в организме: механическую, электрическую, химическую и активный транспорт. При этом часть энергии теряется в виде так называемой вторичной теплоты Q 2 . Смотри схему 1.

Углеводы

Биологическое окисление

Н 2 О + СО 2 + Q 1 + АТФ

Механичес-кая работа

+ Q 2

Химическая работа

+ Q 2

Электричес-кая работа

+ Q 2

Активный транспорт

+ Q 2

Схема 1. Источники энергии в организме, результаты полного окисления пищевых веществ и виды выделяемой теплоты в организме.

Следует добавить, что количество выделяемой при окислении пищевых веществ не зависит от количества промежуточных реакций, а зависит от начального и конечного состояния химической системы. Данное положение было впервые сформулировано Гессом (закон Гесса).

Более подробно данные процессы вы рассмотрите на лекциях и занятиях, которые будут проводить с вами преподаватели кафедры биохимии.

Энергетическая ценность пищевых веществ.

Энергетическая ценность пищевых веществ оценивается при помощи специальных устройств – оксикалориметрах. Установлено, что при полном окислении 1 г. углеводов выделяется 4,1 ккал (1 ккал=4187 Дж.), 1 г. жиров - 9.45 ккал., 1 г. белков – 5,65 ккал. Следует добавить, что часть пищевых веществ, поступающих в организм, не усваивается. Например, в среднем не усваивается около 2% углеводов, 5% жиров и до 8% белков. К тому же, не все пищевые вещества в организме расщепляются до конечных продуктов – углекислого газа (диоксида углерода) и воды. Например, часть продуктов неполного расщепления белков в виде мочевины выделяется с мочой.

С учетом вышеизложенного можно отметить, что реальная энерге-тическая ценность пищевых веществ несколько ниже, чем установлен-ная в экспериментальных условиях. Реальная энергетическая ценность 1 г. углеводов составляет 4,0 ккал, 1 г. жиров – 9,0 ккал, 1 г. белков – 4,0 ккал.

    Основные понятия и определения физиологии обмена веществ и энергии.

Интегральной (общей) характеристикой энергетического обмена организма человека являются суммарные энергетические траты или валовый энергетические траты.

Валовые энергетические траты организма - совокупность энергетических трат организма в течение суток в условиях его обычного (естественного) существования. Валовые энергетические траты включают три компонента: основной обмен, специфическое динамическое действие пищи и рабочую прибавку. Валовые энергетические траты оценивают в кдж/кг/сутки или ккал/кг/сутки(1 кдж=0,239 ккал).

Основной обмен.

Начало учению об основном обмене положили работы ученых Тартусского университета Биддера и Шмидта (Bidder and Schmidt, 1852).

Основной обмен – минимальный уровень энергетических трат, необходимый для поддержания жизнедеятельности организма.

Представление об основном обмене, как минимальном уровне энергетических трат организма предъявляет и ряд требований к условиям, в которых должен оцениваться данный показатель.

Условия, в которых должен оцениваться основной обмен:

    состояние полного физического и психического покоя (желательно в положении лежа);

    температура комфорта окружающей среды (18-20 градусов по Цельсию);

    спустя 10 – 12 часов после последнего приема пищи, чтобы избежать увеличения энергетического обмена, связанного с приемом пищи.

Факторы, влияющие на основной обмен.

Основной обмен зависит от возраста, роста, массы тела и половой принадлежности.

Влияние возраста на основной обмен.

Самый высокий основной обмен в пересчете на 1 кг. Массы тела у новорожденных (50-54 ккал/кг/сутки), самый низкий у пожилых людей (после 70 лет основной обмен составляет в среднем 30 ккал/кг/сутки). На постоянный уровень основной обмен выходит к моменту полового созревания к 12 – 14 годам и остается стабильным до 30-35 лет (около 40 ккал/кг/сутки).

Влияние роста и массы тела на основной обмен.

Между массой тела и основным обменом существует практически линейная, прямая зависимость – чем больше масса тела, тем больше уровень основного обмена. Однако, эта зависимость не абсолютна. При повышении массы тела за счет мышечной ткани указанная зависимость практически линейна, однако, если увеличение массы тела связано с увеличением количества жировой ткани эта зависимость приобретает нелинейный характер.

Поскольку масса тела при прочих равных условиях зависит от роста (чем больше рост – тем больше масса тела), между ростом и основным обменом существует прямая зависимость – чем больше рост, тем больше основной обмен.

Учитывая тот факт, что рост и масса тела влияют на общую площадь тела, М. Рубнер (M.Rubner) сформулировал закон, в соответствии с которым основной обмен зависит от площади тела: чем больше площадь тела, тем больше основной обмен. Однако, указанный закон практически перестает работать в условиях, когда температура окружающей среды равна температуре тела. Кроме того, неодинаковая волосистость кожи существенно изменяет теплообмен между организмом и окружающей средой и поэтому закон Рубнера в этих условиях также имеет ограничения.

Влияние половой принадлежности на уровень основного обмена.

У мужчин уровень основного обмена на 5-6% выше, чем у женщин. Это объясняется различным соотношением жировой и мышечной ткани на 1 кг массы тела, а также различным уровнем метаболизма в связи с различиями химической структуры половых гормонов и их физиологическими эффектами.

Специфическое динамическое действие пищи.

Термин специфическое динамическое действие пищи впервые ввел в научный обиход М.Рубнер в 1902 году.

Специфическое динамическое действие пищи – это повышение энергетического обмена организма человека, связанное с приемом пищи. Специфическое динамическое действие пищи – это энергетические траты организма на механизмы утилизации принимаемой пищи. Указанный эффект в изменении энергетического обмена отмечается с момента подготовки к приему пищи, во время приема пищи и продолжается 10-12 часов после приема пищи. Максимальное увеличение энергетического обмена после приема пищи отмечаеся через 3 – 3,5 часа. Специальные исследования показали, что на утилизацию пищи затрачивается от 6 до 10% ее энергетической ценности.

Рабочая прибавка.

Рабочая прибавка является третьим компонентом валовых энергетических трат организма. Рабочая прибавка является частью энергетических трат организма на мышечную деятельность в окружающей среде. При тяжелой физической работе энергетические траты организма могут повышаться в 2 раза по сравнению с уровнем основного обмена.

    Методы изучения энергетического обмена у человека.

Для изучения энергетического обмена у человека разработан целый ряд методов объединенный общим названием – калориметрия.

Следующий класс основных химических соединений нашего организма - углеводы. Углеводы всем нам хорошо известны в виде обычного пищевого сахара (химически он является сахарозой ) или крахмала.
Углеводы делятся на простые и сложные. Из простых углеводов (моносахариды) наибольшее значение для человека имеют глюкоза, фруктоза и галактоза.
К сложным углеводам относятся олигосахариды (дисахариды: сахароза, лактоза и др.) и несахароподобные углеводы - полисахариды (крахмал, гликоген, клетчатка и др.).
Моносахариды и полисахариды отличаются по своему физиоло¬гическому действию на организм. Использование в пищевом рационе избытка легкоусвояемых моно- и дисахаридов способствует быстрому увеличению уровня сахара в крови, что может иметь негативное значение для больных с сахарным диабетом (СД) и ожирением.
Полисахариды значительно медленнее расщепляются в тонком кишечнике. Поэтому нарастание концентрации сахара в крови происходит постепенно. В связи с этим потребление продуктов, богатых крахмалом (хлеб, крупы, картофель, макароны), более полезно.
Вместе с крахмалом в организм поступают витамины, минеральные вещества, неперевариваемые пищевые волокна. К последним относятся клетчатка и пектиновые вещества.
Клетчатка (целлюлоза) оказывает благоприятное регулирующее действие на работу кишечника, желчевыводящих путей, препятствует застою пищи в желудочно-кишечном тракте, способствует выведению холестерина. К продуктам, богатым клетчаткой, относятся капуста, свекла, фасоль, ржаная мука,и др.
Пектиновые вещества входят в состав мякоти фруктов, листьев, зеленых частей стеблей. Они способны адсорбировать различные токсины (в том числе и тяжелые металлы). Много пектинов содержится в мармеладе, повидле, джемах, пастиле, но больше всего этих веществ имеется в мякоти тыквы, которая богата также и каротином (предшественник витамина А).
Большинство углеводов для организма человека - быстроусво-яемый источник энергии. Тем не менее углеводы не являются абсолютно необходимыми питательными веществами. Некоторые из них, например, важнейшее топливо для наших клеток - глюкоза, могут довольно легко синтезироваться из других химических соединений, в частности аминокислот или липидов.
Однако нельзя и недооценивать роль углеводов. Дело в том, что они не только способны, быстро сгорая в организме, обеспечивать его достаточным количеством энергии, но и откладываться про запас в виде гликогена - вещества, очень похожего на всем известный растительный крахмал. Основные запасы гликогена у нас сосредоточены в печени или мышцах. Если энергопотребности организма растут, например при значительной физической нагрузке, то запасы гликогена легко мобилизуются, гликоген превращается в глюкозу, а та уже используется клетками и тканями нашего организма как энергоноситель.

Опасность простых углеводов!

Настройки просмотра комментариев

Плоский список - свёрнутый Плоский список - развёрнутый Древовидный - свёрнутый Древовидный - развёрнутый

По дате - сначала новые По дате - сначала старые

Выберите нужный метод показа комментариев и нажмите "Сохранить установки".

К таким выводам пришли ученые из университетов Иерусалима (Израиль) и Йейля (США), проведя серию экспериментов.

Кузнечиков вида Melanoplus femurrubrum посадили в две клетки, в одну из которых запустили также пауков Pisaurina mira - их естественных врагов. Задачей было только напугать кузнечиков, чтобы отследить их реакцию на хищников, поэтому пауков снабдили "намордниками", склеив им жвалы. Кузнечики испытывали сильный стресс, в результате метаболизм в их организмах сильно увеличивался и появлялся "зверский" аппетит - по аналогии с людьми, которые едят много сладкого, когда волнуются. Кузнечики поглощали за короткий срок большое количество углеводов, углеводород из которых прекрасно усваивался организмом.

Помимо этого, "объевшиеся" кузнечики, как оказалось, после смерти могут приносить вред экосистеме. Ученые обнаружили это, поместив остатки их тел в образцы почвы, где происходил процесс перегноя. Активность почвенных микробов падала на 62% в лабораторных условиях, и на 19% в полевых условиях, говорится в исследовании.

Чтобы проверить результаты эксперимента, ученые создали химическую модель "в реальном времени", заменив остовы настоящих кузнечиков органическими "куколками", состоящими, как и естественные прототипы, из углеводов, белков и хитина в разных пропорциях. Результаты опытов показали, что чем больше в останках кузнечиков был процент азота (содержащегося в белках), тем лучше в почвах шли процессы разложения органики.

Углеводы Органические

Углеводы

Органические соединения составляют в среднем 20-30 % массы клетки живого организма. К ним относятся биологические полимеры: белки, нуклеиновые кислоты, углеводы, а также жиры и ряд небольших молекул-гормонов, пигментов, АТФ и пр. В различные типы клеток входит неодинаковое количество органических соединений. В растительных клетках преобладают сложные углеводы-полисахариды, в животных - больше белков и жиров. Тем не менее, каждая из групп органических веществ в любом типе клеток выполняет сходные функции: обеспечивает энергией, является строительным материалом.

1. КРАТКАЯ СПРАВКА ОБ УГЛЕВОДАХ

Углеводы - органические соединения, состоящие из одной или многих молекул простых сахаров. Молярная масса углеводов колеблется в пределах от 100 до 1000000 Да (Дальтон-масса, приблизительно равная массе одного атома водорода). Их общую формулу обычно записывают в виде Сn(Н2О)n (где n - не меньше трех). Впервые в 1844 г. этот термин ввел отечественный ученый К. Шмид (1822-1894).

Название «углеводы» возникло на основании анализа первых известных представителей этой группы соединений. Оказалось, что эти вещества состоят из углерода, водорода и кислорода, причем соотношение числа атомов водорода и кислорода у них такое же, как и в воде: на два атома водорода - один атом кислорода. Таким образом, их рассматривали как соединение углерода с водой. В дальнейшем стало известно много углеводов, не отвечающих этому условию, однако название «углеводы» до сих пор остается общепринятым. В животной клетке углеводы находятся в количестве, не превышающем 2-5 %. Наиболее богаты углеводами растительные клетки, где их содержание в некоторых случаях достигает 90 % сухой массы (например, в клубнях картофеля, семенах).

2. КЛАССИФИКАЦИЯ УГЛЕВОДОВ

Выделяют три группы углеводов: моносахариды, или простые сахара (глюкоза, фруктоза); олигосахариды - соединения, состоящие из 2-10 последовательно соединенных молекул простых сахаров (сахароза, мальтоза); полисахариды, включающие более 10 молекул сахаров (крахмал, целлюлоза).

3. СТРУКТУРНО-ФУНКЦИОНАЛЬНЫЕ ОСОБЕННОСТИ ОРГАНИЗАЦИИ МОНО- И ДИСАХАРИДОВ: СТРОЕНИЕ; НАХОЖДЕНИЕ В ПРИРОДЕ; ПОЛУЧЕНИЕ. ХАРАКТЕРИСТИКА ОТДЕЛЬНЫХ ПРЕДСТАВИТЕЛЕЙ

Моносахариды - это кетонные или альдегидные производные многоатомных спиртов. Атомы углерода, водорода и кислорода, входящие в их состав, находятся в соотношении 1:2:1. Общая формула для простых сахаров - (СН2О)n. В зависимости от длины углеродного скелета (количества атомов углерода), их разделяют на: триозы-С3, тетрозы-С4, пентозы-С5, гексозы-С6 и т. д. Кроме того, сахара разделяют на:

Альдозы, имеющие в составе альдегидную группу, - С=О. К ним относится | Н глюкоза:

H H H H H
CH2OH - C - C - C - C - C
| | | | \\
OH OH OH OH OH

Кетозы, имеющие в составе кетонную группу, - C-. К ним, например, || относится фруктоза.

В растворах все сахара, начиная с пентоз, имеют циклическую форму; в линейной же форме присутствуют только триозы и тетрозы. При образовании циклической формы атом кислорода альдегидной группы связывается ковалентной связью с предпоследним атомом углерода цепи, в результате образуются полуацетали (в случае альдоз) и полукетали (в случае кетоз).

ХАРАКТЕРИСТИКА МОНОСАХАРИДОВ, ОТДЕЛЬНЫЕ ПРЕДСТАВИТЕЛИ

Из тетроз в процессах обмена наиболее важна эритроза. Этот сахар - один из промежуточных продуктов фотосинтеза. Пентозы встречаются в природных условиях главным образом как составные части молекул более сложно построенных веществ, например сложных полисахаридов, носящих название пентозанов, а также растительных камедей. Пентозы в значительном количестве (10-15 %) содержатся в древесине, соломе. В природе преимущественно встречается арабиноза. Она содержится в вишневом клее, свекле и аравийской камеди, откуда ее и получают. Рибоза и дезоксирибоза широко представлены в животном и растительном мире, это сахара, входящие в состав мономеров нуклеиновых кислот РНК и ДНК. Получают рибозу эпимеризацией арабинозы.

Ксилоза образуется при гидролизе полисахарида ксилозана, содержащегося в соломе, отрубях, древесине, шелухе подсолнечника. Продуктами различных типов брожения ксилозы являются молочная, уксусная, лимонная, янтарная и другие кислоты. Организмом человека ксилоза усваивается плохо. Гидролизаты, содержащие ксилозу, используются для выращивания некоторых видов дрожжей, они в качестве белкового источника применяются для кормления сельскохозяйственных животных. При восстановлении ксилозы получают спирт ксилит, его используют как заменитель сахара для больных диабетом. Широко применяют ксилит как стабилизатор влажности и пластификатор (в бумажной промышленности, парфюмерии, производстве целлофана). Он является одним из основных компонентов при получении ряда поверхностно-активных веществ, лаков, клеев.

Из гексозы наиболее широко распространены глюкоза, фруктоза, галактоза, их общая формула - С6Н12О6.

Глюкоза (виноградный сахар, декстроза) содержится в соке винограда и других сладких плодов и в небольших количествах - в организмах животных и человека. Глюкоза входит в состав важнейших дисахаридов - тростникового и виноградного сахаров. Высокомолекулярные полисахариды, т. е. крахмал, гликоген (животный крахмал) и клетчатка, целиком построены из остатков молекул глюкозы, соединенных друг с другом различными способами. Глюкоза - первичный источник энергии для клеток.

В крови человека глюкозы содержится 0,1-0,12 %, снижение показателя вызывает нарушение жизнедеятельности нервных и мышечных клеток, иногда сопровождаемое судорогами или обморочным состоянием. Уровень содержания глюкозы в крови регулируется сложным механизмом работы нервной системы и желез внутренней секреции. Одно из массовых тяжелых эндокринных заболеваний - сахарный диабет - связано с гипофункцией островковых зон поджелудочной железы. Сопровождается значительным снижением проницаемости мембраны мышечных и жировых клеток для глюкозы, что приводит к повышению содержания глюкозы в крови, а также в моче.

Глюкозу для медицинских целей получают путем очистки - перекристаллизации - технической глюкозы из водных или водно-спиртовых растворов. Глюкоза используется в текстильном производстве и в некоторых других производствах в качестве восстановителя. В медицине чистая глюкоза применяется в виде растворов для введения в кровь при ряде заболеваний и в виде таблеток. Из нее получают витамин С.

Галактоза вместе с глюкозой входит в состав некоторых гликозидов и полисахаридов. Остатки молекул галактозы входят в состав сложнейших биополимеров - ганглиозидов, или гликосфинголипидов. Они обнаружены в нервных узлах (ганглиях) человека и животных и содержатся также в ткани мозга, в селезенке в эритроцитах. Получают галактозу главным образом гидролизом молочного сахара.

Фруктоза (фруктовый сахар) в свободном состоянии содержится во фруктах, меде. Входит в состав многих сложных сахаров, например тростникового сахара, из которого она может быть получена гидролизом. Образует сложно построенный высокомолекулярный полисахарид инулин, содержащийся в некоторых растениях. Фруктозу получают также из инулина. Фруктоза - ценный пищевой сахар; она в 1,5 раза слаще сахарозы и в 3 раза слаще глюкозы. Она хорошо усваивается организмом. При восстановлении фруктозы образуются сорбит и маннит. Сорбит применяют как заменитель сахара в питании больных диабетом; кроме того, его используют для производства аскорбиновой кислоты (витамин С). При окислении фруктоза дает винную и щавелевую кислоту.

Дисахариды - типичные сахароподобные полисахариды. Это твердые вещества, или некристаллизующиеся сиропы, хорошо растворимые в воде. Как аморфные, так и кристаллические дисахариды обычно плавятся в некотором интервале температур и, как правило, с разложением. Дисахариды образуются в результате реакции конденсации между двумя моносахаридами, обычно гексозами. Связь между двумя моносахаридами называют гликозидной связью. Обычно она образуется между первым и четвертым углеродными атомами соседних моносахаридных единиц (1,4-гликозидная связь). Этот процесс может повторяться бессчетное число раз, в результате чего и возникают гигантские молекулы полисахаридов. После того как моносахаридные единицы соединятся друг с другом, их называют остатками. Таким образом мальтоза состоит из двух остатков глюкозы.

Среди дисахаридов наиболее широко распространены мальтоза (глюкоза + глюкоза), лактоза (глюкоза + галактоза), сахароза (глюкоза + фруктоза).

ОТДЕЛЬНЫЕ ПРЕДСТАВИТЕЛИ ДИСАХАРИДОВ

Мальтоза (солодовый сахар) имеет формулу С12Н22О11. Название возникло в связи со способом получения мальтозы: ее получают из крахмала при воздействии солода (лат. maltum - солод). В результате гидролиза мальтоза расщепляется на две молекулы глюкозы:

С12Н22О11 + Н2О = 2С6Н12О6

Солодовый сахар является промежуточным продуктом при гидролизе крахмала, он широко распространен в растительных и животных организмах. Солодовый сахар значительно менее сладок, чем тростниковый (в 0,6 раза при одинаковых концентрациях).

Лактоза (молочный сахар). Название этого дисахарида возникло в связи с его получением из молока (от лат. lactum - молоко). При гидролизе лактоза расщепляется на глюкозу и галактозу:

Лактозу получают из молока: в коровьем молоке ее содержится 4-5,5 %, в женском молоке - 5,5-8,4 %. Лактоза отличается от других сахаров отсутствием гигроскопичности: она не отсыревает. Молочный сахар применяется как фармацевтический препарат и питание для грудных детей. Лактоза в 4 или 5 раз менее сладка, чем сахароза.

Сахароза (тростниковый или свекловичный сахара). Название возникло в связи с ее получением либо из сахарной свеклы, либо из сахарного тростника. Тростниковый сахар был известен за много столетий до нашей эры. Лишь в середине XVIII в. этот дисахарид был обнаружен в сахарной свекле и только в начале XIX в. он был получен в производственных условиях. Сахароза очень распространена в растительном мире. Листья и семена всегда содержат небольшое количество сахарозы. Она содержится также в плодах (абрикосах, персиках, грушах, ананасах). Ее много в кленовом и пальмовом соках, кукурузе. Это наиболее известный и широко применяемый сахар. При гидролизе из него образуются глюкоза и фруктоза:

С12Н22О11 + Н2О = С6Н12О6 + С6Н12О6

Смесь равных количеств глюкозы и фруктозы, получающаяся в результате инверсии тростникового сахара (в связи с изменением в процессе гидролиза правого вращения раствора на левое), называется инвертным сахаром (инверсия вращения). Природным инвертным сахаром является мед, состоящий в основном из глюкозы и фруктозы.

Сахарозу получают в огромных количествах. Сахарная свекла содержит 16-20 % сахарозы, сахарный тростник - 14-26 %. Промытую свеклу измельчают и в аппаратах многократно извлекают сахарозу водой, имеющей температуру около 80 град. Полученную жидкость, содержащую, кроме сахарозы, большое количество различных примесей, обрабатывают известью. Известь осаждает в виде кальциевых солей ряд органических кислот, а также белки и некоторые другие вещества. Часть извести при этом образует с тростниковым сахаром растворимые в холодной воде кальциевые сахараты, которые разрушаются обработкой диоксидом углерода.

Осадок карбоната кальция отделяют фильтрацией, фильтрат после дополнительной очистки упаривают в вакууме до получения кашицеобразной массы. Выделившиеся кристаллы сахарозы отделяют при помощи центрифуг. Так получают сырой сахарный песок, имеющий желтоватый цвет, маточный раствор бурого цвета, некристаллизующийся сироп (свекловичная патока, или меласса). Сахарный песок очищают (рафинируют) и получают готовый продукт.

4. БИОЛОГИЧЕСКАЯ РОЛЬ БИОПОЛИМЕРОВ - ПОЛИСАХАРИДОВ

Полисахариды - высокомолекулярные (до 1000000 Да) полимерные соединения, состоящие из большого числа мономеров - сахаров, их общая формула Сx(Н2О)y. Наиболее часто встречающимся мономером полисахаридов является глюкоза, встречаются маноза, галактоза и другие сахара. Полисахариды делятся на:
- гомополисахариды, состоящие из молекул моносахаридов одного типа (так, крахмал и целлюлоза состоят только из глюкозы);
- гетерополисахариды, в состав которых в качестве мономеров могут входить несколько различных сахаров (гепарин).

Если в полисахариде присутствуют только 1,4= гликозидные связи, мы получим линейный, неразветвленный полимер (целлюлоза); если присутствуют как 1,4=, так и 1,6= связи, полимер будет разветвленным (гликоген). К числу наиболее важных полисахаридов относятся: целлюлоза, крахмал, гликоген, хитин.

Целлюлоза, или клетчатка (от лат. сellula - клеточка), является основным компонентом клеточной стенки растительных клеток. Это линейный полисахарид, состоящий из глюкозы, соединенных 1,4= связями. Клетчатка составляет от 50 до 70 % древесины. Хлопок представляет собой почти чистую клетчатку. Волокна льна и конопли состоят преимущественно из клетчатки. Наиболее чистыми образцами клетчатки является очищенная вата, получаемая из хлопка, и фильтровальная бумага.

Крахмал - разветвленный полисахарид растительного происхождения, состоящий из глюкозы. В полисахариде остатки глюкозы связаны 1,4= и 1,6= гликозидными связями. При их расщеплении растения получают глюкозу, необходимую в процессе их жизнедеятельности. Крахмал образуется при фотосинтезе в зеленых листьях в виде зерен. Эти зерна особенно легко обнаружить в микроскопе, используя известковую реакцию с йодом: крахмальные зерна окрашиваются в синий или сине-черный цвет.

По накоплению крахмальных зерен можно судить об интенсивности фотосинтеза. Крахмал в листьях расщепляется на моносахариды или олигосахариды и переносится в другие части растений, например в клубни картофеля или зерна злаков. Здесь вновь происходит отложение крахмала в виде зерен. Наибольшее содержание крахмала в следующих культурах:

Рис (зерно) - 62-82 %;
- кукуруза (зерно) - 65-75 %;
- пшеница (зерно) - 57-75 %;
- картофель (клубни) - 12-24 %.

В текстильной промышленности крахмал используется для производства загустителей красок. Он применяется в спичечной, бумажной, полиграфической промышленности, в переплетном деле. В медицине и фармакологии крахмал идет на приготовление присыпок, паст (густых мазей), а также необходим в производстве таблеток. Подвергая крахмал кислотному гидролизу, можно получить глюкозу в виде чистого кристаллического препарата или в виде патоки - окрашенного некристаллизующегося сиропа.

Налажено производства модифицированных крахмалов, подвергавшихся специальной обработке или содержащих улучшающие их свойства добавки. Модифицированные крахмалы широко применяются в различных отраслях промышленности.

Гликоген - более разветвленный, чем крахмал, полисахарид животного происхождения, состоящий из глюкозы. Он играет исключительно важную роль в организмах животных как запасной полисахарид: все процессы жизнедеятельности, в первую очередь мышечная работа, сопровождаются расщеплением гликогена, отдающего сосредоточенную в нем энергию. В тканях организма из гликогена в результате ряда сложных превращений может образовываться молочная кислота.

Гликоген содержится во всех животных тканях. Особенно его много в печени (до 20 %) и мышцах (до 4 %). Он присутствует также в некоторых низших растениях, дрожжах и грибах, его можно выделить путем обработки животных тканей 5-10 %-ной трихлоруксусной кислотой с последующим осаждением извлеченного гликогена спиртом. С йодом растворы гликогена дают окрашивание от винно-красного до красно-бурого, в зависимости от происхождения гликогена, вида животного и других условий. Окрашивание йодом исчезает при кипячении и вновь появляется при охлаждении.

Хитин по своей структуре и функции очень близок к целлюлозе - это тоже структурный полисахарид. Хитин встречается у некоторых грибов, где он играет в клеточных стенках опорную роль благодаря своей волокнистой структуре, а также у некоторых групп животных (особенно у членистоногих) в качестве важного компонента их наружного скелета. Строение хитина сходно со строением целлюлозы, его длинные параллельные цепи также собраны в пучки.

5. ХИМИЧЕСКИЕ СВОЙСТВА УГЛЕВОДОВ

Все моносахариды и некоторые дисахариды, в том числе мальтоза и лактоза, относятся к группе редуцирующих (восстанавливающих) сахаров. Сахароза - нередуцирующий сахар. Восстановительная способность сахаров зависит у альдоз от активности альдегидной группы, а у кетоз - от активности как кетогруппы, так и первичных спиртовых групп. У нередуцирующих сахаров эти группы не могут вступать в какие-либо реакции, потому что здесь они участвуют в образовании гликозидной связи. Две обычные реакции на редуцирующие сахара - реакция Бенедикта и реакция Фелинга - основаны на способности этих сахаров восстанавливать ион двухвалентной меди до одновалентной. В обеих реакциях используется щелочной раствор сульфата меди (2) (CuSO4), который восстанавливается до нерастворимого оксида меди (1) (Cu2O). Ионное уравнение: Cu2+ + e = Cu+ дает синий раствор, кирпично-красный осадок. Все полисахариды нередуцирующие.

ЗАКЛЮЧЕНИЕ

Основная роль углеводов связана с их энергетической функцией. При их ферментативном расщеплении и окислении выделяется энергия, которая используется клеткой. Полисахариды играют главным образом роль запасных продуктов и легко мобилизируемых источников энергии (например, крахмал и гликоген), а также используются в качестве строительного материала (целлюлоза и хитин).

Полисахариды удобны в качестве запасных веществ по ряду причин: будучи нерастворимы в воде, они не оказывают на клетку ни осмотического, ни химического влияния, что весьма важно при длительном хранении их в живой клетке: твердое, обезвоженное состояние полисахаридов увеличивает полезную массу продуктов запаса за счет экономии их объемов. При этом существенно уменьшается вероятность потребления этих продуктов болезнетворными бактериями, грибами и другим микроорганизмами, которые, как известно, не могут заглатывать пищу, а всасывают питательные вещества всей поверхностью тела. При необходимости запасные полисахариды легко могут быть превращены в простые сахара путем гидролиза. Кроме того, соединяясь с липидами и белками, углеводы образуют гликолипиды и гликопротеиды-два.

11 329

Каждый из нас, наверное, чувствовал прилив энергии при общении с приятными людьми, с природой и искусством, от занятий спортом и от положительных эмоций. Энергию также дают нам солнечный свет, воздух и тепло.

Но эта энергия не может быть использована организмом ни на сокращения сердца, ни на функционирование нервной системы, циркуляцию крови, дыхание, ни на физическую работу. Вышеуказанные виды энергии лишь обеспечивают мотивацию к действию, а при осуществлении этих действий используется ранее запасенная энергия.

Энергия может быть использована организмом только в том случае, если из неё может образовываться АТФ (Аденозинтрифосфат). А это значит, что реальная энергия поступает в организм только с питательными веществами — белками, углеводами и жирами.

Безусловно, организм использует и другие формы энергии. Но что при этом происходит? Возьмем, к примеру, тепловую энергию. Выпитая чашка горячего чая в холодную погоду повышает теплопродукцию организма, позволяя временно согреться. Но энергия при этом не запасается. Приём горячего лишь снижает расходование ранее запасенной АТФ.

Таким образом, вышеуказанные виды энергии не могут преобразовываться в АТФ и запасаться, а потому их действие краткосрочно и реальной энергии, которая может быть использована в последующем организмом, они не приносят.
И вот мы приходим к тому, что единственным источником энергии для человека является энергия, которую нам дают питательные вещества – белки, жиры и углеводы. Причем в основном – углеводы и жиры, т.к. белки организм использует для более важных нужд – построения собственных клеток и тканей.
В пище присутствуют и другие носители энергии (янтарная и уксусная кислота, этиловый спирт и др.), но существенного значения в энергообеспечении организма они не имеют.

Энергетическая ценность пищи .

Т.к. пища является единственным источником энергии для человека, возникает необходимость знать, а сколько же энергии она нам даёт.
Для этого используется показатель «Энергетическая ценность пищи ».

Энергетическая ценность пищи — это количество энер¬гии, которое образуется в организме при биологическом окис¬лении белков, жиров и углеводов, содержащихся в продуктах питания. Организм перерабатывает и сжигает эти вещества до воды, углекислого газа и других веществ с выделением при этом энергии. Выражается она количеством калорий.

Нужно отметить, что простое попадание пищи в ЖКТ ещё не означает, что энергия поступила. Ведь часть пищевых веществ может не усвоиться, транзитом пройти через ЖКТ, вывестись с калом и не участвовать в энергетическом обмене.
Только после усвоения питательных веществ и их поступления в кровь энергия считается полученной.

Как определяют, сколько энергии приносят нам белки, жиры и углеводы?

Как известно из физики, конечным результатом превращения энергии является тепло. Тепло также является мерой энергии в организме. Эта энергия освобождается в результате окисления (горения) веществ в процессе катаболизма. Затем освободившаяся энергия переходит в доступную для организма форму — энергию химических связей молекулы АТФ.

Таким образом, при горении веществ выделяется тепло. Разные вещества горят по — разному, выделяя различное количество тепла. А по количеству выделившегося тепла можно узнать — сколько было энергии в горящем веществе.

Вот и энергетическую ценность пищи принято определять по количеству теплоты, полученной при её сгорании в калориметре. Для этого в калориметрической камере сжигают по 1 грамму белков, жиров и углеводов и определяют количество выделенного ими тепла (в калориях). То же самое происходит в организме человека — белки, жиры и углеводы окисляются до углекислоты и воды с образованием такого же количества энергии, что и при сгорании их вне организма.

Итак, в калориметре при сгорании 1 г белка выделяется 5,65 ккал, при сгорании 1 г углеводов — 4,1 ккал, 1 г жиров – 9,45 ккал.

Но мы — то знаем, что калорийность углеводов и белков составляет по 4 ккал/г, а жиров — 9,0 ккал/г. Почему же в калориметре показатели калорийности этих веществ отличаются от тех, к которым мы привыкли? Особенно того, что касается белка.

А связано это с тем, что внутри камеры всё сгорает полностью без остатка. А в организме белок сгорает не полностью — часть его без сгорания выводится из организма в виде мочевины. Эта часть содержит в себе 1,3 ккал из 5,65. Т.о. калорийность белка для организма составляет 4,35 ккал (5,65-1,3).
Опять это не совсем те цифры, которые мы привыкли видеть. И вот почему.

В норме жиры, белки и углеводы усваиваются не полностью.
Так белки усваиваются на 92%, жиры - на 95%, углеводы - на 98%. Вот и получается:
калорийность усвоившихся белков составляет 4,35 х 92% = 4 ккал/г;
углеводов – 4,1 х 98% = 4 ккал/г;
жиров – 9,3 х 95% = 9 ккал/г.

Углеводы – главный источник энергии в организме человека.

Общая формула углеводов Сn (H 2O )m

Углеводы - вещества состава С м Н 2п О п, имеющие первостепенное биохимическое значение, широко распространены в живой природе и играют большую роль в жизни человека. Углеводы входят в состав клеток и тканей всех растительных и животных организмов и по массе составляют основную часть органического вещества на Земле. На долю углеводов приходится около 80 % сухого вещества растений и около 20 % животных. Растения синтезируют углеводы из неорганических соединений - углекислого газа и воды (СО 2 и Н 2 О).

Запасы углеводов в виде гликогена в организме человека составляют примерно 500 г. Основная масса его (2/3) находится в мышцах, 1/3 – в печени. В промежутках между приемами пищи гликоген распадается на молекулы глюкозы, что смягчает колебания уровня сахара в крови. Запасы гликогена без поступления углеводов истощаются примерно за 12-18 часов. В этом случае включается механизм образования углеводов из промежуточных продуктов обмена белков. Это обусловлено тем, что углеводы жизненно необходимы для образования энергии в тканях, особенно мозга. Клетки мозга получают энергию преимущественно за счет окисления глюкозы.

Виды углеводов

Углеводы по своей химической структуре можно разделить на простые углеводы (моносахариды и дисахариды) и сложные углеводы (полисахариды).

Простые углеводы (сахара)

Глюкоза – наиболее важный из всех моносахаридов, так как она является структурной единицей большинства пищевых ди- и полисахаридов. В процессе обмена веществ они расщепляются на отдельные молекулы моносахаридов, которые в ходе многостадийных химических реакций превращаются в другие вещества и в конечном итоге окисляются до углекислого газа и воды – используются как "топливо" для клеток. Глюкоза – необходимый компонент обмена углеводов. При снижении ее уровня в крови или высокой концентрации и невозможности использования, как это происходит при диабете, наступает сонливость, может наступить потеря сознания (гипогликемическая кома).

Глюкоза "в чистом виде", как моносахарид, содержится в овощах и фруктах. Особенно богаты глюкозой виноград – 7,8%, черешня, вишня – 5,5%, малина – 3,9%, земляника – 2,7%, слива – 2,5%, арбуз – 2,4%. Из овощей больше всего глюкозы содержится в тыкве – 2,6%, в белокочанной капусте – 2,6%, в моркови – 2,5%.

Глюкоза обладает меньшей сладостью, чем самый известный дисахарид – сахароза. Если принять сладость сахарозы за 100 единиц, то сладость глюкозы составит 74 единицы.

Фруктоза является одним из самых распространенных углеводов фруктов. В отличие от глюкозы она может без участия инсулина проникать из крови в клетки тканей. По этой причине фруктоза рекомендуется в качестве наиболее безопасного источника углеводов для больных диабетом. Часть фруктозы попадает в клетки печени, которые превращают ее в более универсальное "топливо" - глюкозу, поэтому фруктоза тоже способна повышать сахара в крови, хотя и в значительно меньшей степени, чем другие простые сахара. Фруктоза легче, чем глюкоза, способна превращаться в жиры. Основным преимуществом фруктозы является то, что она в 2,5 раза слаще глюкозы и в 1,7 – сахарозы. Ее применение вместо сахара позволяет снизить общее потребление углеводов.

Основными источниками фруктозы в пище являются виноград – 7,7%, яблоки – 5,5%, груши – 5,2%, вишня, черешня – 4,5%, арбузы – 4,3%, черная смородина – 4,2%, малина – 3,9%, земляника – 2,4%, дыни – 2,0%. В овощах содержание фруктозы невелико – от 0,1% в свекле до 1,6% в белокочанной капусте. Фруктоза содержится в меде – около 3,7%. Достоверно доказано, что фруктоза, обладающая значительно более высокой сладостью, чем сахароза, не вызывает кариеса, которому способствует потребление сахара.

Галактоза в продуктах в свободном виде не встречается. Она образует дисахарид с глюкозой – лактозу (молочный сахар) – основной углевод молока и молочных продуктов.

Лактоза расщепляется в желудочно-кишечном тракте до глюкозы и галактозы под действием фермента лактазы. Дефицит этого фермента у некоторых людей приводит к непереносимости молока. Нерасщепленная лактоза служит хорошим питательным веществом для кишечной микрофлоры. При этом возможно обильное газообразование, живот "пучит". В кисломолочных продуктах большая часть лактозы сброжена до молочной кислоты, поэтому люди с лактазной недостаточностью могут переносить кисломолочные продукты без неприятных последствий. Кроме того, молочнокислые бактерии в кисломолочных продуктах подавляют деятельность кишечной микрофлоры и снижают неблагоприятные действия лактозы.

Галактоза, образующаяся при расщеплении лактозы, превращается в печени в глюкозу. При врожденном наследственном недостатке или отсутствии фермента, превращающего галактозу в глюкозу, развивается тяжелое заболевание - галактоземия, которая ведет к умственной отсталости.

Сахароза - это дисахарид, образованный молекулами глюкозы и фруктозы. Содержание сахарозы в сахаре 99,5%. То, что сахар – это "белая смерть", любители сладкого знают так же хорошо, как курильщики то, что капля никотина убивает лошадь. К сожалению, обе эти прописные истины чаще служат поводом для шуток, чем для серьезных размышлений и практических выводов.

Сахар быстро расщепляется в желудочно-кишечном тракте, глюкоза и фруктоза всасываются в кровь и служат источником энергии и наиболее важным предшественником гликогена и жиров. Его часто называют "носителем пустых калорий", так как сахар – это чистый углевод и не содержит других питательных веществ, таких, как, например, витамины, минеральные соли. Из растительных продуктов больше всего сахарозы содержится в свекле – 8,6%, персиках – 6,0%, дынях – 5,9%, сливах – 4,8%, мандаринах – 4,5%. В овощах, кроме свеклы, значительное содержание сахарозы отмечается в моркови – 3,5%. В остальных овощах содержание сахарозы колеблется от 0,4 до 0,7%. Кроме собственно сахара, основными источниками сахарозы в пище являются варенье, мед, кондитерские изделия, сладкие напитки, мороженое.

При соединении двух молекул глюкозы образуется мальтоза - солодовый сахар. Ее содержат мед, солод, пиво, патока и хлебобулочные и кондитерские изделия, изготовленные с добавлением патоки.

Сложные углеводы

Все полисахариды, представленные в пище человека, за редкими исключениями, являются полимерами глюкозы.

Крахмал – основной из перевариваемых полисахаридов. На его долю приходится до 80% потребляемых с пищей углеводов.

Источником крахмала служат растительные продукты, в основном злаковые: крупы, мука, хлеб, а также картофель. Больше всего крахмала содержат крупы: от 60% в гречневой крупе (ядрице) до 70% - в рисовой. Из злаков меньше всего крахмала содержится в овсяной крупе и продуктах ее переработки: толокне, овсяных хлопьях "Геркулес" - 49%. Макаронные изделия содержат от 62 до 68% крахмала, хлеб из ржаной муки в зависимости от сорта – от 33% до 49%, пшеничный хлеб и другие изделия из пшеничной муки – от 35 до 51% крахмала, мука – от 56 (ржаная) до 68% (пшеничная высшего сорта). Крахмала много и в бобовых продуктах – от 40% в чечевице до 44% в горохе. По этой причине сухие горох, фасоль, чечевицу, нут относят к зернобобовым. Особняком стоят соя, которая содержит только 3,5% крахмала, и соевая мука (10-15,5%). По причине высокого содержания крахмала в картофеле (15-18%) в диетологии его относят не к овощам, где основные углеводы представлены моносахариды и дисахаридами, а к крахмалистым продуктам наравне со злаковыми и зернобобовыми.

В топинамбуре и некоторых других растениях углеводы запасаются в виде полимера фруктозы - инулина. Пищевые продукты с добавкой инулина рекомендуют при диабете и особенно – для его профилактики (напомним, что фруктоза дает меньшую нагрузку на поджелудочную железу, чем другие сахара).

Гликоген - "животный крахмал" - состоит из сильно разветвленных цепочек молекул глюкозы. Он в небольших количествах содержится в животных продуктах (в печени 2-10%, в мышечной ткани – 0,3-1%).

Продукты с высоким содержанием углеводов

Наиболее распространенными углеводами являются глюкоза, фруктоза и сахароза, входящие в состав овощей, фруктов и меда. Лактоза входит в состав молока. Сахар-рафинад представляет собой соединение фруктозы и глюкозы.

Глюкоза играет центральную роль в процессе обмена веществ. Она является поставщиком энергии для таких органов, как головной мозг, почки, и способствует выработке красных кровяных телец.

Человеческий организм не в состоянии делать слишком большие запасы глюкозы и потому нуждается в ее регулярном пополнении. Но это не значит, что нужно есть глюкозу в чистом виде. Гораздо полезнее употреблять ее в составе более сложных углеводных соединений, например, крахмала, который содержится в овощах, фруктах, зерновых. Все эти продукты, кроме того, являются настоящим кладезем витаминов, клетчатки, микроэлементов и других полезных веществ, помогающих организму бороться со многими болезнями. Полисахариды должны составлять большую часть всех поступающих в наш организм углеводов.

Важнейшие источники углеводов

Главными источниками углеводов из пищи являются: хлеб, картофель, макароны, крупы, сладости. Чистым углеводом является сахар. Мёд, в зависимости от своего происхождения, содержит 70-80 % глюкозы и фруктозы.

Для обозначения количества углеводов в пище используется специальная хлебная единица.

К углеводной группе, кроме того, примыкают и плохо перевариваемые человеческим организмом клетчатка и пектины.

Углеводы применяют в качестве:

    лекарственных средств,

    для производства бездымного пороха (пироксилина),

    взрывчатых веществ,

    искусственных волокон (вискоза).

    огромное значение имеет целлюлоза как источник для получения этилового спирта

1.Энергетическая

Основная функция углеводов заключается в том, что они являются непременным компонентом рациона человека, при расщеплении 1г углеводов освобождается 17,8 кДж энергии.

2. Структурная.

Клеточная стенка растений состоит из полисахарида целлюлозы.

3. Запасающая.

Крахмал и гликоген являются запасными продуктами у растений и животных

Группы углеводов

Особенностистроения молекулы

Свойства углеводов

Моносахариды

Число атомов С

С3-триозы

С4-тетрозы

С5-пентозы

С6-гексозы

Бесцветны, хорошо растворимы в воде, имеют сладкий вкус.

Олигосахариды

Сложные углеводы. Содержат от 2 до 10 моносахаридных остатков

Хорошо растворяются в воде, имеют сладкий вкус.

Полисахариды

Сложные углеводы, состоящие из большого числа мономеров-простых сахаров и их производных

С увеличением числа мономерных звеньев растворимость уменьшается, исчезает сладкий вкус. Появляется способность ослизняться и набухать

Историческая справка

    Углеводы используются с глубокой древности - самым первым углеводом (точнее смесью углеводов), с которой познакомился человек, был мёд.

    Родиной сахарного тростника является северо-западная Индия-Бенгалия. Европейцы познакомились с тростниковым сахаром благодаря походам Александра Македонского в 327 г. до н.э.

    Крахмал был известен ещё древним грекам.

    Свекловичный сахар в чистом виде был открыт лишь в 1747 г. немецким химиком А. Маргграфом

    В 1811 г. русский химик Кирхгоф впервые получил глюкозу гидролизом крахмала

    Впервые правильную эмпирическую формулу глюкозы предложил шведский химик Я. Берцеллиус в 1837 г. С6Н12О6

    Синтез углеводов из формальдегида в присутствии Са(ОН)2 был произведён А.М. Бутлеровым в 1861 г.

Заключение

Значение углеводов трудно переоценить. Глюкоза является основным энергетическим источником в организме человека, идет на построение многих важных веществ в организме – гликогена (энергетический резерв), входит в состав клеточных мембран, ферментов, гликопротеидов, гликолипидов, участвует в большинстве реакций, происходящих в организме человека. В то же время именно сахароза является основным источником глюкозы, который поступает во внутреннюю среду. Содержащая практически во всех растительных продуктах питания, сахароза обеспечивает необходимый приток энергетического и незаменимого вещества – глюкозы.

Организму обязательно нужны углеводы (свыше 56% энергии мы получаем за счет углеводов)

Углеводы бывают простые и сложные(из-за строения молекул их так назвали)

Минимальное количество углеводов должно быть не меньше 50-60 г

Проверь свои знания:

  • 7. Что понимают под функциональной подготовленностью?
  • 8. Что такое физическое развитие?
  • 9. Из каких разделов состоит учебный материал?
  • 10. На какие учебные отделения распределяются студенты?
  • 11. Какие основные зачетные требования?
  • 12. Что включает итоговая аттестация по учебному предмету "Физическая культура"?
  • 15. Почему кости детей более эластичны и упруги?
  • 30. Укажите наиболее эффективную форму отдыха при умственном труде.
  • 31. От чего защищает организм такое функциональное состояние, как утомление?
  • 32. Когда лучше тренироваться, учитывая биологические ритмы?
  • 33. К чему приводит пониженная двигательная активность?
  • 37. В каких видах спорта наблюдается тесная связь между максимальным потреблением кислорода (мпк) и тренированностью?
  • 38. Какова норма потребления белков в день для взрослого человека?
  • 41. Каково основное значение витаминов для организма?
  • 42. Сколько калорий необходимо потреблять в течение рабочего дня (8-10 ч) мужчине, занимающимся умственным и физическим трудом?
  • 45. Физические упражнения какого характера оказывают наиболее эффективное воздействие на сердечно-сосудистую систему?
  • 51. Что является наиболее объективным показателем здоровья?
  • 56. Какие существуют разновидности закаливания водой?
  • 66. Чем можно объяснить наличие второго подъема работоспособности в течении суток?
  • 72. Какова интенсивность физических упражнений более предпочтительна для оптимального взаимодействия между умственной и физический работоспособностью студентов?
  • 73. Какой вариант занятий со специальной медицинской группой оказывает наибольший положительный эффект?
  • 74. Что такое физическое воспитание?
  • 75. Что является целью физического воспитания?
  • 77 . Как влияет соревновательная обстановка на физиологический эффект от физического упражнения?
  • 78. Что является основным средством физического воспитания?
  • 79. Что такое физическое упражнение?
  • 80. Чем отличается физическое упражнение от трудового двигательного действия?
  • 81. Что понимают под техникой двигательного действия?
  • 82. Какие этапы выделяются в период обучения?
  • 83. Разучивание - это какой этап в обучении движениям?
  • 89. Сколько мышц в теле человека?
  • 96. Что понимают под быстротой человека?
  • 97. Методы развития быстроты
  • 98. Какие выделяют элементарные формы быстроты?
  • 99. Что понимают под гибкостью человека?
  • 105. Какую последовательность упражнений необходимо соблюдать во время занятий на гибкость?
  • 106. Сколько нужно тренироваться для развития гибкости?
  • 107. Как быстро с возрастом теряется гибкость?
  • 108. Что понимают под выносливостью человека?
  • 111. Какие изменения в функциональном состоянии человека вызывает соревновательная обстановка?
  • 112. Что такое массовый спорт (спорт для всех)?
  • 113. Что такое спорт высших достижений (олимпийский спорт)?
  • 114. Что такое профессиональный (зрелищно-коммерческий) спорт?
  • 116. С какой периодичностью проводятся Всемирные Универсиады?
  • 136. На чём основан метод корреляции?
  • 148. Укажите один из видов педагогического контроля.
  • 149. Что является целью самоконтроля?
  • 150. Укажите субъективные данные самоконтроля.
  • 39. Что является главным источником энергии в организме?

    Углеводы в организме главный источник энергии. Они всасываются в кровь в основном в виде глюкозы. Это вещество разносится по тканям и клеткам организма. В клетках глюкоза при участии ряда факторов окисляется до воды и углекислого газа. Одновременно освобождается энергия (4,1 ккал), которая используется организмом при реакциях синтеза или при мышечной работе

    40. Когда преимущественно используются жиры как источник энергии при физической деятельности? Как энергетический материал жир используется при состоянии покоя и выполнении длительной малоинтенсивной физической работы.

    41. Каково основное значение витаминов для организма?

    Значение витаминов состоит в том, что, присутствуя в организме в ничтожных количествах, они регулируют реакции обмена веществ.

    42. Сколько калорий необходимо потреблять в течение рабочего дня (8-10 ч) мужчине, занимающимся умственным и физическим трудом?

    Мужчине среднего возраста, занимающемуся и умственным, и физическим трудом в течение 8-10ч, необходимо потреблять в день 118г белков, 56г жиров, 500г углеводов. В пересчете это составляет около 3000 ккал.

    43. Какое количество энергии необходимо затрачивать ежедневно для нормальной жизнедеятельности? Люди разных профессий затрачивают при своей деятельности разное количество энергии. Например, занимающийся интеллектуальным трудом в день тратит менее 3000 больших калорий. Человек, занимающийся тяжелым физическим трудом, за день затрачивает в 2 раза больше энергии.

    44. Какова причина "гравитационного шока"?

    Г равитационного шока может наступить после резкого прекращения длительной, достаточно интенсивной циклической работы (спортивная ходьба, бег).

    Прекращение ритмичной работы мышц нижних конечностей сразу лишает помощи систему кровообращения: кровь под действием гравитации остается в крупных венозных сосудах ног, движение ее замедляется, резко снижается возврат крови к сердцу, а от него в артериальное сосудистое русло, давление артериальной крови падает, мозг оказывается в условиях пониженного кровоснабжения и гипоксии.

    45. Физические упражнения какого характера оказывают наиболее эффективное воздействие на сердечно-сосудистую систему?

    Систематическая тренировка средствами физической культура и спорта не только стимулирует развитие сердечно-сосудистой и дыхательной системы, но и способствует значительному повышению уровня потребления кислорода организмом в целом. Наиболее эффективно совместную функцию взаимоотношения дыхания, крови, кровообращения развивают упражнения циклического характера, выполняемые на свежем воздухе

    46. Какова причина так называемой "мертвой точки"?

    Это обуславливается несоответствием интенсивной деятельности двигательного аппарата и функциональными возможностями вегетативных систем, призванных обеспечить эту деятельность.

    47. Как можно ослабить проявление "мертвой точки"?

    Одним из инструментов ослабления проявления "мертвой точки" является разминка, которая способствует более быстрому наступлению "второго дыхания".

    48. Какие меры способствуют качественной готовности студентов к активной учебной

    Синхронность ритмов во внешней среде и внутри организма, правильно составленный распорядок дня, распределение работы и отдыха таким образом, чтобы наивысшая нагрузка соответствовала наибольшим возможностям организма с учетом колебаний биологических ритмов, - все это служит залогом высокой производительности труда и сохранения здоровья.

    49. Что понимают под здоровьем?

    Здоровье - это нормальное психосоматическое состояние человека, отражающее его полное физическое, психическое и социальное благополучие и обеспечивающее адекватную окружающим условиям регуляцию поведения и деятельности личности.

    Известно также определение, принятое Всемирной организацией здравоохранения (ВОЗ), в соответствии с которым здоровье - это состояние полного физического, душевного и социального благополучия, а не только отсутствие болезни или физических дефектов.

    50. Какие компоненты здоровья в настоящее время принято выделять?

      Соматическое - текущее состояние органов и систем органов человеческого организма.

      Физическое - уровень развития и функциональных возможностей органов и систем организма. Основа физического здоровья - это морфологические и функциональные резервы клеток, тканей, органов и систем органов, обеспечивающие приспособление организма к воздействию различных факторов.

      Психическое - состояние психической сферы человека. Основу психического здоровья составляет состояние общего душевного комфорта, обеспечивающее адекватную регуляцию поведения.

      Сексуальное - комплекс соматических, эмоциональных, интеллектуальных и социальных аспектов сексуального существования человека, позитивно обогащающих личность, повышающих коммуникабельность человека и его способность к любви.

      Нравственное - комплекс характеристик мотивационной и потребностно-информационной основы жизнедеятельности человека. Основу нравственного компонента здоровья человека определяет система ценностей, установок и мотивов поведения индивида в социальной среде.

    Похожие публикации