Химические свойства вольфрама. Характеристики и применение вольфрама. Применение и использование вольфрама

Природа-мать обогатила человечество полезными химическими элементами. Некоторые из них скрыты в ее недрах и содержатся в относительно малом количестве, но их значение очень существенно. Одним из таких является вольфрам. Применение его обусловлено особыми свойствами.

История происхождения

XVIII век - век открытия таблицы Менделеева - стал основополагающим и в истории этого металла.

Ранее принималось существование некоего вещества, входящего в состав минеральных пород, которое мешало выплавке из них нужных металлов. К примеру, получение олова было затруднено, если в руде содержался такой элемент. Разность температур плавления и химические реакции приводили к образованию шлаковой пены, что уменьшало количество оловянного выхода.

В VIII веке металл был последовательно открыт шведским ученым Шееле и испанцами братьями Элюар. Произошло это вследствие химических экспериментов по окислению минеральных пород - шеелита и вольфрамита.

Зарегистрирован в периодической системе элементов в соответствии с атомным номером 74. Редкий тугоплавкий металл с атомной массой 183,84 - это вольфрам. Применение его обусловлено необычными свойствами, открытыми уже в течение XX века.

Где искать?

По количеству в недрах земли он является «малонаселяющим» и занимает 28-е место. Является компонентом около 22 различных минералов, однако существенное значение для его добычи имеют только 4 из них: шеелит (содержит около 80 % триоксида), вольфрамит, ферберит и гюбнерит (имеют в составе по 75-77 % каждый). В составе руд чаще всего содержатся примеси, в некоторых случаях производится параллельное «извлечение» таких металлов, как молибден, олово, тантал и проч. Наибольшие залежи находятся в Китае, Казахстане, Канаде, США, также есть в России, Португалии, Узбекистане.

Как получают?

В связи с особыми свойствами, а также малым содержанием в породах, технология получения чистого вольфрама достаточно сложная.

  1. Магнитная сепарация, электростатическая сепарация или флотация с целью обогащения руды до 50-60 % концентрации
  2. Выделение 99 % окиси путем химических реакций со щелочными или кислотными реагентами и поэтапного очищения получаемого осадка.
  3. Восстановление металла с помощью углерода или водорода, выход соответствующего металлического порошка.
  4. Изготовление слитков или порошковых спеченных брикетов.

Одним из важных этапов получения металлургической продукции является порошковая металлургия. Она основана на смешивании порошкообразных тугоплавких металлов, их прессовании и последующем спекании. Таким образом получают большое количество технологически важных сплавов, в том числе применение которому найдено в основном в промышленном производстве режущих инструментов повышенной мощности и стойкости.

Физические и химические свойства

Вольфрам - тугоплавкий и тяжелый металл серебристого цвета с объёмно-центрированной кристаллической решеткой.

  • Температура плавления - 3422 ˚С.
  • Температура кипения - 5555 ˚С.
  • Плотность - 19,25 г/см 3 .

Является хорошим проводником электрического тока. Не магнитится. Некоторые минералы (например, шеелит) люминесцентные.

Стоек к влиянию кислот, агрессивных веществ в среде высоких температур, коррозии и старению. Деактивации влияния отрицательных примесей в сталях, улучшению ее жаропрочности, коррозионной стойкости и надежности также способствует вольфрам. Применение таких железоуглеродистых сплавов оправдано их технологичностью и износостойкостью.

Механические и технологические свойства

Вольфрам - твердый, прочный металл. Его твердость составляет 488 НВ, предел прочности - 1130-1375 МПа. В холодном состоянии не пластичен. При температуре 1600 ˚С повышается пластичность до состояния абсолютной податливости к обработке давлением: ковке, прокатке, волочению. Известно, что 1 кг этого металла позволяет изготавливать нить общей длиной до 3 км.

Обработка резанием затруднена в силу чрезмерной твердости и хрупкости. Для сверления, точения, фрезерования используются твердосплавные вольфрамокобальтовые материалы, изготовленные методом порошковой металлургии. Реже, при низких скоростях и особых условиях, применяются инструменты из быстрорежущей легированной вольфрамсодержащей стали. Стандартные принципы резки неприменимы, так как оборудование чрезвычайно быстро изнашивается, а обрабатываемый вольфрам растрескивается. Применяются следующие технологии:

  1. Химическая обработка и пропитка поверхностного слоя, в том числе использование с этой целью серебра.
  2. Нагрев поверхности с помощью печей, газового пламени, электрического тока силой 0,2 А. Допустимая температура, при которой происходит некоторое повышение пластичности и, соответственно, улучшается резка, - 300-450 ˚С.
  3. Резание вольфрама с применением легкоплавких веществ.

Заточку и шлифование целесообразно проводить с помощью алмазных и реже - корундовых.

Сварка данного тугоплавкого металла производится в основном под действием электрической дуги, вольфрамовых или угольных электродов в среде инертных газов или жидких защит. Также возможно применение контактной сварки.

Этот особенный химический элемент обладает характеристиками, которые отличают его в общей массе. Так, к примеру, характеризуясь высокой теплостойкостью и износостойкостью, он повышает качество и режущие свойства легированных вольфрамсодержащих сталей, а высокая температура плавления позволяет изготавливать нити накала для лампочек и электроды для сварки.

Применение

Редкость, необычность и важность обуславливают широкое использование в современной технике металла под названием Tungsten - вольфрам. Свойства и применение оправдывают высокую стоимость и востребованность. Высокие показатели температуры плавления, твердости, прочности, жаростойкости и стойкости к химическим воздействиям и коррозии, износостойкости и резальных особенностей - вот основные его козыри. Варианты использования:

  1. Нити накаливания.
  2. с целью получения быстрорежущих, износостойких, жаростойких и жаропрочных железоуглеродистых сплавов, находящих применение для производства сверл и других инструментов, пуансонов, пружин и рессор, рельс.
  3. Изготовление «порошковых» твердых сплавов, применяемых в основном в качестве особо износостойких режущих, буровых или прессовочных инструментов.
  4. Электроды для аргонодуговой и контактной сварки.
  5. Изготовление деталей для рентгеновской и радиотехники, различных технических ламп.
  6. Специальные светящиеся краски.
  7. Проволока и детали для химической промышленности.
  8. Различная практичная мелочевка, к примеру, мормышки для рыбалки.

Приобретают популярность различные сплавы, в состав которых входит вольфрам. Область применения таких материалов порой удивляет - начиная от тяжелого машиностроения и заканчивая легкой промышленностью, где изготавливаются ткани с особыми свойствами (например, огнестойкие).

Универсальных материалов не существует. Каждый известный элемент и созданные сплавы отличаются своей уникальностью и необходимостью для определенных сфер жизни и промышленности. Однако некоторые из них обладают особыми свойствами, делающими ранее неосуществимые процессы возможными. Одним из таких металлов является вольфрам. Применение его недостаточно широко, как у стали, но каждый из вариантов предельно полезен и необходим человечеству.

Химия

Элемент № 74 вольфрам причисляют обычно к редким металлам: его содержание в земной коре оценивается в 0,0055%; его нет в морской воде, его не удалось обнаружить в солнечном спектре. Однако по популярности онможет поспорить со многими отнюдь не редкими металлами, а его минералы были известны задолго до открытия самого элемента. Так, еще в XVII в. во многих европейских странах знали «вольфрам» и «тунгстен» - так называли тогда наиболее распространенные минералы вольфрама - вольфрамит и шеелит. А элементарный вольфрам был открыт в последней четверти XVIII в .

Вольфрамовая руда

Очень скоро этот металл получил практическое значение - как легирующая добавка. А после Всемирной выставки 1900 г. в Париже, на которой демонстрировались образцы быстрорежущей вольфрамовой стали, элемент № 74 стали применять металлурги во всех более или менее промышленно развитых странах. Главная особенность вольфрама как легирующей добавки заключается в том, что он придает стали красностойкость - позволяет сохранить твердость и прочность при высокой температуре. Более того, большинство сталей при охлаждении на воздухе (после выдержки при температуре, близкой к температуре красного каления) теряют твердость. А вольфрамовые - нет.
Инструмент, изготовленный из вольфрамовой стали, выдерживает огромные скорости самых интенсивных процессов металлообработки. Скорость резания таким инструментом измеряется десятками метров в секунду.
Современные быстрорежущие стали содержат до 18% вольфрама (или вольфрама с молибденом), 2-7% хрома и небольшое количество кобальта. Они сохраняют твердость при 700-800° С, в то время как обычная сталь начинает размягчаться при нагреве всего до 200° С. Еще большей твердостью обладают «стеллиты» - сплавы
вольфрам а с хромом и кобальтом (без железа) и особенно карбиды вольфрама - его соединения с углеродом. Сплав «видна» (карбид вольфрама, 5-15% кобальта и небольшая примесь карбида титана) в 1,3 раза тверже обычной вольфрамовой стали и сохраняет твердость до 1000- 1100° С. Резцами из этого сплава можно снимать за минуту до 1500-2000 м железной стружки. Ими можно быстро и точно обрабатывать «капризные» материалы: бронзу и фарфор, стекло и эбонит; при этом сам инструмент изнашивается совсем незначительно.
В начале XX в. вольфрамовую нить стали применять в электрических лампочках: она позволяет доводить накал до 2200° С и обладает большой светоотдачей. И в этом качестве вольфрам совершенно незаменим до наших дней. Очевидно, поэтому электрическая лампочка названа в одной популярной песне «глазком вольфрамовым».

Минералы и руды вольфрама

Вольфрам встречается в природе главным образом в виде окисленных сложных соединений, образованных трехокисыо вольфрама WO 3 и окислами железа и марганца или кальция, а иногда свинца, меди, тория и редкоземельных элементов. Наиболее распространенный минерал, вольфрамит, представляет собой твердый раствор вольфраматов (солей вольфрамовой кислоты) железа и марганца (mFeW0 4 *nMnW0 4). Этот раствор - тяжелые и твердые кристаллы коричневого или черного цвета, в зависимости от того, какое соединение преобладает в их составе. Если больше побнерита (соединения марганца), кристаллы черные, если же преобладает железосодержащий ферберит - коричневые. Вольфрамит парамагнитен и хорошо проводит электрический ток.
Из других минералов вольфрама промышленное значение имеет шеелит - вольфрамат кальция CaW04. Он образует блестящие, как стекло, кристаллы светло-желтого, иногда почти белого цвета. Шеелит немагнитен, но он обладает другой характерной особенностью - способностью к люминесценции. Если его осветить ультрафиолетовыми лучами, он флуоресцирует в темноте ярко-синим цветом. Примесь молибдена меняет окраску свечения шеелита: она становится бледно-синей, а иногда даже кремовой. Это свойство шеелита, используемое в геологической разведке, служит поисковым признаком, позволяющим обнаружить залежи минерала.
Месторождения вольфрамовых руд теологически связаны с областями распространения гранитов . Крупнейшие зарубежные месторождения вольфрамита и шеелита находятся в Китае, Бирме, США, Боливии и Португалии. Наша страна тоже располагает значительными запасами минералов вольфрама, главные их месторождения находятся на Урале, Кавказе и в Забайкалье.
Крупные кристаллы вольфрамита или шеелита - большая редкость. Обычно вольфрамовые минералы лишь вкраплены в древние гранитные породы - средняя концентрация вольфрама в итоге оказывается в лучшем случае 1-2%. Поэтому извлечь вольфрам из руд очень трудно.


Как получают вольфрам

Первая стадия - обогащение руды, отделение ценных компонентов от основной массы - пустой породы. Методы обогащения - обычные для тяжелых руд и металлов: измельчение и флотация с последующими операциями - магнитной сепарацией (для вольфрамитиых руд) и окислительным обжигом.
Полученный концентрат чаще всего спекают с избытком соды, чтобы перевести вольфрам в растворимое соединение - вольфрамат натрия. Другой способ получения этого вещества - выщелачивание; вольфрам извлекают содовым раствором под давлением и при повышенной температуре (процесс идет в автоклаве) с последующей нейтрализацией и осаждением в виде искусственного шеелита, т. е. вольфрамата кальция. Стремление получить именно вольфрамат объясняется тем, что из него сравнительно просто, всего в две стадии:
CaW0 4 → H 2 W0 4 или (NH 4) 2 W0 4 → WO 3 , можно выделить очищенную от большей части примесей окись вольфрама.
Есть еще один способ получения окиси вольфрама - через хлориды. Вольфрамовый концентрат при повышенной температуре обрабатывают газообразным хлором. Образовавшиеся хлориды вольфрама довольно легко отделить от хлоридов других металлов методом возгонки, используя разницу температур, при которых эти вещества переходят в парообразное состояние. Полученные хлориды вольфрама можно превратить в окисел, а можно пустить непосредственно на переработку в элементарный металл.


Превращение окислов или хлоридов в металл - следующая стадия производства вольфрама. Лучший восстановитель окиси вольфрама - водород. При восстановлении водородом получается наиболее чистый металлический вольфрам. Процесс восстановления происходит в трубчатых печах, нагретых таким образом, что по мере продвижения по трубе «лодочка» с W0 3 проходит через несколько температурных зон. Навстречу ей идет поток сухого водорода. Восстановление происходит и в «холодных» (450-600° С) и в «горячих» (750-1100° С) зонах; в «холодных» - до низшего окисла W0 2 , дальше - до элементарного металла. В зависимости от температуры и длительности реакции в «горячей» зоне меняются чистота и размеры зерен выделяющегося на стенках «лодочки» порошкообразного вольфрама.
Восстановление может идти не только под действием водорода. На практике часто используется уголь. Применение твердого восстановителя несколько упрощает производство, однако в этом случае требуется более высокая температура - до 1300-1400° С. Кроме того, уголь и примеси, которые он всегда содержит, вступают в реакции с вольфрамом, образуя карбиды и другие соединения. Это приводит к загрязнению металла. Между тем электротехнике нужен весьма чистый вольфрам. Всего 0,1% железа делает вольфрам хрупким и малопригодным для изготовления тончайшей проволоки.
Получение вольфрама из хлоридов основано на процессе пиролиза. Вольфрам образует с хлором несколько соединений. С помощью избытка хлора все их можно перевести в высший хлорид - WCl 6 , который разлагается на вольфрам и хлор при 1600° С. В присутствии водорода этот процесс идет уже при 1000° С.
Так получают металлический вольфрам, но не компактный, а в виде порошка, который затем прессуют в токе водорода при высокой температуре. На первой стадии прессования (при нагреве до 1100-1300° С) образуется пористый ломкий слиток. Прессование продолжается при еще более высокой температуре, едва не достигающей под конец температуры плавления вольфрама. В этих условиях металл постепенно становится сплошным, приобретает волокнистую структуру, а с ней - пластичность и ковкость.

Главные свойства

Вольфрам отличается от всех остальных металлов особой тяжестью, твердостью и тугоплавкостью. Давно известно выражение: «Тяжелый, как свинец». Правильнее было бы говорить: «Тяжелый, как вольфрам». Плотность вольфрама почти вдвое больше, чем свинца, точнее - в 1,7 раза. При этом атомная масса его несколько ниже: 184 против 207.


По тугоплавкости и твердости вольфрам и его сплавы занимают высшие места среди металлов. Технически чистый вольфрам плавится при 3410° С, а кипит лишь при 6690° С. Такая температура - на поверхности Солнца!
А выглядит «король тугоплавкости» довольно заурядно. Цвет вольфрама в значительной мере зависит от способа получения. Сплавленный вольфрам - блестящий серый металл, больше всего напоминающий платину. Вольфрамовый порошок - серый, темно-серый и даже черный (чем мельче зернение, тем темнее).

Химическая активность

Природный вольфрам состоит из пяти стабильных изотопов с массовыми числами от 180 до 186. Кроме того, в атомных реакторах в результате различных ядерных реакций образуются еще 8 радиоактивных изотопов вольфрама с массовыми числами от 176 до 188; все они сравнительно недолговечны: их периоды полураспада - от нескольких часов до нескольких месяцев.
Семьдесят четыре электрона атома вольфрама расположены вокруг ядра таким образом, что шесть из них находятся на внешних орбитах и могут быть отделены сравнительно легко. Поэтому максимальная валентность вольфрама равна шести. Однако строение этих внешних орбит особое - они состоят как бы из двух «ярусов»: четыре электрона принадлежат предпоследнему уровню -d, который оказывается, таким образом, заполненным меньше чем наполовину. (Известно, что число электронов в заполненном уровне d равно десяти.) Эти четыре электрона (очевидно, неспарепные) способны легко образовывать химическую связь. Что же касается двух «самых наружных» электронов, то их оторвать совсем легко.
Именно особенностями строения электронной оболочки объясняется высокая химическая активность вольфрама. В соединениях он бывает не только шестивалентным, но и пяти-, четырех-, трех-, двух- и нульвалентным. (Неизвестны лишь соединения одновалентного вольфрама).
Активность вольфрама проявляется в том, что он вступает в реакции с подавляющим болишинстом элементов, образуя множество простых и сложных соединений. Даже в сплавах вольфрам часто оказывается химически связанным. А с кислородом и другими окислителями он взаимодействует легче, чем большинство тяжелых металлов.
Реакция вольфрама с кислородом идет при нагревании, особенно легко - в присутствии паров воды. Если вольфрам нагревать на воздухе, то при 400-500° С на поверхности металла образуется устойчивый низший окисел W0 2 ; вся поверхность затягивается коричневой пленкой. При более высокой температуре сначала получается промежуточный окисел W 4 O 11 синего цвета, а затем лимонножелтая трехокись вольфрама W0 3 , которая возгоняется при 923° С.


Сухой фтор соединяется с тонкоизмельченным вольфрамом уже при небольшом нагревании. При этом образуется гексафторид WF6 - вещество, которое плавится при 2,5° С и кипит при 19,5° С. Аналогичное соединение - WCl 6 - получается при реакции с хлором, но лишь при 600° С. Сине-стального цвета кристаллы WCl 6 плавятся при 275° С и кипят при 347° С. С бромом и йодом вольфрам образует малоустойчивые соединения: пента- и дибромид, тетра- и дииоднд.
При высокой температуре вольфрам соединяется с серой, селеном и теллуром, с азотом и бором, с углеродом и кремнием. Некоторые из этих соединений отличаются большой твердостью и другими замечательными свойствами.
Очень интересен карбонил W(CO) 6 . Здесь вольфрам соединен с окисью углерода и, следовательно, обладает нулевой валентностью. Карбонил вольфрама неустойчив; его получают в специальных условиях. При 0° он выделяется из соответствующего раствора в виде бесцветных кристаллов, при 50° С возгоняется, а при 100° С полностью разлагается. Но именно это соединение позволяет получить тонкие и плотные покрытия из чистого вольфрама.
Не только сам вольфрам, но и многие его соединения весьма активны. В частности, окись вольфрама WO 3 способна к полимеризации. В результате образуются так называемые изополисоединения и гетерополисоединения: молекулы последних могут содержать более 50 атомов.


Сплавы

Почти со всеми металлами вольфрам образует сплавы, однако получить их не так-то просто. Дело в том, что общепринятые методы сплавления в данном случае, как правило, неприменимы. При температуре плавления вольфрама большинство других металлов уже превращается в газы пли весьма летучие жидкости. Поэтому сплавы, содержащие вольфрам, обычно получают методами порошковой металлургии.
Во избежание окисления все операции проводят в вакууме или в атмосфере аргона. Делается это так. Сначала смесь металлических порошков прессуют, затем спекают и подвергают дуговой плавке в электрических печах. Иногда прессуют и спекают один вольфрамовый порошок, а полученную таким путем пористую заготовку пропитывают жидким расплавом другого металла: получаются так называемые псевдосплавы. Этим методом пользуются, когда нужно получить сплав вольфрама с медью и серебром.


С хромом и молибденом, ниобием и танталом вольфрам дает обычные (гомогенные) сплавы при любых соотношениях. Уже небольшие добавки вольфрама повышают твердость этих металлов и их устойчивость к окислению.
Сплавы с железом, никелем и кобальтом более сложны. Здесь, в зависимости от соотношения компонентов, образуются либо твердые растворы, либо интерметаллические соединения (химические соединения металлов), а в присутствии углерода (который всегда имеется в стали) - смешанные карбиды вольфрама и железа, придающие металлу еще большую твердость.
Очень сложные соединения образуются при сплавлении вольфрама с алюминием, бериллием и титаном: в них на один атом вольфрама приходится от 2 до 12 атомов легкого металла. Эти сплавы отличаются жаропрочностью и устойчивостью к окислению при высокой температуре.
На практике чаще всего применяются сплавы вольфрама не с одним каким-либо металлом, а с несколькими. Таковы, в частности, кислотостойкие сплавы вольфрама с хромом и кобальтом или никелем (амалой); из них делают хирургические инструменты. Лучшие марки магнитной стали содержат вольфрам, железо и кобальт. А в специальных жаропрочных сплавах, кроме вольфрама, имеются хром, никель и алюминий.
Из всех сплавов вольфрама наибольшее значение приобрели вольфрамсодержащие стали. Они устойчивы к истиранию, не дают трещин, сохраняют твердость вплоть до температуры красного каления. Инструмент из них не только позволяет резко интенсифицировать процессы металлообработки (скорость обработки металлических изделий повышается в 10-15 раз), но и служит намного дольше, чем тот же инструмент из другой стали.
Вольфрамовые сплавы не только жаропрочны, но и жаростойки. Они не корродируют при высокой температуре под действием воздуха, влаги и различных химических реагентов. В частности, 10% вольфрама, введенного в никель, достаточно, чтобы повысить коррозионную устойчивость последнего в 12 раз! А карбиды вольфрама с добавкой карбидов тантала и титана, сцементированные кобальтом, устойчивы к действию многих кислот - азотной, серной и соляной - даже при кипячении. Им опасна только смесь плавиковой и азотной кислот.

Вольфрам относится к тугоплавким металлам, которые сравнительно мало распространены в земной коре. Так, содержание в земной коре (в %) вольфрама примерно 10 -5 , рения 10 -7 , молибдена 3.10 -4 , ниобия 10 -3 , тантала 2.10 -4 и ванадия 1,5.10 -2 .

Тугоплавкие металлы являются переходными элементами и располагаются в IV, V, VI и VII группах (подгруппа А) периодической системы элементов. С увеличением атомного номера возрастает температура плавления тугоплавких металлов в каждой из подгрупп.

Элементы VA и VIA групп (ванадий, ниобий, тантал, хром, молибден и вольфрам) являются тугоплавкими металлами с объемно-центрированной кубической решеткой в отличие от других тугоплавких металлов, имеющих гранецентрированную и гексагональную плотно упакованную структуру.

Известно, что главным фактором, определяющим кристаллическую структуру и физические свойства металлов и сплавов, является природа их межатомных связей. Тугоплавкие металлы характеризуются высокой прочностью межатомной связи и, как следствие, высокой температурой плавления, повышенной механической прочностью и значительным электрическим сопротивлением.

Возможность исследования металлов методом электронной микроскопии позволяет изучать структурные особенности атомного масштаба, выявляет взаимосвязи между механическими свойствами и дислокациями, дефектами упаковки и др. Полученные данные показывают, что характерные физические свойства, отличающие тугоплавкие металлы от обычных, определяются электронной структурой их атомов. Электроны могут в различной степени переходить от одного атома к другому, при этом вид перехода отвечает определенному типу межатомной связи. Особенность электронного строения определяет высокий уровень межатомных сил (связей), высокую температуру плавления, прочность металлов и их взаимодействие с другими элементами и примесями внедрения. У вольфрама химически активная оболочка по энергетическому уровню включает электроны 5 d и 6 s.

Из тугоплавких металлов наибольшую плотность имеет вольфрам - 19,3 г/см 3 . Хотя при использовании в конструкциях ^большую плотность вольфрама можно рассматривать как отрицательный показатель, все же повышенная прочность при высоких температурах позволяет снизить массу изделий из вольфрама за счет уменьшения их размеров.

Плотность тугоплавких металлов в большой степени зависит от их состояния. Например, плотность спеченного штабика вольфрама колеблется в пределах 17,0-18,0 г/см 3 , а плотность кованого штабика со степенью деформации 75% составляет 18,6-19,2 г/см 3 . То же наблюдается и у молибдена: спеченный штабик имеет плотность 9,2-9,8 г/см 3 , кованый со степенью деформации 75% -9,7-10,2 г/см 3 и литой 10,2 г/см 3 .

Некоторые физические свойства вольфрама, тантала, молибдена и ниобия для сравнения приведены в табл. 1. Теплопроводность вольфрама составляет менее половины теплопроводности меди, но она намного выше, чем у железа или никеля.

Тугоплавкие металлы групп VA, VIA, VIIА периодической системы элементов по сравнению с другими элементами имеют меньший коэффициент линейного расширения. Наименьший коэффициент линейного расширения имеет вольфрам, что указывает на высокую стабильность его атомной решетки и является уникальным свойством этого металла.

Вольфрам имеет теплопроводность примерно в 3 раза меньшую, чем электропроводность отожженной меди, но она выше, чем у железа, платины и фосфоритной бронзы.

Для металлургии большое значение имеет плотность металла в жидком состоянии, так как эта характеристика определяет скорость движения по каналам, процесс удаления газообразных и неметаллических включений и влияет на образование усадочной раковины и пористости в слитках. У вольфрама эта величина выше, чем у других тугоплавких металлов. Однако другая физическая характеристика - поверхностное натяжение жидких тугоплавких металлов при температуре плавления - отличается меньше (см. табл. 1). Знание этой физической характеристики необходимо при таких процессах, как нанесение защитных покрытий, при пропитке, плавку и литье.

Важным литейным свойством металла является жидкотекучесть. Если для всех металлов эта величина определяется при заливке жидкого металла в спиральную форму при температуре заливки выше температуры плавления на 100-200° С, то жидкотекучесть вольфрама получена экстраполяцией эмпирической зависимости этой величины от теплоты плавления.

Вольфрам устойчив в различных газовых средах, кислотах и некоторых расплавленных металлах. При комнатной температуре вольфрам не взаимодействует с соляной, серной и фосфорной кислотами, не подвергается воздействию растворенной азотной кислоты и в меньшей степени, чем молибден, реагирует на смесь азотной и фтористоводородной кислот. Вольфрам обладает высокой коррозионной стойкостью в среде некоторых щелочей, например в среде гидроокиси натрия и калия, в которых проявляет стойкость до температуры 550° С. При действии расплавленного натрия он устойчив до 900° С, ртути - до 600°С, галлия до 800 и висмута до 980° С. Скорость коррозии в этих жидких металлах не превышает 0,025 мм/год. При температуре 400-490° С вольфрам начинает окисляться в среде воздуха и в кислороде. Слабая реакция происходит при нагреве до 100°С в соляной,азотной и плавиковой кислотах. В смеси плавиковой и азотной кислот идет быстрое растворение вольфрама. Взаимодействие с газовыми средами начинается при температурах (°С): с хлором 250, с фтором 20. В углекислом газе вольфрам окисляется при 1200° С, в аммиаке реакция не происходит.

Закономерность окисления тугоплавких металлов определяется в основном температурой. Вольфрам до 800-1000° С имеет параболическую закономерность окисления, а свыше 1000° С - линейную.

Высокая коррозионная стойкость в жидкометаллических средах (натрий, калий, литий, ртуть) позволяет применять вольфрам и его сплавы в энергетических установках.

Прочностные свойства вольфрама зависят от состояния материала и температуры. Для кованых прутков вольфрама предел прочности после рекристаллизации меняется в зависимости от температуры испытаний от 141 кгс/мм 2 при 20° С до 15,5 кгс/мм 2 при 1370° С. Полученный методом порошковой металлургии вольфрам при изменении температуры от 1370 до 2205° С имеет? b = 22,5?6,3 кгс/мм 2 . Прочность вольфрама особенно увеличивается в процессе холодной деформации. Проволока диаметром 0,025 мм имеет предел прочности 427 кгс/мм 2 .

Твердость деформированного технически чистого вольфрама HВ 488, отожженного НВ 286. При этом такая высокая твердость сохраняется вплоть до температур, близких к точке плавления, и в значительной степени зависит от чистоты металла.

Модуль упругости приближенно связан с атомным объемом температуры плавления

где T пл - абсолютная температура плавления; V aТ - атомный объем; К - константа.

Отличительной особенностью вольфрама среди металлов является также высокая объемная деформация, которая определяется из выражения

где Е - модуль упругости первого рода, кгс/мм 2 ; ?-коэффициент поперечной деформации.

Табл. 3 иллюстрирует изменение объемной деформации для стали, чугуна и вольфрама, рассчитанной по приведенному выше выражению.

Пластичность технически чистого вольфрама при 20 е С составляет менее 1 % и растет после зонной электронно-лучевой очистки от примесей, а также при легировании его добавкой 2% окиси тория. С увеличением температуры пластичность повышается.

Большая энергия межатомных связей металлов групп IV, V, VIA определяет их высокую прочность при комнатной и повышенных температурах. Механические свойства тугоплавких металлов существенно зависят от их чистоты, способов получения, механической и термической обработки, вида полуфабрикатов и других факторов. Большая часть сведений о механических свойствах тугоплавких металлов, опубликованных в литературе, получена на недостаточно чистых металлах, так как плавку в условиях вакуума начали применять сравнительно недавно.

На рис. 1 показана зависимость температуры плавления тугоплавких металлов от положения в периодической системе элементов.

Сравнение механических свойств вольфрама после дуговой плавки и вольфрама, полученного методом порошковой металлургии, показывает, что хотя их предел прочности отличается незначительно, однако более пластичным оказывается вольфрам дуговой плавки.

Твердость по Бринеллю вольфрама в виде спеченного штабика составляет НВ 200-250, а прокатанного нагартованного листа НВ 450-500, твердость молибдена равна соответственно НВ 150- 160 и НВ 240-250.

Легирование вольфрама проводят с целью повышения его пластичности, для этого используют прежде всего элементы замещения. Все больше внимания уделяют попыткам повысить пластичность металлов группы VIA добавками небольших количеств элементов групп VII и VIII. Повышение пластичности объясняют тем, что при легировании переходных металлов добавками в сплаве создается неоднородная электронная плотность вследствие локализации электронов легирующих элементов. При этом атом легирующего элемента изменяет силы межатомной связи в прилегающем объеме растворителя; протяженность такого объема должна зависеть от электронной структуры легирующего и легируемого металлов.

Трудность создания вольфрамовых сплавов состоит в том, что пока не удается при повышении прочности обеспечить необходимую пластичность. Механические свойства вольфрамовых сплавов, легированных молибденом, танталом, ниобием и окисью тория (при кратковременных испытаниях), приведены в табл. 4.

Легирование вольфрама молибденом позволяет получать сплавы, которые по своим прочностным свойствам превосходят нелегированный вольфрам вплоть до температур 2200° С (см. табл. 4). При повышении содержания тантала с 1,6 до 3,6% при температуре 1650°С прочность увеличивается в 2,5 раза. Это сопровождается уменьшением удлинения в 2 раза.

Разработаны и осваиваются дисперсионно упрочненные и сложнолегированные сплавы на основе вольфрама, которые содержат молибден, ниобий, гафний, цирконий, углерод. Например, следующие составы: W - 3% Mo - 1 % Nb; W - 3% Mo - 0,1% Hf; W - 3% Mo - 0,05% Zr; W - 0,07% Zr - 0,004% B; W - 25% Mo - 0,11 % Zr - 0,05% C.

Сплав W - 0,48% Zr-0,048% С имеет? b = 55,2 кгс/мм 2 при 1650° С и 43,8 кгс/мм 2 при 1925° С.

Высокие механические свойства имеют вольфрамовые сплавы, содержащие тысячные доли процента бора, десятые доли процента циркония, и гафния и около 1,5% ниобия. Прочность этих сплавов на разрыв при высоких температурах составляет 54,6 кгс/мм 2 при 1650° С, 23,8 кгс/мм 2 при 2200° С и 4,6 кгс/мм 2 при 2760° С. Однако температура перехода (около 500° С) таких сплавов из пластического состояния в хрупкое достаточно высока.

В литературе имеются сведения о сплавах вольфрама с 0,01 и 0,1% С, которые характеризуются пределом прочности, превышающим в 2-3 раза предел прочности рекристаллизованного вольфрама.

Рении существенно повышает жаропрочность сплавов вольфрама (табл. 5).


Очень давно и в широких масштабах применяется вольфрам и его сплавы в электротехнической и электровакуумной технике. Вольфрам и его сплавы являются основным материалом для изготовления нитей накаливания, электродов, катодов и других элементов конструкций мощных электровакуумных приборов. Высокая эмиссионная способность и светоотдача в накаленном состоянии, низкая упругость пара делают вольфрам одним из важнейших материалов для этой отрасли. В электровакуумных приборах для изготовления деталей, работающих при низких температурах, не проходящих предварительную обработку при Температуре выше 300° С, применяют чистый (без присадок) вольфрам.

Присадки различных элементов существенно изменяют свойства вольфрама. Это дает возможность создавать сплавы вольфрама с необходимыми характеристиками. Например, для деталей электровакуумных приборов, которые требуют применения непровисающего вольфрама при температурах до 2900° С и с высокой температурой первичной рекристаллизации, используют сплавы с кремнещелочными или алюминиевыми присадками. Кремнещелочные и ториевые присадки повышают темпера-туру рекристаллизации и увеличивают прочность вольфрама при высоких температурах, что позволяет изготовлять детали, работающие при температуре до 2100° С в условиях повышенных механических нагрузок.

Катоды электронных и газоразрядных приборов, крючки и пружины генераторных ламп с целью повышения эмиссионных свойств изготовляют из вольфрама с присадкой окиси тория (например, марок ВТ-7, ВТ-10, ВТ-15, с содержанием окиси тория соответственно 7, 10 и 15%).

Высокотемпературные термопары изготовляют из сплавов вольфрама с рением. Вольфрам без присадок, в котором допускается повышенное содержание примесей, применяют при изготовлении холодных деталей электровакуумных приборов (вводы в стекло, траверсы). Электроды импульсных ламп и холодные катоды газоразрядных ламп рекомендуется делать из сплава вольфрама с никелем и барием.

Для работы при температурах выше 1700° С следует применять сплавы ВВ-2 (вольфрамониобиевые). Интересно отметить, что при кратковременных испытаниях сплавы с содержанием ниобия от 0,5 до 2% имеют предел прочности при 1650°С в 2-2,5 раза выше нелегированного вольфрама. Наиболее прочным является сплав вольфрама с 15% молибдена. Сплавы W-Re-Th O 2 обладают хорошей обрабатываемостью по сравнению со сплавами W - Re; добавление двуокиси тория делает возможной такую обработку, как точение, фрезерование, сверление.

Легирование вольфрама рением повышает его пластичность, прочностные же свойства с ростом температуры становятся примерно одинаковыми. Добавки в сплавы вольфрама мелкодисперсных окислов повышают их пластичность. Кроме того, эти добавки значительно улучшают обрабатываемость резанием.

Сплавы вольфрама с рением (W - 3% Re; W - 5% Re; W - 25% Re) применяют для измерения и контроля температуры до 2480° С при производстве стали и в других видах техники. Увеличивается применение сплавов вольфрама с рением при изготовлении антикатодов в рентгеновских трубках. Молибденовые антикатоды, покрытые этим сплавом, работают под большой нагрузкой и имеют более длительный срок службы.

Высокая чувствительность вольфрамовых электродов к изменению концентрации водородных ионов позволяет применять их для потенциометрического титрования. Такие электроды используют для контроля воды и различных растворов. Они просты по конструкции и имеют малую величину электрического сопротивления, что делает перспективным их применение в качестве микроэлектродов при исследовании кислотостойкости приэлектродного слоя в электрохимических процессах.

Недостатками вольфрама являются его низкая пластичность (?<1%), большая плотность, высокое поперечное сечение захвата тепловых нейтронов, плохая свариваемость, низкая ока-линостойкость и плохая обрабатываемость резанием. Однако легирование его различными элементами позволяет улучшить эти характеристики.

Ряд деталей для электротехнической промышленности и сопловые вкладыши двигателей изготовляют из вольфрама, пропитанного медью или серебром. Взаимодействие тугоплавкой твердой фазы (вольфрама) с пропитывающим металлом (медью или серебром) такое, что взаимная растворимость металлов практически отсутствует. Краевые углы смачивания вольфрама жидкой медью и серебром достаточно малы по причине большой поверхностной энергии вольфрама, и этот факт улучшает проникновение серебра или меди. Вольфрам, пропитанный серебром или медью, производили первоначально двумя методами: полным погружением заготовки из вольфрама в расплавленный металл или частичным погружением подвешенной заготовки из вольфрама. Есть также методы пропитки с использованием гидростатического давления жидкости или вакуумного всасывания.

Изготовление из вольфрама электротехнических контактов, пропитанных серебром или медью, осуществляют следующим образом. Сначала производят прессование порошка вольфрама и его спекание при определенных технологических режимах. Затем полученную заготовку пропитывают. В зависимости от полученной пористости заготовки меняется доля пропитывающего вещества. Так, содержание меди в вольфраме может меняться от 30 до 13% при изменении удельного давления прессования от 2 до 20 тс/см 2 . Технология получения пропитанных материалов довольно проста, экономична, и качество таких контактов выше, так как один из компонентов дает материалу высокую твердость, эрозионную стойкость, большую температуру плавления, а другой повышает электропроводность.

Хорошие результаты получают при применении пропитанного вольфрама медью или серебром для изготовления сопловых вкладышей твердотопливных двигателей. Повышение таких свойств пропитанного вольфрама, как теплопроводность и электропроводность, коэффициента термического расширения, значительно увеличивает долговечность двигателя. Кроме того, испарение пропитывающего металла из вольфрама во время работы двигателя имеет положительное значение, снижая тепловые потоки и уменьшая эрозионное воздействие продуктов сгорания.

Порошок вольфрама применяют при изготовлении пористых материалов для деталей электростатического ионного двигателя. Применение вольфрама для этих целей позволяет улучшить его основные характеристики.

Теплоэрозионные свойства сопел, изготовленных из вольфрама, упрочненного дисперсными окислами ZrO2, MgO2, V2O3, НfO 2 , повышаются по сравнению с соплами из спеченного вольфрама. После соответствующей подготовки на поверхность вольфрама для снижения высокотемпературной коррозии наносят гальванические покрытия, например покрытие никелем, которое выполняют в электролите, содержащем 300 г/л сернокислого натрия, 37,5 г/л борной кислоты при плотности тока 0,5-11 А/дм 2 , температуре 65° С и рН = 4.

Мировое производство вольфрама – примерно 30 тыс. т в год. Из вольфрамовой стали и других сплавов, содержащих вольфрам или его карбиды, изготовляют танковую броню, оболочки торпед и снарядов, наиболее важные детали самолетов и двигателей.

Вольфрам – непременная составная часть лучших марок инструментальной стали. В целом металлургия поглощает почти 95% всего добываемого вольфрама. (Характерно, что она широко использует не только чистый вольфрам, но главным образом более дешевый ферровольфрам – сплав, содержащий 80% W и около 20% Fe; получают его в электродуговых печах).

Вольфрамовые сплавы обладают многими замечательными качествами. Так называемый тяжелый металл (из вольфрама, никеля и меди) служит для изготовления контейнеров, в которых хранят радиоактивные вещества. Его защитное действие на 40% выше, чем у свинца. Этот сплав применяют и при радиотерапии, так как он создает достаточную защиту при сравнительно небольшой толщине экрана.

Сплав карбида вольфрама с 16% кобальта настолько тверд, что может частично заменить алмаз при бурении скважин. Псевдосплавы вольфрама с медью и серебром – превосходный материал для рубильников и выключателей электрического тока высокого напряжения: они служат в шесть раз дольше обычных медных контактов.

Применение чистого металла и вольфрамсодержащих сплавов основано, главным образом, на их тугоплавкости, твердости и химической стойкости. Чистый вольфрам используется для изготовления нитей электрических ламп накаливания и электронно-лучевых трубок, в производстве тиглей для испарения металлов, в контактах автомобильных распределителей зажигания, в мишенях рентгеновских трубок; в качестве обмоток и нагревательных элементов электрических печей и как конструкционный материал для космических и других аппаратов, эксплуатируемых при высоких температурах. Быстрорежущие стали (17,5–18,5% вольфрама), стеллит (на основе кобальта с добавлением Cr, W, С), хасталлой (нержавеющая сталь на основе Ni) и многие другие сплавы содержат вольфрам. Основой при производстве инструментальных и жаропрочных сплавов является ферровольфрам (68–86% W, до 7% Mo и железо), легко получающийся прямым восстановлением вольфрамитового или шеелитового концентратов. «Победит» – очень твердый сплав, содержащий 80–87% вольфрама, 6–15% кобальта, 5–7% углерода, незаменим в обработке металлов, в горной и нефтедобывающей промышленности.

Вольфраматы кальция и магния широко используются во флуоресцентных устройствах, другие соли вольфрама используются в химической и дубильной промышленности. Дисульфид вольфрама представляет собой сухую высокотемпературную смазку, стабильную до 500° С. Вольфрамовые бронзы и другие соединения элемента применяются в изготовлении красок. Многие соединения вольфрама являются отличными катализаторами.

Незаменимость вольфрама в производстве электроламп объясняется не только его тугоплавкостью, но и пластичностью. Из одного килограмма вольфрама вытягивается проволока длиной 3,5 км, т.е. этого килограмма достаточно для изготовления нитей накаливания 23 тыс. 60-ваттных лампочек. Именно благодаря этому свойству мировая электротехническая промышленность потребляет всего около 100 т вольфрама в год.

ОПРЕДЕЛЕНИЕ

Вольфрам - семьдесят четвертый элемент Периодической таблицы. Обозначение - W от латинского «wolframium». Расположен в шестом периоде, VIB группе. Относится к металлам. Заряд ядра равен 74.

По распространенности в земной коре вольфрам уступает хрому, но превосходит молибден. Природные соединения вольфрама в большинстве случаев представляют собой вольфраматы - соли вольфрамовой кислоты H 2 WO 4 . Так, важнейшая вольфрамовая руда - вольфрамит - состоит из вольфраматов железа и марганца. Часто встречается также минерал шеелит CaWO 4 .

Вольфрам - тяжелый белый металл (рис. 1) плотностью 19,3 г/см 3 . Его температура плавления (около 3400 o С), выше, чем температура плавления всех других металлов. Вольфрам можно сваривать и вытягивать в тонкие нити.

Рис. 1. Вольфрам. Внешний вид.

Атомная и молекулярная масса вольфрама

ОПРЕДЕЛЕНИЕ

Относительной молекулярная масса вещества (M r) - это число, показывающее, во сколько раз масса данной молекулы больше 1/12 массы атома углерода, а относительная атомная масса элемента (A r) — во сколько раз средняя масса атомов химического элемента больше 1/12 массы атома углерода.

Поскольку в свободном состоянии вольфрам существует в виде одноатомных молекул W, значения его атомной и молекулярной масс совпадают. Они равны 183,84.

Изотопы вольфрама

Известно, что в природе вольфрам может находиться в виде пяти стабильных изотопов 180 W, 182 W, 183 W, 184 W и 186 W.Их массовые числа равны 180, 182, 183, 184 и 186 соответственно. Ядро атома изотопа вольфрама 180 W содержит семьдесят четыре протона и сто шесть нейтронов, а остальные отличаются от него только числом нейтронов.

Существуют искусственные нестабильные изотопы вольфрама с массовыми числами от 158-ми до 192-х, а также одиннадцать изомерных состояния ядер.

Ионы вольфрама

На внешнем энергетическом уровне атома вольфрама имеется шесть электронов, которые являются валентными:

1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 4f 14 5s 2 5р 6 5d 4 6s 2 .

В результате химического взаимодействия вольфрам отдает свои валентные электроны, т.е. является их донором, и превращается в положительно заряженный ион:

W o -2e → W 2+ ;

W o -3e → W 3+ ;

W o -4e → W 4+ ;

W o -5e → W 5+ ;

W o -6e → W 6+ .

Молекула и атом вольфрама

В свободном состоянии вольфрам существует в виде одноатомных молекул W. Приведем некоторые свойства, характеризующие атом и молекулу вольфрама:

Сплавы вольфрама

Большая часть добываемого вольфрама расходуется в металлургии для приготовления специальных сталей и сплавов. Быстрорежущая инструментальная сталь содержит до 20% вольфрама и обладает способностью самозакаливаться. Такая сталь не теряет своей твердости даже при нагревании докрасна.

Кроме быстрорежущих широко применяются другие вольфрамовые и хромовольфрамовые стали. Например, сталь, содержащая от 1 до 6% вольфрама и до 2% хрома, применяется для изготовления пил, фрез, штампов.

Как самый тугоплавкий металл вольфрам входит в состав ряда жаропрочных сплавов. В частности, его сплавы с кобальтом и хромом - стеллиты - обладают высокими твердостью, износоустойчивостью, жаростойкостью. Сплавы вольфрама с медью сочетают в себе высокие электрическую проводимость, теплопроводность и износоустойчивость. Они применяются для изготовления рабочих частей рубильников, выключателей, электродов для точечной сварки.

Примеры решения задач

ПРИМЕР 1

Похожие публикации