Группа крови физиология крови переливание крови. Группы крови. Резус-фактор. Переливание крови. Что будем делать с полученным материалом

Описание презентации Физиология системы крови Группы крови. Правила переливания по слайдам

В 1901 г. венский врач Карл Ландштейнер обнаружил, что плазма крови одних людей склеивает эритроциты других людей. Склеивание эритроцитов (агглютинация) объясняется наличием в эритроцитах антигенов (агглютиногенов), а в плазме – природных антител (агглютининов). Антигены – высокомолекулярные полимеры, несущие признаки генетически чужеродной информации

Главные носители антигенных свойств — эритроциты На мембране эритроцита- более 300 различных антигенов. Они объединяются в групповые антигенные системы. В крови каждого человека содержится индивидуальный набор специфических эритроцитарных аглютиногенов. На практике при переливании крови учитываются в основном две антигенные системы — АВ 0 и СDЕ.

Система АВО По системе АВО различают А, В – антигены в эритроцитах и альфа, бета – антитела в плазме. Склеивание эритроцитов наблюдается при встрече одноименных антигенов и антител (А с альфа, В с бета). Возможны 4 комбинации, при которых не происходит подобной встречи. Деление людей по группам крови в системе АВО основано на различных комбинациях агглютиногенов эритроцитов и агглютининов плазмы. Имеются 4 группы крови: I I О (αβ); II А (β); IIIIII В (α); IV АВ (0).

Определение групп крови в системе АВ 0 по стандартным сыворотками На чистую белую плоскость, после соответствующих записей стеклографом, нанести стандартные сыворотки первой, второй и третьей групп крови. В каждую из капель стандартной сыворотки, углом чистого предметного стекла, внести в десять раз меньшее количество крови, а через 2 -3 минуты добавить по одной капле физиологического раствора. За появлением агглютинации наблюдать в течение 5 минут. Установить группу крови.

Если в эритроцитах исследуемой крови нет антигенов, то ни в одной сыворотке агглютинации не происходит. Это первая группа О(II))

Если агглютинация произошла в сыворотке 1 и 3 групп, а во второй – не произошла, то это группа AA ((IIII))

Если агглютинация произошла в сыворотках 1 и 2 групп, а в третьей не произошла, то это группа В(В(IIIIII))

Если агглютинация произошла во всех трех сыворотках, то в исследуемой крови есть оба антигена — А и В, т. е. — это четвертая группа АВ ((IVIV).).

Резус-фактор В 1940 году Ландштейнер и Винер в эритроцитах обезьяны – макаки резус – обнаружили антиген (его назвали резус-фактор). В дальнейшем оказалось, что 85% людей белой расы имеют этот антиген. Кровь содержащая Rh. Rh -фактор в эритроцитах называется резус-положительной. Около 15 % людей не имеют Rh. Rh -фактора (резус-отрицательная кровь). В системе “ Rh. Rh — hrhr ”” около 40 антигенов: DD (85%), CC (70%), E E (30%). Естественных антител к Rh. Rh -антигену нет, но они могут вырабатываться, к примеру, если человеку с Rh. Rh -отрицательной кровью перелить Rh. Rh -положительную кровь. При первом таком переливании осложнения, как правило, не возникают, но в организме реципиента вырабатываются антитела к Rh. Rh -антигену. Повторное переливание сопровождается гемотрансфузионным шоком.

Система Rh. Rh Антитела на резус фактор не выявляются после рождения, а вырабатываются после первой сенсибилизации, т. е. попа дд ания резус-фактора в резус-отрицательную кровь. Выработанные антитела являются Ig. G , неполные антитела, поэтому они способны проходить через гематотканевые барьеры.

Резус-конфликты При переливании крови: первое переливание резус-положительной крови резус-отрицательному реципиенту вызовет только выработку антител. Агглютинации эритроцитов не будет. Второе переливание вызовет агглютинацию эритроцитов, т. к. в крови уже имеются антитела против резус-фактора (агглютинины анти DD).).

Резус-конфликты При беременности: : если у матери резус-отрицательная кровь, а у плода резус-положительная. Во время второй беременности развивается резус-конфликт. Антитела матери проходят через плацентарный барьер и вызывают агглютинацию эритроцитов плода.

Антитела системы СDE Иммунные антитела, образовавшиеся в организме резус — отрицательной женщины, беременной резус — положительным плодом, обладают способностью проникать через плаценту в организм плода и вызвать гемолиз его эритроцитов. Во время родов в кровь новорожденного ребенка поступает много антител и развивается гемолитическая болезнь. Антитела новорожденный может получить и с молоком матери.

Определение резус фактора Для определения резус-фактора берут универсальную сыворотку (в ней отсутствуют антитела по системе АВО), но содержатся анти-резус-агглютинины (анти- D). Смешиваем сыворотку и каплю крови также как и при определении групп крови по системе АВО. Результата наблюдаем через 10 -15 минут. Если происходит склеивание эритроцитов в сыворотке, значит в них есть Rh- антиген, т. е. кровь Rh -положительная. Если агглютинация не произошла – кровь Rh- отрицательная.

ПРАВИЛА, КОТОРЫЕ НЕОБХОДИМО ИСПОЛЬЗОВАТЬ ПРИ ПЕРЕЛИВАНИИ КРОВИ 11. . Для переливания (особенно больших количеств) крови используют только одногруппную кровь: у донора и реципиента должна быть одна группа. 2. Определяют группу крови реципиента и группу крови донора (даже полученную со станции переливания)

3. Проводят прямую пробу на совместимость, учитывая антигены донора (берут цельную кровь с эритроцитами) и антитела реципиента (берут сыворотку реципиента, которую получают путем центрифугирования крови).

44. Проводят обратную пробу на совместимость, учитывая антигены реципиента (берут кровь реципиента) и антитела донора (берут сыворотку донора). 55. . Проводят биологическую пробу путём дробного вливания крови по 10 мл трижды струйно по методу Безредко. Следят за самочувствием реципиента.

ЧТО ДЕЛАТЬ? При первых признаках нарушения самочувствия: озноб, боли в пояснице, холодный пот, учащение пульса, повышение АД – отключить капельницу с кровью и вливать физраствор или другой солевой раствор для разведения крови и уменьшения её вязкости.

Общая характеристика системы гемостаза Гемостаз — физиологическая система, предотвращающая кровопотерю и поддерживающая кровь в жидком состоянии. Функционально-структурными компонентами системы гемостаза являются: 1. стенка кровеносных сосудов; 2. клетки крови (в основном — тромбоциты); 3. ферментные и неферментный системы плазмы

Тромбоциты Количество – 180 – 320320 тыс. в 1 мкл Строение: безъядерные пластинки диаметром 2 -5 мкм Свойства: : 1)адгезия – способность тромбоцитов прилипать к чужеродной поверхности 2)агрегация – способность тромбоцитов склеиваться друг с другом 3) амебовидная подвижность 4) легкая разрушаемость Функции: 1) гемостатическая — участие в свертывании крови; 2) ангиотрофическая — — улучшают трофику (питание) клеток капилляров; 3) регулируют тонус сосудистой стенки (за счет выработки серотонина).

Различают 2 механизма гемостаза: сосудисто-тромбоцитарный и коагуляционный. Сосудисто-тромбоцитарный гемостаз обеспечивает остановку кровотечения в сосудах микроциркуляции. Поэтому его называют микроциркуляторным гемостазом. Он протекает в 5 этапов: а) первичный спазм сосудов (в ответ на боль выбрасываются адреналин, норадреналин, серотонин). Это способствует уменьшению кровотечения. б) адгезия (прилипание) тромбоцитов к поврежденной поверхности сосуда. в) обратимая агрегация (скучивание) тромбоцитов. При этом тромбоциты склеиваются между собой, но их структура не нарушается. г) необратимая агрегация тромбоцитов. На этом этапе тромбоциты разрушаются, образуется тромбоцитарная масса, которая закрывает дефект сосуда. д) сокращение и уплотнение (ретракция) тромбоцитарного тромба. В норме остановка кровотечения из мелких сосудов занимает 2 -4 мин.

Коагуляционный гемостаз В этом процессе участвуют тканевые, плазменные и клеточные коагулянты. Известно около 16 плазменных коагулянтов, наиболее важные из них: фибриноген, протромбин, тромбопластин, ионы Са. Процесс свертывания (гемокоагуляция) включает 3 фазы: 1. Образование протромбиназы; 2. Образование тромбина (из протромбина); 3. Переход растворимого белка фибриногена в нерастворимый — фибрин. В п ослефазе свертывания крови происходит 2 процесса: 1) уплотнение кровяного сгустка (ретракция тромба) 2) фибринолиз (растворение нитей фибрина и восстановление просвета сосуда). Этому способствует фермент – плазмин, который образуется из плазминогена (под действием активаторов — урокиназа и др.).

Образование протромбиназы Существуют 2 механизма активации протромбиназы – внешний и внутренний. Внешний механизм запускается поступлением из тканей в плазму тканевого тромбопластина, который представляет собой частицы клеточных мембран, образовавшиеся при повреждении стенок сосудов. Тканевый тромбопластин взаимодействует с VII фактором и активирует фактор IIIIII. Активный VII фактор и ионы Са Са 2+2+ образуют комплекс: VII а + III + + Са Са 2+2+ . . Этот комплекс активирует фактор Х. .

Внутренний механизм. Тромбоцитарный тромбопластин (фактор IIIIII) активирует фактор XIIXII. . За ним последовательно активируются Х II и и II Х Х факторы — образуется кальциевый комплекс: II Х, Х, VV IIIIII , Са Са 2+2+ , который активирует фактор Х. Активированный фактор Х обладает слабой тромбиназной активностью, но она усиливается в 1000 раз фактором V, в присутствии ионов кальция – этот, так называемый, тромбиназный комплекс способствует быстрому превращению протромбина в тромбин во второй фазе свертывания.

Под действием тромбина, который является протеолитическим ферментом, в 3 фазе образуется фибрин. Первый этап — расщепление фибриногена до мономеров А и В. В. Второй этап. Мономеры фибрина выстраиваются параллельно другу под действием электростатических сил и образуют фибрин-полимеры. На этом этапе фибрин-полимер является растворимым — фибрин «S». Третий этап — преобразование фибрина «S» в нерастворимый фибрин «I» , это происходит под действием фактора Х IIIIII — — фибрин-стабилизирующего.

В результате коагуляционного гемостаза образуется сгусток крови — тромб. Тромбоциты сгустка выделяют тромбостенин, обуславливающий ретракцию (уплотнение) сгустка, в основном за счет изменений нитей фибрина, которые приближаются друг к другу. Это способствует стягиванию краев раны, что облегчает ее закрытие соединительно-тканными клетками.

Фибринолитическая система В состав системы фибринолиза входят: 1) плазминоген — неактивный протеолитический фермент, который всегда содержится в плазме крови; 2) плазмин — активная форма плазминогена. 3) активаторы фибринолиза — группа веществ, которые либо сами являются протеазами, превращающими плазминоген в плазмин, или вызывают появление таких протеаз; 4) ингибиторы фибринолиза, среди которых наибольшее значение имеет αα 22 -антиплазмин.

Антикоагулянты Это вещества, препятствующие свертыванию крови. Различают первичные и вторичные антикоагулянты. 1) 1) Первичные антикоагулянты всегда присутствуют в крови. Это гепарин, антитромбопластины, антитромбины. Если их активность ослабляется, то у человека появляется склонность к тромбообразованию. 2) 2) Вторичные антикоагулянты образуются в процессе свертывания. Например, образовавшийся в 3 -ю фазу фибрин, адсорбируя на себе тромбин, способствует его инактивации (его называют антитромбином II).).

Роль эндотелия в сохранении жидкого состояния циркулирующей крови Клетки эндотелия образуют активный ингибитор агрегации тромбоцитов — простациклин. удаляет из кровотока активированные факторы коагуляционного гемостаза; создает слой антикоагулянтов на границе с кровью, синтезируя гепариноподобные вещества.

Регуляция свертывания крови Уровни регуляции системы гемостаза: Молекулярный — — обеспечивает поддержание баланса отдельных факторов. Клеточный — обеспечивает продукцию факторов, участвующих в гемостазе. Органный — обеспечивает оптимальные условия функционирования системы гемостаза на различных участках сосудистого русла. В норме свертывание происходит за 5 -10 минут. Уменьшение времени свертывания – гиперкоагуляция, увеличение – гипокоагуляция. Ускорение свертывания вызывают повышение тонуса симпатической н/с, адреналин, норадреналин.

В 1901 г. было открыто, что в крови здоровых людей могут содержаться вещества, способные вызывать агглютинацию (склеивание) эритроцитов других людей. Изучение агглютинации эритроцитов одного человека в плазме или сыворотке крови другого человека создало научную основу для важного лечебного мероприятия - переливания крови.

Переливание крови производят при больших кровопотерях, некоторых отравлениях (в частности, когда нарушена способность гемоглобина связывать кислород), когда понижено содержание гемоглобина в крови и по многим другим медицинским показаниям. В прошлом попытки переливания крови нередко приводили к смерти или же вызывали тяжелые нарушения состояния организма. Тяжелые последствия переливания крови наступают в том случае, когда эритроциты крови донора (человека, дающего кровь) агглютинируются плазмой крови реципиента (человека, получающего кровь). Это бывает, когда в эритроцитах введенной крови содержится агглютинируемое вещество - агглютиноген, а в плазме реципиента находится соответствующее агглютинирующее вещество - агглютинин. В результате агглютинации эритроцитов и последующего их гемолиза возникают тяжелые состояния организма - гемотрансфузионный шок, который может привести к смерти.

В эритроцитах крови людей Я. Янским и К. Ландштейнером были обнаружены два агглютинируемых фактора: агглютиноген А и агглютиноген В, а в плазме - два агглютинирующих агента: агглютинин α и агглютинин β. В крови человека никогда не встречается одновременно агглютиноген А с агглютинином а и агглютиноген В с агглютинином 3, поэтому в организме агглютинации собственных эритроцитов не происходит.

Установлено, что всех людей можно по наличию или отсутствию в эритроцитах агглютиногенов, а в плазме агглютининов разделить на четыре группы. У людей I группы по классификации Янского эритроциты не содержат агглютиногенов, а плазма содержит агглютинины а и р. У людей II группы в эритроцитах имеется агглютиноген А и в плазме агглютинин β.

К III группе относятся люди, у которых в эритроцитах находятся агглютиноген Вив плазме агглютинин а. Кровь IV группы характеризуется наличием в эритроцитах агглютиногенов А и В и отсутствием в плазме агглютининов.

Обозначив агглютинацию знаком плюс (+), а ее отсутствие знаком минус (-), можно представить результаты смешивания эритроцитов и сыворотки людей различных групп следующим образом.

Группа сыворотки Группа эритроцитов
I(0) II(A) III(В) IV(AB)
I (α и β) - + + +
II (β) - - + +
III (α) - + - +
IV (0) - - - -

Группу крови определяют путем смешивания капли крови исследуемого человека со стандартными сыворотками, содержащими известные агглютинины. Для этого достаточно иметь две сыворотки II и III группы, так как при смешивании этих сывороток с эритроцитами (или кровью) исследуемого результаты агглютинации или ее отсутствие дают возможность точного определения любой группы (рис. 7).

Определение группы крови имеет большое практическое значение для выяснения возможности переливания крови. Для этой цели важно установить только неагглютинируемость эритроцитов донора, так как плазма вводимой крови вследствие ее разведения кровью реципиента не вызывает агглютинации эритроцитов последнего.

Людям, принадлежащим к I группе, можно переливать кровь только I группы. Кровь же I группы можно переливать людям всех групп. Поэтому люди I группы являются универсальными донорами. Людям IV группы можно вводить кровь всех четырех групп, кровь же IV группы можно переливать лишь людям IV группы. Людям II и III группы можно переливать кровь одноименной группы, а также кровь людей I группы. Кровь
людей II или III группы можно переливать людям соответствующей группы и, кроме того, IV группы. Эти отношения схематически изображены на рис. 8.

При исследовании групп крови в разных странах получены следующие средние данные о принадлежности людей к той или иной группе: I группа - 40%, II группа - 39%, III группа 15%, IV группа - 6%.

Рис. 7. Определение групп крови.
Сверху - положение на стекле двух капель исследуемой крови и капель сыворотки II и III группы. Римскими цифрами обозначены группы сыворотки крови. 1 - агглютинации сывороткой II и III группы не происходит - кровь I группы; 2 - агглютинация происходит сывороткой III группы - кровь II группы; 3 - агглютинация сывороткой II группы - кровь III группы; 4 - кровь агглютинируется сывороткой II и III групп - кровь IV группы.


Рис. 8. Схема допустимого переливания крови. Стрелки показывают, каким группам, кроме одноименной, можно переливать кровь определенной группы.

В эритроцитах большинства людей (85%) имеется еще один фактор, обнаруженный впервые Ландштейнером и Винером в 1940 г. в крови обезьян макак (Маcacus rhesus) и потому названный резус-фактором (сокращенно Bh-фактор). Если кровь человека, содержащего этот фактор (резус-положительную кровь), перелить человеку, не имеющему его (резус-отрицательному), то у последнего образуются специфические агглютинины и гемолизины. Повторное введение такому человеку резус-положительной крови может вызвать агглютинацию и тяжелые осложнения (гемотрансфузионный шок).

Особое значение имеют случаи, когда резус-положительный плод развивается у резус-отрицательной матери. В этом случае резус-фактор плода диффундирует через плаценту в кровь матери, что приводит к образованию в крови матери специфических антирезусных веществ, диффундирующих через плаценту обратно в кровь плода и могущих вызвать у него тяжелые нарушения вследствие агглютинации и гемолиза его эритроцитов. Этим объясняются некоторые случаи мертворождаемости.

В последнее время учение о группах крови значительно усложнилось открытием новых агглютиногенов. Так, группа А оказалась состоящей из ряда подгрупп (А1, А2, А3, А4 и др.). Агглютиноген А2 в отличие от A1 не дает агглютинации при слабо активных сыворотках, содержащих агглютинин α. В силу этого кровь этих лиц может быть ошибочно отнесена к I группе, что может явиться причиной тяжелых осложнений при переливании крови. Агглютиногены А3, А4, А5 и др. являются еще более слабыми. Bh-фактор существует в виде трех вариантов: Rh°, Rh", Rh".

В эритроцитах, не содержащих Rh-фактора, открыты факторы Hr (противоположные резус-фактору), которые также обнаружены в трех вариантах: Hr°, Hr", Hr".

Кроме того, найдены агглютиногены М, N, S, Р, D, С, К, Ln, Le, Fy, Jk и др. Комбинации этих факторов дают огромное количество сочетаний и, таким образом, в настоящее время уже различают несколько сот тысяч групп крови. Однако для переливания крови наибольшее значение имеет определение только основных четырех групп крови и Rh- и Hr-факторов.

Нейтрофилы. Созревая в костном мозге, задерживаются в нем на 3-5 дней, составляя костномозговой резерв гранулоцитов.

Лейкопоэз осуществляется экстраваскулярно и лейкоциты, в том числе и нейтрофилы, попадают в сосудистое русло благодаря аме­бовидному движению и выделению протеолитических ферментов, способных растворять белки костного мозга и капилляров. В цир­кулирующей крови нейтрофилы живут от 8 ч до 7 сут.

Обладая фагоцитарной функцией, нейтро­филы поглощают бактерии и продукты разрушения тканей. В составе нейтрофилов содержатся ферменты, разрушающие бактерии. Ней­трофилы способны адсорбировать антитела и переносить их к очагу воспаления, принимают участие в обеспечении иммунитета.

Под влиянием продуктов, выделяемых нейтрофилами, усили­вается митотическая активность клеток, ускоряются процессы ре­парации, стимулируется гемопоэз и растворение фибринового сгу­стка.

Базофилы. В крови базофилов очень мало (40-60 в 1 мкл) однако в различных тканях, в том числе сосудистой стенке, содер­жатся тучные клетки, иначе называемые «тканевые базофилы». Функция базофилов обусловлена наличием в них ряда биологически активных веществ. К ним в первую очередь принадлежит гистамин, расширяющий кровеносные сосуды. В базофилах содержатся противосвертывающее вещество гепарин, а также гиалуроновая кислота, влияющая на проницаемость сосудистой стенки. Кроме того, базо­филы содержат фактор активации тромбоцитов - ФАТ (соединение, обладающее чрезвычайно широким спектром действия), тромбоксаны (соединения, способствующие агрегации тромбоцитов), лейкотриены и простагландины - производные арахидоновой кислоты и др. Особо важную роль играют эти клетки при аллергических реакциях (брон­хиальная астма, крапивница, глистные инвазии, лекарственная бо­лезнь и др.), когда под влиянием комплекса антиген - антитело происходит дегрануляция базофилов и биологически активные со­единения поступают в кровь, обусловливая клиническую картину перечисленных заболеваний.

Количество базофилов резко возрастает при лейкозах, стрессовых ситуациях и слегка увеличивается при воспалении.

Эозинофилы. Длительность пребывания эозинофилов в кровотоке не превышает нескольких часов, после чего они проникают в ткани, где и разрушаются. Эозинофилы обладают фагоцитарной активно- стью. Особенно интенсивно они фагоцитируют кокки. Эозинофилы играют важ­ную роль в разрушении токсинов белкового происхождения, чужеродных белков и иммунных комплексов.

Чрезвычайно велика роль эозинофилов, осуществляющих цитотоксический эффект, в борьбе с гельминтами, их яйцами и личин­ками. В частности, при контакте активированного эозинофила с личинками происходит его дегрануляция с последующим выделением большого количества белка и ферментов, например пероксидаз, на поверхность личинки, что приводит к разрушению последней. Уве­личение числа эозинофилов, наблюдаемое при миграции личинок, является одним из важнейших механизмов в ликвидации гельминтозов.

В эозинофилах содержатся катионные белки, которые активируют компоненты калликреин-кининовой системы и влияют на сверты­вание крови.

Моноциты. Циркулируют до 70 ч, а затем мигрируют в ткани, где образуют обширное семейство тканевых макрофагов. Функции их весьма многообразны. Моноциты являются чрезвычайно актив­ными фагоцитами, распознают антиген и переводят его в так на­зываемую иммуногенную форму, образуют биологически активные соединения - монокины (действующие в основном на лимфоциты), играют существенную роль в противоинфекционном и противора­ковом иммунитете, синтезируют отдельные компоненты системы комплемента, а также факторы, принимающие участие в сосудисто-тромбоцитарном гемостазе, процессе свертывания крови и рас­творении кровяного сгустка.

Лимфоциты. Популяция Т-лимфоцитов гетерогенна и представлена следующими классами клеток. Т-киллеры, или убийцы (от англ. tukill - убивать), осуществляющие лизис клеток-мишеней, к которым можно отнести возбудителей инфекционных болезней, грибки, микобактерии, опухолевые клетки и др. Т-хелперы, или помощники имму­нитета. Различают Т -Т-хелперы, усиливающие клеточный имму­нитет, и Т -В-хелперы, облегчающие течение гуморального имму­нитета. Т-амплифайеры усиливают функцию Т- и В-лимфоцитов, однако в большей степени влияют на Т-лимфоциты. Т-супрессоры - лимфоциты, препятствующие иммунному ответу. Различают Т-Т-супрессоры, подавляющие клеточный иммунитет, и Т -В-супрессоры, угнетающие гуморальный иммунитет. Т-дифференцирующие, или Td-лимфоциты, регулируют функцию стволовых кроветворных клеток, т. е. влияют на соотношение эритроцитарного, лейкоцитар­ного и тромбоцитарного (мегакариоцитарного) ростков костного моз­га. Т-контрсупрессоры препятствуют действию Т-супрессоров и, следовательно, усиливают иммунный ответ. Т-клетки памяти хра­нят информацию о ранее действующих антигенах и таким образом регулируют так называемый вторичный иммунный ответ, который проявляется в более короткие сроки, так как минует основные стадии этого процесса.

Другая популяция лимфоцитов образует В-лимфоциты (от слова bursa), окончательное формирование которых у человека и млекопитающих, по-видимому, происходит в костном мозге или системе лимфоидно-эпителиальных образований, расположен­ных по ходу тонкой кишки (лимфоидные, или пейеровы бляшки и др.).

Большинство В-лимфоцитов в ответ на действие антигенов и цитокинов переходит в плазматические клетки, вырабатывающие антитела и потому именуемые антителопродуцентами. Среди В-лимфоцитов также различают В-киллеры, В-хелперы и В-супрессоры.

В-киллеры выполняют те же функции, что и Т-киллеры. Что касается В-хелперов, то они способны представлять антиген, уси­ливать действие Td-лимфоцитов и Т-супрессоров, а также участ­вовать в других реакциях клеточного и гуморального иммунитета. Функция В- cynpeccopo в заключается в торможении пролиферации антителопродуцентов, к которым принадлежит основная масса В-лимфоцитов.

Лейкоциты в моче (параметр входит в «Общий анализ мочи»)– увеличение количества лейкоцитов в моче свидетельствует о воспалительных процессах в почках и мочевыводящих путях.

Лейкоциты в моче (параметр входит в «Анализ мочи по Нечипоренко» – подсчет количества лейкоцитов, эритроцитов и цилиндров в осадке мочи при микроскопии в счетной камере. Применяется для диагностики воспалительных процессов в мочеполовой системе и оценки проводимой антибактеиальной терапии.

Катионный протеин (белок) эозинофилов – показатель тяжести течения аллергических заболеваний. Данный белок входит в состав эозинофилов – одной из фракций лейкоцитов. Его определение полезно для оценки течения и лечения бронхиальной астмы, других аллергических заболеваний и гельминтозов.

    Лимфоциты как центральное звено иммунной системы. Иммунокомпетентные клетки, их кооперация в иммунном ответе.

В организме лимфоциты постоянно рециркулируют между зонами скопления лимфоидной ткани. Расположение лимфоцитов в лимфоидных органах и их миграция по кровеносному и лимфатическому руслу строго упорядочены и связаны с функциями различных субпопуляций.

Лимфоциты имеют общую морфологическую характеристику, однако их функции, поверхностные CD маркеры, индивидуальное (клональное) происхождение, различны.

По наличию поверхностных CD маркеров лимфоциты разделяют на функционально различные популяции и субпопуляции, прежде всего на Т- (тимусзависимые, прошедшие первичную дифференцировку в тимусе) лимфоциты и В лимфоциты.

Т- лимфоциты. Локализация

Обычно локализуются в так называемых Т- зависимых зонах периферических лимфоидных органов (периартикулярно в белой пульпе селезенки и паракортикальных зонах лимфоузлов).

Функции.

Т- лимфоциты распознают процессированный и представленный на поверхности антиген- представляющих (А) клеток антиген. Они отвечают за клеточный иммунитет, иммунные реакции клеточного типа. Отдельные субпопуляции помогают В- лимфоцитам реагировать на Т- зависимые антигены выработкой антител.

Кооперация клеток в иммунном ответе.

В формировании иммунного ответа включаются все звенья иммунной системы- системы макрофагов, Т- и В- лимфоцитов, комплемента, интерферонов и главная система гистосовместимости.

В кратком виде можно выделить следующие этапы.

1. Поглощение и процессинг антигена макрофагом.

2. Представление процессированного антигена макрофагом с помощью белка главной системы гистосовместимости класса 2 Т- хелперам.

3. Узнавание антигена Т- хелперами и их активация.

4. Узнавание антигена и активация В- лимфоцитов.

5. Дифференциация В- лимфоцитов в плазматические клетки, синтез антител.

6. Взаимодействие антител с антигеном, активация систем комплемента и макрофагов, интерферонов.

7. Представление при участии белков МНС класса 1 чужеродных антигенов Т- киллерам, разрушение инфицированных чужеродными антигенами клеток Т- киллерами.

8. Индукция Т- и В- клеток иммунной памяти, способных специфически распознавать антиген и участвовать во вторичном иммунном ответе (антигенстимулированные лимфоциты).

Клетки иммунной памяти . Поддержание долгоживущих и метаболически малоактивных клеток памяти, рециркулирующих в организме, является основой длительного сохранения приобретенного иммунитета. Состояние иммунной памяти обусловлено не только длительностью жизни Т- и В- клеток памяти, но и их антигенной стимуляцией. Длительное сохранение антигенов в организме обеспечивается дендритными клетками (депо антигенов), сохраняющими их на своей поверхности.

Дендритные клетки - популяции отросчатых клеток лимфоидной ткани костномозгового (моноцитарного) генеза, представляющая антигенные пептиды Т- лимфоцитам и сохраняющая антигены на своей поверхности. К ним относятся фолликулярные отросчатые клетки лимфоузлов и селезенки, клетки Лангерханса кожи и дыхательных путей, М- клетки лимфатических фолликулов пищеварительного тракта, дендритные эпителиальные клетки.

    Понятие об антигене и антителе. Естественные и иммунные антитела. Антигенные системы крови человека.

Антигенами называются вещества или тела, несущие на себе отпечаток чужеродной генетической информации, те самые вещества, то "чужое", против которого "работает" иммунная система. Любые клетки (ткани, органы) не собственного организма (не свои) являются для иммунной системы комплексом антигенов, даже некоторые собственные ткани (хрусталик глаза) - так называемые забарьерные ткани: в норме они не контактируют с внутренней средой организма.

Антигены обладают 2 свойствами:

· антигенностью, или антигенным действием, - они способны индуцировать развитие иммунного ответа;

Специфичностью, или антигенной функцией, - взаимодействовать с продуктами иммунного ответа, индуцированного аналогичным антигеном.

2. Антигены делят на следующие:

Сильные, которые вызывают выраженный иммунный ответ;

Слабые, при введении которых интенсивность иммунного ответа невелика.

Сильные антигены, как правило, имеют белковую структуру.

Некоторые (обычно небелковые) антигены не способны индуцировать развитие иммунного ответа (не обладают антигенностью), но могут вступать во взаимодействие с продуктами иммунного ответа. Их называют неполноценными антигенами, или гаптенами. Многие простые вещества и лекарственные средства являются гаптенами, при попадании в организм они могут конъюгировать с белками организма хозяина или другими носителями и приобретать свойства полноценных антигенов.

Молекула любого антигена состоит из 2 функиионально различных частей:

1-я часть - детерминантная группа, на долю которой приходится 2-3% поверхности молекулы антигена. Она определяет чужеродность антигена, делая его именно этим антигеном, отличающимся от других;

2-я часть молекулы антигена называется проводниковой, при ее отделении от детерминантной группы она не проявляет антигенного действия, но сохраняет способность реагировать с гомологичными антителами, т. е. превращается в гаптен.

3. Антителами называются сывороточные белки, образующиеся в ответ на действие антигена. Они относятся к сывороточным глобулинам, поэтому называются иммуноглобулинами (Ig). Через них реализуется гуморальный тип иммунного ответа. Антитела обладают 2 свойствами:

Специфичностью, т. е. способностью вступать во взаимодействие с антигеном, аналогичным тому, который индуцировал (вызвал) их образование;

Гетерогенностью по физико-химическому строению, специфичности, генетической детерминированности образования (по происхождению).

Все иммуноглобулины являются иммунными, т. е. образуются в результате иммунизации, контакта с антигенами. Тем не менее по происхождению они делятся:

На нормальные (анамнестические) антитела, которые обнаруживаются в любом организме как результат бытовой иммунизации;

Инфекционные антитела, которые накапливаются в организме в период инфекционной болезни;

Постинфекционные антитела, которые обнаруживаются в организме после перенесенного инфекционного заболевания;

Поствакцинальные антитела, которые возникают после искусственной иммунизации.

Антитела (иммуноглобулины) всегда специфичны антигену , индуцировавшему их образование. Тем не менее противомик-робные иммуноглобулины по специфичности делятся на те же группы, что и соответствующие микробные антигены:

Группоспецифические; видоспецифические; вариантспецифические; перекрестнореагирующие.

Естественные антитела. Группы крови.

Естественные антитела представляют собой наследственный признак крови человека. Так, в плазме крови имеются агглютинины альфа и бета, которые специфически реагируют на естественные агглютиногены А и В, расположенные в эритроцитах. Антигены, которые не поступают извне, а присущи самому организму, называют изоантигенами. Следовательно, агглютиногены А и В являются изоантигенами. При встрече одноименных агглютиногенов и агглютининов, например А и альфа или В и бета, происходит склеивание эритроцитов - агглютинация. В зависимости от наличия или отсутствия в эритроцитах крови человека агглютиногена А или В кровь относят к той или иной группе. По этому принципу выделяют четыре группы крови. По Международной номенклатуре эти группы обозначают: О - при отсутствии в эритроцитах агглютиногенов, А - при наличии агглютиногена А, В - в случае присутствия В-агглютиногена и АВ - в случае наличия обоих агглютиногенов. По Янсному, эти группы, соответственно, обозначаются как I, II, III и IV. Группы крови отличаются и по содержанию агглютининов. В плазме крови первой группы содержатся агглютинины альфа и бета, в плазме второй группы - агглютинин бета, в плазме третьей группы - альфа и в плазме четвертой отсутствуют оба агглютинина.

Для предупреждения агглютинации необходимо устранить возможность встречи агглютининов реципиента, т.е. человека, которому переливают кровь, с соответствующими агглютиногенами донора - человека, дающего кровь для переливания. Встреча агглютининов донора с соответствующими агглютиногенами реципиента не имеет существенного значения в силу большого разведения агглютининов в плазме реципиента.

Человеку, имеющему I группу крови, можно переливать кровь только первой группы. В то же время, благодаря тому, что она не содержит агглютиногенов, ее можно переливать человеку, имеющему кровь любой группы. Людям с IV группой крови можно перелить кровь любой группы. В то же время кровь этой группы можно перелить только людям, имеющим ту же группу. В связи в этим людей, имеющих первую группу крови, называют универсальными донорами, а четвертую - универсальными реципиентами. В крови II и III групп не возникает при переливании агглютинации только в том случае, если вливаемая кровь будет либо той же группы, либо I. Перелить кровь этих групп можно людям с той же группой крови и с IV.

Наличие (+) или отсутствие (-) агглютинации при смешивании крови различных группСыворотка или плазма крови Агглютиногены эритроцитов крови

Таблица 6.5. Совместимость различных групп крови

Группа сыворотки

Группа эритроцитов

I(О)

II (A )

III(В)

IV (АВ)

I αβ

II β

III α

IV

Группа крови у человека постоянна, не изменяется в течение жизни и передается по наследству как два признака, полученных от отца и матери. У детей не может быть агглютиногенов, отсутствующих в крови родителей.

Агглютиногены А и В могут присутствовать не только в эритроцитах, но в небольшом количестве в плазме. Они встречаются также в лейкоцитах, тромбоцитах, различных органах, в слюне, молоке, желудочном соке.

Иммунные антитела

В эритроцитах, помимо агглютиногенов А и В, может содержаться ряд других изоантигенов. На них нет естественных антител, но, если они попадают в организм, эритроциты крови которого лишены этих изоантигенов, на них образуются антитела, которые относят к группе иммунных. Иммунными называют такие антитела, которые вырабатываются на чуждые для данного организма антигены. Образование таких антител может вызвать агглютинацию при переливании крови.

Особо высокими антигенными свойствами обладает резус-фактор (Rh). Он был открыт в 1941 году Ландштейнером в эритроцитах обезьян Macacus Rhesus, откуда и получил свое название. В эритроцитах 85% людей содержится резус-фактор. Эти люди являются резус-положительными, а 15% людей - резус-отрицательными. Оказалось, что в эритроцитах крови резус-отрицательных людей имеется фактор hr. Поэтому сейчас говорят о системе Rh- и hr-агглютиногенов. Эти агглютиногены передаются по наследству. Переливание резус-отрицательным людям крови с наличием резус-фактора вызывает образование соответствующих антител. При повторном переливании такой же крови образовавшиеся антитела взаимодействуют с резус-фактором, в результате чего происходит гемолиз эритроцитов введенной крови и связанные с этим тяжелые явления.

Резус-фактор передается по наследству. Если у матери Rh-отрицательный, а у отца Rh-положительный, то у плода этот фактор может оказаться положительным. Во время беременности резус-фактор проходит через плаценту из крови плода в материнскую кровь, вызывая у матери появление соответствующих антител. В дальнейшем эти антитела проникают в кровь плода и вызывают гемолиз эритроцитов, что может привести к гибели плода или рождению ребенка с тяжелыми гемолитическими явлениями. Для матери после образования Rh- антител серьезную опасность представляет переливание крови Rh+.

    Группы крови системы АВО, методы определения, правила переливания крови.

. Система АВО

Учение о группах крови возникло из потребностей клинической медицины. Переливая кровь от животных человеку или от человека человеку, врачи нередко наблюдали тяжелейшие осложнения, иногда заканчивавшиеся гибелью реципиента (лицо, которому переливают кровь).

С открытием венским врачом К. Ландштейнером (1901) групп крови стало понятно, почему в одних случаях трансфузии крови проходят успешно, а в других заканчиваются трагически для боль­ного. К. Ландштейнер впервые обнаружил, что плазма, или сыво­ротка, одних людей способна агглютинировать (склеивать) эритро­циты других людей. Это явление получило наименование изогемагглютинации. В основе ее лежит наличие в эритроцитах антигенов, названных агглютиногенами и обозначаемых буквами А и В, а в плазме - природных антител, или агглютининов, именуемых α и β . Агглютинация эритроцитов наблюдается лишь в том случае, если встречаются одноименные агглютиноген и агглютинин: А и α , В и β .

Установлено, что агглютинины, являясь природными антителами (AT), имеют два центра связывания, а потому одна молекула агг­лютинина способна образовать мостик между двумя эритроцитами. При этом каждый из эритроцитов может при участии агглютининов связаться с соседним, благодаря чему возникает конгломерат (агглютинат) эритроцитов.

В крови одного и того же человека не может быть одноименных агглютиногенов и агглютининов, так как в противном случае про­исходило бы массовое склеивание эритроцитов, что несовместимо с жизнью. Возможны только четыре комбинации, при которых не встречаются одноименные агглютиногены и агглютинины, или че­тыре группы крови: I - αβ , II - A β , III - Вα , IV - АВ.

Кроме агглютининов, в плазме, или сыворотке, крови содержатся гемолизины: их также два вида и они обозначаются, как и агглю­тинины, буквами α и β . При встрече одноименных агглютиногена и гемолизина наступает гемолиз эритроцитов. Действие гемолизинов проявляется при температуре 37-40 ο С. Вот почему при перелива­нии несовместимой крови у человека уже через 30-40 с. наступает гемолиз эритроцитов. При комнатной температуре, если встречаются одноименные агглютиногены и агглютинины, происходит агглюти­нация, но не наблюдается гемолиз.

В плазме людей с II, III, IV группами крови имеются антиагглютиногены, покинувшие эритроцит и ткани. Обозначаются они, как и агглютиногены, буквами А и В (табл. 6.4).

Таблица 6.4. Серологический состав основных групп крови (система АВО)

Группа сыворотки

Группа эритроцитов

I(О)

II (A )

III(В)

IV (АВ)

I αβ

II β

III α

IV

Как видно из приводимой таблицы, I группа крови не имеет агглю­тиногенов, а потому по международной классификации обозначается как группа 0, II - носит наименование А, III - В, IV - АВ.

Для решения вопроса о совместимости групп крови пользуются следующим правилом: среда реципиента должна быть пригодна для жизни эритроцитов донора (человек, который отдает кровь). Такой средой является плазма, следовательно, у реципиента должны учи­тываться агглютинины и гемолизины, находящиеся в плазме, а у донора - агглютиногены, содержащиеся в эритроцитах.

Правила переливания крови

Показания к назначению переливания любой трансфузионной среды, а также ее дозировка и выбор метода трансфузии определяются лечащим врачом на основании клинических и лабораторных данных. Врач, производящий трансфузию, обязан независимо от проведенных ранее исследований и имеющихся записей лично провести следующие контрольные исследования:

1) определить групповую принадлежность крови реципиента по системе AB0 и сверить результат с данными истории болезни;

2) определить групповую принадлежность эритроцитов донора и сопоставить результат с данными на этикетке контейнера или бутылки;

3) провести пробы на совместимость в отношении групп крови донора и реципиента по системе AB0 и резус-фактору;

4) провести биологическую пробу.

Запрещается переливание донорской крови и ее компонентов, не исследованных на СПИД, поверхностный антиген гепатита В и сифилис. Переливание крови и ее компонентов производится с соблюдением правил асептики одноразовыми пластиковыми системами. Полученная от донора кровь (обычно в объеме 450 мл) после добавления консервирующего раствора может храниться в холодильнике при температуре 4-8°С не более 21 дня. Замороженные при температуре жидкого азота (-196°С) эритроциты могут храниться годами.

Допускается переливание цельной крови и ее компонентов только той группы и резус-принадлежности, которая имеется у реципиента. В исключительных случаях допускается переливание резус-отрицательной крови группы О(I) («универсальный донор») реципиенту с любой группой крови в количестве до 500 мл (за исключением детей). Кровь резус-отрицательных доноров А (II) или В (III) можно переливать не только совпадающим по группе реципиентам, но и реципиенту с АВ (IV) группой независимо от его резус принадлежности. Больной с АВ (IV) группой резус-положительной крови может считаться «универсальным реципиентом».

Кроме того, при отсутствии одногруппной крови может быть перелита кровь (эритроцитная масса) 0(I) резус-положительной группы резус-положительному реципиенту любой группы по системе АВ0. Кровь группы А (II) или В (III) резус-положительная может быть перелита резус-положительному реципиенту с группой АВ (IV). Во всех случаях абсолютно обязательной является проба на совместимость. При наличии антител редкой специфичности требуется индивидуальный подбор донорской крови и проведение дополнительных проб на совместимость.

После переливания несовместимой крови могут возникнуть следующие осложнения: гемотрансфузионный шок, нарушение функций почек и печени, обменных процессов, деятельности желудочно-кишечного тракта, сердечно-сосудистой и центральной нервной систем, дыхания, кроветворения. Нарушение функций органов возникает в результате острого внутрисосудистого гемолиза (распада эритроцитов). Как правило, в результате этих осложнений развивается анемия, которая может продолжаться до 2-3 месяцев и более. При нарушении установленных правил переливания крови или нечетком установлении показаний могут так же возникать и негемолитические посттрансфузионные реакции: пирогенные, антигенные, аллергические и анафилактические. Все пострансфузионные осложнения требуют незамедлительного лечения.

    Резус-антигенная система крови. Метод определения. Виды резус-иммунизации и их механизмы.

6.3.2. Система резус (Rh-hr) и другие

К. Ландштейнер и А. Винер (1940) обнаружили в эритроцитах обезьяны макаки резус АГ, названный ими резус-фактором. В даль­нейшем оказалось, что приблизительно у 85% людей белой расы также имеется этот АГ. Таких людей называют резус-положитель­ными (Rh +). Около 15% людей этот АГ не имеют и носят название резус-отрицательных (Rh).

Известно, что резус-фактор - это сложная система, включающая более 40 антигенов, обозначаемых цифрами, буквами и символами. Чаще всего встречаются резус-антигены типа D (85%), С (70%), Е (30%), е (80%) - они же и обладают наиболее выраженной антигенностью. Система резус не имеет в норме одноименных аг­глютининов, но они могут появиться, если резус-отрицательному человеку перелить резус-положительную кровь.

Резус-фактор передается по наследству. Если женщина Rh, a мужчина Rh + , то плод в 50-100% случаев унаследует резус-фактор от отца, и тогда мать и плод будут несовместимы по резус-фактору. Установлено, что при такой беременности плацента обладает по­вышенной проницаемостью по отношению к эритроцитам плода. Последние, проникая в кровь матери, приводят к образованию ан­тител (антирезусагглютининов). Проникая в кровь плода, антитела вызывают агглютинацию и гемолиз его эритроцитов.

Тяжелейшие осложнения, возникающие при переливании несов­местимой крови и резус-конфликте, обусловлены не только обра­зованием конгломератов эритроцитов и их гемолизом, но и интен­сивным внутрисосудистым свертыванием крови, так как в эритро­цитах содержится набор факторов, вызывающих агрегацию тромбоцитов и образование фибриновых сгустков. При этом страдают все органы, но особенно сильно повреждаются почки, так как сгустки забивают «чудесную сеть» клубочка почки, препятствуя образованию мочи, что может быть несовместимо с жизнью.

Согласно современным представлениям, мембрана эритроцита рассматривается как набор самых различных АГ, которых насчи­тывается более 500. Только из этих АГ можно составить более 400 млн. комбинаций, или групповых признаков крови. Если же учитывать и все остальные АГ, встречающиеся в крови, то число комбинаций достигнет 700 млрд., т. е. значительно больше, чем людей на земном шаре. Разумеется, далеко не все АГ важны для клинической практики. Однако при переливании крови со сравни­тельно редко встречающимся АГ могут возникнуть тяжелейшие гемотрансфузионные осложнения и даже смерть больного.

Нередко при беременности возникают серьезные осложнения, в том числе выраженная анемия, что может быть объяснено несов­местимостью групп крови по системам мало изученных антигенов матери и плода. При этом страдает не только беременная, но в неблагополучных условиях находится и будущий ребенок. Несов­местимость матери и плода по группам крови может быть причиной выкидышей и преждевременных родов.

Гематологи выделяют наиболее важные антигенные системы: ABO, Rh, MNSs, P, Лютеран (Lu), Келл-Келлано (Kk), Льюис (Le), Даффи (Fy) и Кид (Jk). Эти системы антигенов учитываются в судебной медицине для установления отцовства и иногда при транс­плантации органов и тканей.

В настоящее время переливание цельной крови производится сравнительно редко, так как пользуются трансфузией различных компонентов крови, т. е. переливают то, что больше всего требуется организму: плазму или сыворотку, эритроцитную, лейкоцитную или тромбоцитную массу. В подобной ситуации вводится меньшее ко­личество антигенов, что снижает риск посттрансфузионных ослож­нений.

Реакция гемагглютинации - один из основных методов, с помощью которого определяют эритроцитарные антигены. Агглютинация эритроцитов опосредована антителами. Скорость и выраженность этого процесса зависят от числа эритроцитов, концентрации антител, рН, температуры и ионной силы раствора. Агглютинация происходит, когда силы связывания превышают силы отталкивания, обусловленные отрицательным зарядом клеточной поверхности эритроцитов. IgM , несущие 10 участков связывания, вызывают агглютинацию эритроцитов даже в физиологическом растворе. IgG не могут вызвать агглютинацию, пока отрицательный заряд эритроцитов не будет снижен с помощью какого-либо высокомолекулярного вещества (например, бычьего альбумина) или удаления сиаловых кислот (для этого эритроциты обрабатывают протеазами: фицином, папаином, бромелином или трипсином).

Агглютинация также зависит от доступности, т. е. количества и локализации молекул антигена на поверхности эритроцита. Антигены системы AB0 (эритроцитарные антигены A и В) находятся на внешней поверхности клеточной мембраны и поэтому легко связываются с антителами, а антигены системы Rh - в ее толще. Доступность таких антигенов повышается при обработке эритроцитов ферментами.

Резус-иммунизацией называется появление у беременной антител в ответ на внедрение фетальных эритроцитарных антигенов группы резус.

Антитела, проникая через плаценту, разрушают эритроциты плода, вызывая анемию, в результате которой появляется компенсаторное экстрамедуллярное кроветворение. Оно развивается преимущественно в печени плода, что приводит к портальной гипертензии, нарушению функций печени и, далее, к гипопротеинемии, асциту и водянке плода- эритробластозу плода.

Резус система состоит из шести Rh-генов, три из которых являются доминантными (C, D, E), а три рецессивными (c, d, e).

Наибольшее значение имеет ген D, который передает индивидууму свойство Rh положительности.

Приблизительно 1,5% от всех беременностей у резус-отрицательных женщин осложняется эритроцитарной сенсибилизацией. Эта частота существенно снижается при широком использовании анти-Rhо(D) иммуноглобулина.

Национальные и расовые особенности.

Rh-отрицательными являются до 30% женщин-басков (народность, проживающая в Испании и Франции), 15% белых женщин, 10% испанок Латинской Америки, 6-8 % негров и 2% представительниц жёлтой расы.

Механизм изоиммунизации.

Первичным ответом матери на воздействие инородного антигена является выработка IgM. Последующее воздействие (реакция в анамнезе) приводит к продукции материнского IgG, который является единственным из иммуноглобулинов, способных проникать через плаценту, благодаря малому размеру. Повторное попадание в кровоток матери даже небольшого количества эритроцитов плода приводит к быстрой и массивной выработке антирезусных Ig G. В половине случаев для развития первичного иммунного ответа достаточно попадания 50-75 мл. эритроцитов, а для вторичного – 0,1 мл.

Точное время между попаданием крови плода к матери и началом первичного иммунного ответа неизвестно, однако, как правило, проходит несколько недель (8-9 недель, иногда – вплоть до 6 мес.), прежде чем в сыворотке крови матери появляются поддающиеся определению антирезус-антитела.

Этим объясняется возможность профилактического введения анти-Rhо(D) иммуноглобулина (антирезус-глобулина) матери вскоре после родов с целью блокирования иммунного ответа. Даже при введении анти-Rhо(D) иммуноглобулина с запаздыванием до 2-х недель с момента попадания к матери резус- положительных клеток плода, его защитное действие проявляется в 50% случаев.

Дородовая изоиммунизация.

Во время нормальной беременности эритроциты проникают через плацентарный барьер у 5% беременных в течение 1-го триместра, у 15% - в течение 2-го триместра и у 30% - в конце 3-го триместра. Необходимо добавить, что фето-материнское кровотечение при амниоцентезе во втором и третьем триместрах имеет место у 20% беременных, а при самопроизвольных или искусственных абортах-у 15% женщин. В подавляющем большинстве случаев количество попадающих в кровь матери клеток плода невелико и недостаточно для возникновения первичного иммунного ответа. Частота дородовой первичной изоиммунизации в течение первой резус-несовместимой беременности составляет менее 1%.

Изоиммунизация во время родов.

Чаще всего изоиммунизация матери является следствием попадания крови плода к матери во время родов, что является скорее правилом, чем исключением. Однако и после родов изоиммунизация развивается лишь у 10-15% Rh(-) матерей, имеющих Rh(+) мужей. Такой низкий показатель изоиммунизации связан с несколькими факторами, влияющими на возможность развития первичной изоиммунизации:

Объем поступающей крови плода. Чем большее число эритроцитов плода поступает в систему кровообращения матери, тем выше вероятность изоиммунизации. Тем не менее изоиммунизация наступает даже при попадании всего 0,25 мл Rh(+) клеток плода. Фетоматеринская трансфузия в объеме более 30 мл может встречаться в 0,5% физиологических родов.

Риск иммунизации возрастает вследствие увеличения объема фето-материнской трансфузии при самопроизвольном или искусственном аборте, кровотечениях во время беременности, при ручном отделении и выделении плаценты, кесаревом сечении (при амниоцентезе, если повреждается плацента).

Несовместимость между матерью и плодом по системе АВО снижает риск изоиммунизации. Если мать имеет группу крови 0, а отец А, В или АВ, то частота изоиммунизации снижается на 50-75%, что связано с разрушением эритроцитов плода материнскими анти-А или анти-В антителами до того, как появится иммунный ответ.

Примерно 30-35% Rh(-) женщин не могут быть иммунизированы Rh(+) антигеном, что, вероятно, находится под генетическим контролем.

    Белковый состав плазмы крови, количество белков и их функциональное значение. Онкотическое давление, его величина и роль в образовании межклеточной жидкости. Скорость оседания эритроцитов (СОЭ), величина и факторы, влияющие на неё.

Белки плазмы крови выполняют разнообразные функции: 1) коллоидно-осмотический и водный гомеостаз; 2) обеспечение агрегатного состояния крови; 3) кислотно-основной гомеостаз; 4) иммунный гомеостаз; 5) транспортная функция; б) питательная функция; 7) участие в свертывании крови. Альбумины составляют около 60% всех белков плазмы. Благодаря относительно небольшой молекулярной массе (70000) и высокой концентрации альбумины создают 80% онкотического давления. Альбумины осуществляют питательную функцию, являются резервом аминокислот для синтеза белков. Их транспортная функция заключается в переносе холестерина, жирных кислот, билирубина, солей желчных кислот, солей тяжелых металлов, лекарственных препаратов (антибиотиков, сульфаниламидов). Альбумины синтезируются в печени.

Глобулины подразделяются на несколько фракций: a -, b - и g - глобулины.

a - Глобулины включают гликопротеины, т.е. белки, простетической группой которых являются углеводы. Около 60% всей глюкозы плазмы циркулирует в составе гликопротеинов. Эта группа белков транспортирует гормоны, витамины, микроэлементы, липиды. К a - глобулинам относятся эритропоэтин, плазминоген, протромбин.

b - Глобулины участвуют в транспорте фосфолипидов, холестерина, стероидных гормонов, катионов металлов. К этой фракции относится белок трансферрин, обеспечивающий транспорт железа, а также многие факторы свертывания крови.

g - Глобулины включают в себя различные антитела или иммуноглобулины 5 классов: Jg A, Jg G, Jg М, Jg D и Jg Е, защищающие организм от вирусов и бактерий. К g - глобулинам относятся также a и b – агглютинины крови, определяющие ее групповую принадлежность.

Глобулины образуются в печени, костном мозге, селезенке, лимфатических узлах.

Фибриноген – первый фактор свертывания крови. Под воздействием тромбина переходит в нерастворимую форму – фибрин, обеспечивая образование сгустка крови. Фибриноген образуется в печени.

Онкотическое давление. Является частью осмотического и за­висит от содержания крупномолекулярных соединений (белков) в растворе. Хотя концентрация белков в плазме довольно велика, общее количество молекул из-за их большой молекулярной массы относительно мало, благодаря чему онкотическое давление не пре­вышает 30 мм рт.ст. Онкотическое давление в большей степени зависит от альбуминов (80% онкотического давления создают аль­бумины), что связано с их относительно малой молекулярной массой и большим количеством молекул в плазме.

Онкотическое давление играет важную роль в регуляции водного обмена. Чем больше его величина, тем больше воды удерживается в сосудистом русле и тем меньше ее переходит в ткани и наоборот. Онкотическое давление влияет на образование тканевой жидкости, лимфы, мочи и всасывание воды в кишечнике. Поэтому кровезамещающие растворы должны содержать в своем составе коллоидные вещества, способные удерживать воду.

При снижении концентрации белка в плазме развиваются отеки, так как вода перестает удерживаться в сосудистом русле и переходит в ткани.

Суспензионная устойчивость крови (скорость оседания эритро­цитов - СОЭ). Кровь представляет собой суспензию, или взвесь, так как форменные элементы ее находятся в плазме во взвешенном состоянии. Взвесь эритроцитов в плазме поддерживается гидрофиль­ной природой их поверхности, а также тем, что эритроциты (как и другие форменные элементы) несут отрицательный заряд, благо­даря чему отталкиваются друг от друга. Если отрицательный заряд форменных элементов уменьшается, что может быть обусловлено адсорбцией таких положительно заряженных белков, как фибрино­ген, γ - глобулины, парапротеины и др., то снижается электростати­ческий «распор» между эритроцитами. При этом эритроциты, склеиваясь друг с другом, образуют так называемые монетные столбики. Одновременно положительно заряженные белки выполняют роль межэритроцитарных мостиков. Такие «монетные столбики», застре­вая в капиллярах, препятствуют нормальному кровоснабжению тка­ней и органов.

Величина СОЭ зависит от возраста и пола. У новорожденных СОЭ равна 1-2 мм/ч, у детей старше 1 года и у мужчин - 6-12 мм/ч, у женщин - 8-15 мм/ч, у пожилых людей обоего пола - 15-20 мм/ч. Наибольшее влияние на величину СОЭ ока­зывает содержание фибриногена: при увеличении его концентрации более 4 г/л СОЭ повышается. СОЭ резко увеличивается во время беременности, когда содержание фибриногена в плазме значительно возрастает. Повышение СОЭ наблюдается при воспалительных, ин­фекционных и онкологических заболеваниях, а также при значи­тельном уменьшении числа эритроцитов (анемия). Уменьшение СОЭ у взрослых людей и детей старше 1 года является неблагоприятным признаком.

Величина СОЭ зависит в большей степени от свойств плазмы, чем эритроцитов. Так, если эритроциты мужчины с нормальной СОЭ поместить в плазму беременной женщины, то эритроциты мужчины оседают с такой же скоростью, как и у женщин при беременности.

    Кислотно-основное равновесие крови, его значение. Механизмы регуляции (буферные системы крови и их взаимодействие с легкими и почками).

Концентрация водородных ионов и регуляция рН крови. В нор­ме рН крови соответствует 7,36, т. е. реакция слабоосновная. Колебания величины рН крови крайне незначительны. Так, в условиях покоя рН артериальной крови соответствует 7,4, а ве­нозной - 7,34. В клетках и тканях рН достигает 7,2 и даже 7,0, что зависит от образования в них в процессе обмена веществ «кислых» продуктов метаболизма. При различных физиологических состояниях рН крови может изменяться как в кислую (до 7,3), так и в щелочную (до 7,5) сторону. Более значительные откло­нения рН сопровождаются тяжелейшими последствиями для орга­низма. Так, при рН крови 6,95 наступает потеря сознания, и если эти сдвиги в кратчайший срок не ликвидируются, то неми­нуема смерть. Если же концентрация ионов Н + уменьшается и рН становится равным 7,7, то наступают тяжелейшие судороги (тетания), что также может привести к смерти.

В процессе обмена веществ ткани выделяют в тканевую жидкость, а следовательно, и в кровь «кислые» продукты обмена, что должно приводить к сдвигу рН в кислую сторону. Так, в результате ин­тенсивной мышечной деятельности в кровь человека может поступать в течение нескольких минут до 90 г молочной кислоты. Если это количество молочной кислоты прибавить к объему дистиллированной воды, равному объему циркулирующей крови, то концентрация ионов Н + возросла в ней в 40 000 раз. Реакция же крови при этих условиях практически не изменяется, что объясняется наличием буферных систем крови. Кроме того, в организме постоянство рН сохраняется за счет работы почек и легких, удаляющих из крови СО 2, избыток солей, кислот и оснований (щелочей).

Постоянство рН крови поддерживается буферными системами: гемоглобиновой, карбонатной, фосфатной и белками плазмы.

Самой мощной является буферная система гемоглобина. На ее долю приходится 75% буферной емкости крови. Эта система вклю­чает восстановленный гемоглобин (ННb) и калиевую соль восста­новленного гемоглобина (КНb). Буферные свойства системы обус­ловлены тем, что КНb как соль слабой кислоты отдает ион К + и присоединяет при этом ион Н + , образуя слабодиссоциированную кислоту:

H + + KHb = K + + HHb

Величина рН крови, притекающей к тканям, благодаря восста­новленному гемоглобину, способному связывать СО 2 и Н + -ионы, остается постоянной. В этих условиях ННЬ выполняет функции основания. В легких гемоглобин ведет себя как кислота (оксигемоглобин ННbО 2 является более сильной кислотой, чем СО 2), что предотвращает защелачивание крови.

Карбонатная буферная система (H 2 CO 3 /NaHCO 3) по своей мощности занимает второе место. Ее функции осуществляются следующим образом: NaHCO 3 диссоциирует на ионы Na + и НСОз - . Если в кровь поступает кислота более сильная, чем уголь­ная, то происходит обмен ионами Na + с образованием слабодиссоциированной и легко растворимой угольной кислоты, что пред­отвращает повышение концентрации ионов Н + в крови. Увеличение же концентрации угольной кислоты приводит к ее распаду (это происходит под влиянием фермента карбоангидразы, находящегося в эритроцитах) на Н 2 О и СО 2 . Последний поступает в легкие и выделяется в окружающую среду. Если в кровь поступает осно­вание, то она реагирует с угольной кислотой, образуя натрия гидрокарбонат (NaНСОз) и воду, что опять-таки препятствует сдвигу рН в щелочную сторону.

Фосфатная буферная система образована натрия дигидрофосфатом (NaH 2 PO 4) и натрия гидрофосфатом (Na 2 HPO 4). Первое со­единение ведет себя как слабая кислота, второе - как соль слабой кислоты. Если в кровь попадает более сильная кислота, то она реагирует с Na 2 HPO 4 , образуя нейтральную соль, и увеличивает количество слабодиссоциируемого

H + + NaHPO 4 - = Na + + H 2 PO 4 -

Избыточное количество натрия дигидрофосфата при этом будет удаляться с мочой, благодаря чему соотношение NaH 2 PO 4 /Na 2 HPO 4 не изменится.

Белки плазмы крови играют роль буфера, так как обладают амфотерными свойствами: в кислой среде ведут себя как основания, а в основной - как кислоты.

Важная роль в поддержании постоянства рН крови отводится нервной регуляции. При этом преимущественно раздражаются хеморецепторы сосудистых рефлексогенных зон, импульсы от которых поступают в продолговатый мозг и другие отделы ЦНС, что рефлекторно включает в реакцию периферические органы - почки, легкие, потовые железы, желудочно-кишечный тракт и др., дея­тельность которых направлена на восстановление исходной величины рН. Так, при сдвиге рН в кислую сторону почки усиленно выделяют с мочой анион Н 2 РО 4 - При сдвиге рН крови в щелочную сторону увеличивается выделение почками анионов НРО 2- и НСОз - . Потовые железы человека способны выводить избыток молочной кислоты, а легкие - СО 2 .

Буферные системы крови более устойчивы к действию кислот, чем оснований. Основные соли слабых кислот, содержащиеся в крови, образует так называемый щелочной резерв крови. Его величина определяется по тому количеству СО 2 , которое может быть связано 100 мл крови при напряжении СО 2 , равному 40 мм рт. ст.

При различных патологических состояниях может наблюдаться сдвиг рН как в кислую, так и в щелочную сторону. Первый из них носит название ацидоза, второй - алкалоза.

    Свёртывающая система крови: сосудисто-тромбоцитарный гемостаз, коагуляционный гемостаз. Фазы и регуляция гемостаза.

СИСТЕМА ГЕМОСТАЗА

Под термином «гемостаз» понимают комплекс реакций, направленных на остановку кровотечения при травме сосудов. Значение системы гемостаза намного сложнее и шире. Факторы гемостаза принимают участие в сохранении жидкого состояния крови, регуляции транскапиллярного обмена, резистентности со­судистой стенки, влияют на интенсивность репаративных процессов и др.

Принято различать сосудисто-тромбоцитарный гемостаз и процесс свертывания крови. В первом случае речь идет об остановке кро­вотечения из мелких сосудов с низким кровяным давлением, диаметр которых не превышает 100 мкм, во втором - о борьбе с кровопотерей при повреждениях артерий и вен. Такое деление носит условный характер, потому что при повреждении как мелких, так и крупных кровеносных сосудов всегда наряду с образованием тромбоцитарной пробки осуществляется свертывание крови.

Наука о группах крови, как один из разделов общей иммунологии, возникла на рубеже веков. В 1900 г. австрийский исследователь Карл Ландштейнер, смешивая эритроциты с нормальной сывороткой крови других людей, обнаружил, что при одних сочетаниях сыворотки и эритроцитов разных людей наблюдается агглютинация (склеивание и выпадение в осадок) эритроцитов, при других ее нет. Агглютинация возникает в результате взаимодействия присутствующих в эритроцитах антигенов - агглютиногенов - и содержащихся в плазме антител - агглютининов.

Главные агглютиногены эритроцитов - агглютиноген А и агглютиноген В, агглютинины плазмы - агглютинин а и агглютинин б.

Как было установлено К. Ландштейнером и Я.Янским, в крови одних людей совсем нет агглютиногенов (группа I), в крови других содержится только агглютиноген А (группа II), у третьих - только агглютиноген В (группа III), четвертые содержат оба агглютиногена: А и В (группа IV). Групповые антигены находятся в эритроцитах, но они найдены также в лейкоцитах и тромбоцитах.

Согласно существующей статистике, принадлежность людей к той или иной группе крови по системе АВО выглядит следующим образом. Примерно 40% населения центральной Европы имеет I (0) группу, более 40% - II (А) группу, 10% или более - III (В), около 6% - IV (АВ) группу. У 90% коренных жителей Северной Америки обнаружена принадлежность к I (0) группе.

Людей с I группой крови раньше считали универсальными донорами, т. е. их кровь могла быть перелита всем без исключения лицам. Однако теперь известно, что эта универсальность не абсолютна. Это связано с тем, что у людей с кровью I группы в довольно значительном проценте обнаружены иммунные анти-А- и анти-В-агглютинины. Переливание такой крови может привести к тяжелым последствиям и даже к летальному исходу. Эти данные послужили основанием к переливанию только одногруппной крови.



Резус-фактор

Одним из первых агглютиногенов крови человека, не входящих в систему
АВО, был резус-агглютиноген, или резус-фактор, обнаруженный К. Ландштейнером и А. Виннером в 1940 г. Он был получен при введении кровиобезьянмакак-резусов кроликам, в крови которых вырабатывали соответствующие антитела к эритроцитам обезьян. Как оказалось, эта сыворотка иммунизированных кроликов дает резко положительную реакцию агглютинации эритроцитов не только макак, но и человека. В Европе 85%людей имеют в крови этот агглютиноген, из-за чего их называют резус-положительными(Rh +), а не содержащих его- резус-отрицательными (Rh).

Особое значение приобретает определение резус-фактора во время вступления в брак. При резус-положительном отце и резус-отрицательной матери (вероятность таких браков около 60%) ребенок нередко наследует резус-фактор отца. В этом случае могут возникнуть серьезные осложнения.

У Rh матери, вынашивающей Rh -плод, организм постоянно иммунизируется резус-антигеном плода, диффундирующим через плаценту. При этом у матери происходит образование Rh-агглютининов, которые через плаценту попадают в кровь плода и вызывают агглютинацию и гемолиз его эритроцитов.

Раньше при переливании крови пользовались исключительно цельной кровью. Кроме того, не было широкой возможности переливать много крови. Считали, что при переливании нужно браховуваты только групповую принадлежность эритроцитов донора. Действительно, при введении большого количества плазмы, содержащей а-или В-агглютининов, они разбавляются в большом количестве плазмы реципиента, и титр их становится настолько низким, что они уже могут активно агглютинировать эритроциты реципиента. Поэтому считалось возможным переливать только одногруппную кровь, но и другие. Так, предлагали и группу крови, не содержащая в эритроцитах А-и В-антигены, вводить любом реципиенту. Доноров с I группой крови называли универсальными. Кровь II и III групп рекомендовали переливать также людям с IV группой крови, поэтому их причисляли к универсальным реципиентов.
Но этого делать не следует при введении значительных количеств крови, так как при этом антитела донора могут вызывать агглютинацию эритроцитов реципиента. Кроме того, надо учитывать, что в клинике вводят большие объемы крови (во время операции, травмы), а современные рекомендации для переливания крови сужены, поэтому следует использовать только кровь одной группы. В крайнем случае можно воспользоваться эритроцитами группы 0.
Конечно, нельзя переливать эритроциты донора с резус-положительным фактором реципиенту с резус-отрицательным фактором, хотя при пренебрежении этим при первом переливании крови серьезных осложнений и не будет, потому что к моменту появления антител, как правило, перелиты НЬ +-эритроциты с крови исчезнут. Исходя из этих соображений, не следует пользоваться кровью одного и того же донора при повторном переливании, поскольку обязательно к какой-либо из систем состоится иммунизация. Таким образом,
представление о универсального донора и реципиента устарело. Действительно, универсальный реципиент с IV группой крови является универсальным донором плазмы, поскольку в ней нет агглютининов. Конечно, лучшим донором может быть только сам больной. Поэтому, если есть
возможность, следует заготовить аутокрови перед операцией. Переливание крови другого человека, даже при соблюдении всех указанных выше правил, обязательно приведет к дополнительной иммунизации.

Свойства сердечной мышцы: автоматия и возбудимость.

Основные физиологические свойства сердечной мышцы.

Сердечная мышца, как и скелетная, обладает возбудимостью, способностью проводить возбуждение и сократимостью.

Возбудимость сердечной мышцы. Сердечная мышца менее возбудима, чем скелетная. Для возникновения возбуждения в сердечной мышце необходимо применить более сильный раздражитель, чем для скелетной. Установлено, что величина реакции сердечной мышцы не зависит от силы наносимых раздражений (электрических, механических, химических и т. д.). Сердечная мышца максимально сокращается и на пороговое, и на более сильное по величине раздражение.

Проводимость. Волны возбуждения проводятся по волокнам сердечной мышцы и так называемой специальной ткани сердца с неодинаковой скоростью. Возбуждение по волокнам мышц предсердий распространяется со скоростью 0,8-1,0 м/с, по волокнам мышц желудочков- 0,8-0,9 м/с, по специальной ткани сердца-2,0-4,2 м/с.

Сократимость. Сократимость сердечной мышцы имеет свои особенности. Первыми сокращаются мышцы предсердии, затем-папиллярные мышцы и субэндокардиальный слой мышц желудочков. В дальнейшем сокращение охватывает и внутренний слой желудочков, обеспечивая тем самым движение крови из полостей желудочков в аорту и легочный ствол.

Автоматия сердца.

Вне организма при определенных условиях сердце способно сокращаться и расслабляться, сохраняя правильный ритм. Следовательно, причина сокращений изолированного сердца лежит в нем самом. Способность сердца ритмически сокращаться под влиянием импульсов, возникающих в нем самом, носит название автоматии.

В сердце различают:

· рабочую мускулатуру- представленную поперечнополосатой мышцей

· атипическую или специальную- ткань, в которой возникает и проводится возбуждение.

У человека атипическая ткань состоит из:

Ø синоаурикулярного узла, располагающегося на задней стенке правого предсердия у места впадения полых вен;

Ø атриовентрикулярного (предсердно-желудочкого) узла находящегося в правом предсердии вблизи перегородки между предсердиями и желудочками;

Ø пучка Гиса (председно-желудочковый пучок), отходящего от атриовентрикулярного узла одним стволом. Пучок Гиса, пройдя через перегородку между предсердиями и желудочками, делится на две ножки, идущие к правому и левому желудочкам. Заканчивается пучок Гиса в толще мышц волокнами Пуркинье. Пучок Гиса-это единственный мышечный мостик, соединяющий предсердия с желудочками.

Синоаурикулярный узел является ведущим в деятельности сердца (водитель ритма), в нем возникают импульсы, определяющие частоту сокращений сердца. В норме атриовентрикулярный узел и пучок Гиса являются только передатчиками возбуждения из ведущего узла к сердечной мышце. Однако им присуща способность к автоматии, только выражена она в меньшей степени, чем у синоаурикулярного узла, и проявляется лишь в условиях патологии.

Атипическая ткань состоит из малодифференцированных мышечных волокон. В области синоаурикулярного узла обнаружено значительное количество нервных клеток, нервных волокон и их окончаний, которые здесь образуют нервную сеть. К узлам атипической ткани подходят нервные волокна от блуждающих и симпатических нервов.

В средние века делались неоднократные попытки переливания крови от животных человеку и от человека человеку. Однако практически все они заканчивались трагически. Первое удачное переливание человеческой крови пострадавшему произвел в 1667 году врач Дени. Причины тяжелых осложнений, возникающих при гемотрансфузиях, первым установил в 1901 году Карл Ландштейнер. Он смешивал капли крови различных людей и обнаружил, что в ряде случаев происходит склеивание эритроцитов – агглютинация и их последующий гемолиз. На основании своих опытов Ландштейнер сделал вывод, что в эритроцитах имеются белки-агглютиногены, способствующие их склеиванию. Он выявил 2 агглютиногена А и В. На основании их отсутствия или наличия в эритроцитах разделил кровь на I, II и III группы. В 1903 Штурли обнаружил IV группу. Ланштейнер и Ямский установили, что эритроциты содержат агглютиногены А и В, а плазма крови – агглютинины альфа и бета. В крови никогда одновременно не присутствуют агглютиноген А и агглютинин альфа, а также агглютиноген В и агглютинин бета.

Свойствами агглютиногена обладает мембранный гликопротеид эритроцитов – гликофорин . Агглютинины являются иммуноглобулинами М и G, т.е. гамма-глобулины.

Первоначально новорожденный имеет лишь агглютиногены на мембране эритроцитов. Однако затем компоненты пищи, вещества, вырабатываемые микрофлорой кишечника, способствуют синтезу тех агглютининов, антигенов на которые в эритроцитах данного человека нет.

Группы крови системы АВ0 обозначаются римскими цифрами и дублирующим названием антигена:

I(0) – на эритроците агглютиногенов нет, в плазме агглютинины альфа и бета;

II(А,бета) – агглютиноген А, агглютинин бета;

III(В,альфа) – агглютиноген В, агглютинин альфа;

IV(AB) – в эритроцитах агглютиногены А и В, агглютининов в плазме нет.

В настоящее время обнаружено, что в эритроцитах I группы имеется слабый Н-антиген. Агллютиногены А делятся на подтипы А1 и А2. Первый подтип встречается у 80% людей и обладает более выраженными антигенными свойствами. Реакций при переливании между кровью этих подгрупп не происходит.

Наследование группы крови осуществляется за счет генов А, В и 0. В хромосомах человека содержится два из них. Гены А и В являются доминантными. Поэтому у родителей со II и III группой крови ребенок может иметь любую из 4-х групп.У 46% европейцев кровь первой группы, 42% – второй, 9% – третьей и 3% четвертой.

Резус-фактор

В 1940 году К.Ландштейнер и И.Винер обнаружили в эритроцитах еще один агглютиноген. Впервые он был найден в крови макак-резусов. Поэтому был назван ими резус-фактором. В отличие от антигенной системы АВ0, где к агглютиногенам А и В имеются соответствующие агглютинины, агглютиниов к резус-антигену в крови нет. Они вырабатываются в том случае, если резус-положительную кровь (содержащую резус-фактор) перелить реципиенту с резус-отрицательной кровью. При первом переливании резус-несовместимой крови никакой трансфузионной реакции не будет. Однако в результате сенсибилизации организма реципиента, через 3-4 недели в его крови появятся резус-агглютинины. Они очень длительное время сохраняются. Поэтому при повторном переливании резус-положительной крови этому реципиенту произойдет агглютинация и гемолиз эритроцитов донорской крови.

Резус-фактор крови имеет большое значение в акушерской практике, т.к. эритроциты плода могут попадать в кровяное русло матери. Если плод имеет резус-положительную кровь, а мать резус-отрицательную, то попавшие в ее организм с эритроцитами плода резус-антигены, вызовут образование резус-агглютининов. Титр резус-агглютининов нарастает медленно, поэтому при первой беременности особых осложнений не возникает. Если при повторной беременности плод опять наследует резус-положительную кровь, то поступающие через плаценту резус-агглютинины матери вызовут агглютинацию и гемолиз эритроцитов плода. В легких случаях возникает анемия, гемолитическая желтуха новорожденных . В тяжелых – эритробластоз плода и мертворожденность . Это явление называется резус-конфликтом . С целью его профилактики сразу после первых подобных родов вводят антирезус-глобулин. Он разрушает резус-положительные эритроциты, попавшие в кровь матери.

Существует 6 разновидностей резус-агглютиногенов: С, D, Е, с, d, e . Наиболее выраженные антигенные свойства у резус-агглютиногена D . Именно им определяется резус-принадлежность крови. Другие антигены этой системы практического значения не имеют.В настоящее время известно около 400 антигенных систем крови. Кроме систем АВ0 и Rh, известны систем MNSs, P, Келла, Кидда и другие. Учитывая все антигены, число их комбинаций составляет около 300 млн. Но так как их антигенные свойства выражены слабо, для переливания крови их роль чаще всего незначительна.

Переливание несовместимой крови вызывает тяжелейшее осложнение – гемотрансфузионный шок . Он возникает вследствие того, что склеившиеся эритроциты закупоривают мелкие сосуды. Кровоток нарушается. Затем происходит их гемолиз, и из эритроцитов донора в кровь поступают чужеродные белки. В результате резко падает кровяное давление, угнетается дыхание, сердечная деятельность, нарушается работа почек, центральной нервной системы. Переливание даже небольших количеств такой крови может закончиться смертью реципиента.

В настоящее время допускается переливание только одногрупповой крови по системе АВ0. Обязательно учитывается и ее резус-принадлежность.

Определение групп крови

Поэтому перед каждым переливанием обязательно проводится определение группы и D-антигена крови донора и реципиента. Для определения групповой принадлежности, каплю исследуемой крови смешивают на предметном стекле с каплей стандартных сывороток I, II и III групп. Таким методом определяются антигеннные свойства эритроцитов. Если ни в одной из сывороток не произошла агглютинация, следовательно в эритроцитах агглютиногенов нет. Это кровь I группы. Когда агглютинация наблюдается с сыворотками I и III групп, значит эритроциты исследуемой крови содержат агглютиноген А. Т.е. это кровь II группы. Агглютинация эритроцитов с сыворотками I и II групп говорит о том, что в них имеется агглютиноген В и эта кровь III группы. Если во всех сыворотках наблюдается агглютинация, значит эритроциты содержат оба антигена А и В. Т.е. кровь IV группы. Желательно проводить исследование и с сывороткой IV группы. Более точно группу крови можно определить с помощью стандартных эритроцитов I, II, III и IV групп. Для этого их смешивают с сывороткой исследуемой крови и определяют содержание в ней агглютининов. Резус принадлежность крови определяют путем ее смешивания с сывороткой, содержащей резус-агглютинины.

Кроме этого, чтобы избежать ошибки при определении группы крови и наличия D-антигена, применяют прямую пробу. Она необходима и для выявления несовместимости крови по другим антигенным признакам. Прямую пробу производят путем смешивания эритроцитов донора с сывороткой реципиента при 37°С. При отрицательных результатах первые порции крови переливаются дробно.

Использовавшаяся раньше схема переливания крови разных групп, учитывающая содержание одноименных агглютининов и агглютиногенов сейчас не применяется. Это связано с тем, что агглютинины донорской крови вызывают агглютинацию и гемолиз эритроцитов реципиента.

Лимфа

Лимфа образуется путем фильтрации тканевой жидкости через стенку лимфатических капилляров. В лимфатической системе циркулирует около 2 литров лимфы. Из капилляров она движется по лимфатическим сосудам, проходит лимфатические узлы и по крупным протокам поступает в венозное русло. Удельный вес лимфы 1,012-1,023 г/мм 3 . Вязкость 1,7 пуаз, а рН ~ 9,0. Электролитный состав лимфы сходен с плазмой крови. Но в ней больше анионов хлора и бикарбоната. Содержание белков в лимфе меньше, чем плазме: 2,5-5,6% или 25-65 г/л. Из форменных элементов лимфа в основном содержит лимфоциты. Их количество в ней 2"000-20"000 мкл (2-20·10 9 /л). Имеется и небольшое количество других лейкоцитов. Из них больше всего моноцитов. Эритроцитов в норме нет. Благодаря наличию в ней тромбоцитов, фибрина, факторов свертывания лимфа способна образовывать тромб. Однако время ее свертывания больше, чем у крови.

Лимфа выполняет следующие функции :

1. поддерживает постоянство объема тканевой жидкости путем удаления ее избытка;

2. перенос питательных веществ, в основном жиров, от органов пищеварения к тканям;

3. возврат белка из тканей в кровь;

4. удаление продуктов обмена из тканей;

5. защитная функция. Обеспечивается лимфоузлами, иммуноглобулинами, лимфоцитами, макрофагами;

6. участвует в механизмах гуморальной регуляции, перенося гормоны и другие ФАВ.

Защитная функция крови. Иммунитет. Регуляция иммунного ответа

Организм защищается от болезнетворных агентов с помощью неспецифических и специфических защитных механизмов. Одним из них являются барьеры, т.е. кожа и эпителий различных органов (ЖКТ, легких, почек и т.д.). Кроме этого, в крови и лимфе имеются неспецифические клеточные и гуморальные механизмы. Эти механизмы способны обезвреживать даже факторы, с которыми организм раньше не сталкивался. К неспецифическим защитным механизмам крови относятся неспецифический клеточный и гуморальный иммунитет. Неспецифический клеточный иммунитет обусловлен фагоцитарной активностью гранулоцитов, моноцитов, лимфоцитов и тромбоцитов.

Неспецифический гуморальный иммунитет связан с наличием в крови и других жидкостях организма естественных антител и ряда белковых систем. Раньше считали, что естественные антитела образуются в организме без контакта с антигеном. Однако сейчас установлено, что они не синтезируются самопроизвольно. Они возникают в результате контакта организма с облигатной кишечной микрофлорой, т.е. иммунной реакции. Имеется и несколько защитных белковых комплексов.

1. Лизоцим . Белок, обладающий ферментативной активностью и подавляющий развитие бактерий и вирусов. Он содержится в гранулоцитах крови и макрофагах легких. При их разрушении выделяется в окружающую среду. Лизоцим имеется в слезной жидкости, слизи носа и кишечника.

2. Пропердин . Комплекс белковоподобных веществ. Участвует в лизисе бактерий.

3. Система комплемента . Комплекс 11 белков плазмы, активирующийся при иммунологических реакциях. Совместно с пропердином участвует в лизисе бактерий.

4. Интерферон . Белок, вырабатываемый многими клетками при поступлении в них вирусов. Начинает выделяться в кровь до появления иммунных антител. Препятствует выработке рибосомами пораженных клеток вирусного белка.

5. Лейкины . Выделяются лейкоцитами.

6. Плакины . Продукт тромбоцитов. Те и другие разрушают микроорганизмы.

Специфические защитные механизмы включают специфический клеточный и гуморальный иммунитет.

Специфический клеточный иммунитет обеспечивают Т-лимфоциты . Лимфоциты, образующиеся из стволовых лимфоидных клеток костного мозга, поступают в тимус и превращаются в иммунокомпетентные Т-лимфоциты. Затем эти лимфоциты переходят в кровь. При контакте с антигеном часть Т-лимфоцитов пролиферирует. Одна часть образовавшихся дочерних клеток связывается с антигеном (бактериями) и разрушает его. Для этой реакции антиген-антитело необходимо участие Т-хелперов. Другая часть дочерних клеток преобразуется в Т-клетки иммунологической памяти, которые запоминают структуру антигена. Они имеют большую продолжительность жизни. При повторном контакте Т-клеток памяти с этим антигеном они узнают его. Начинается их интенсивная пролиферация с образованием большого количества Т-киллеров, а также Т-супрессоров. Т-супрессоры подавляют выработку антител В-лимфоцитами в этот момент. Этот вторичный клеточный иммунный ответ развивается примерно через 48 часов и называется иммунным ответом замедленного типа , т.к. раньше него возникает вторичный гуморальный иммунный ответ. Примером такой иммунной реакции является покраснение и отек кожи в результате контакта с некоторыми веществами, например краской урсолом.

Специфический гуморальный иммунитет обеспечивается В-лимфоцитами. Они превращаются в иммунокомпетентные клетки в лимфатических узлах тонкого кишечника, миндалинах, аппендиксе. Затем В-лимфоциты выходят в кровь и разносятся ею в селезенку и лимфатические узлы лимфатического русла. При первом контакте с антигеном они пролиферируют. Это явление называется начальной активацией или сенсибилизацией . Одна часть образующихся дочерних клеток превращается в клетки памяти и покидает центры размножения. Другая часть лимфоцитов оседает в лимфатических узлах, превращаясь в плазматические клетки. Эти клетки вырабатывают гуморальные антитела, поступающие в кровь. Выработку иммуноглобулинов стимулируют Т-хелперы. Многие иммуноглобулины очень длительно сохраняются в крови. При повторном контакте антител с антигеном развивается быстрая и сильная иммунная реакция. Поэтому их называют иммунными реакциями немедленного типа . Они наблюдаются при гемотрансфузионном шоке, аллергии, бронхиальной астме и т.д.

В медицине для формирования специфического иммунитета, используется вакцинация . При пересадке органов, наоборот, с помощью иммунодепрессантов определенные звенья иммунитета подавляются. Это предотвращает отторжение трансплантата.

Конец работы -

Эта тема принадлежит разделу:

Физиология, как наука

Физиология дословно это учение о природе это наука изучающая процессы жизнедеятельности организма составляющих его физиологических систем.. цель задачи предмет физиологии.. опыты на животных дают много сведений для понимания функционирования организма однако физиологические процессы..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

История развития физиологии
Первоначально представления о функциях организма складывались на основе работ ученых Древней Греции и Рима: Аристотеля, Гиппократа, Галлена и др., а так же ученых Китая и Индии. Физиология

Эксперимент и его роль
Физиология - наука экспериментальная и ее основным методом является эксперимент: 1. Острый опыт или вивисекция («живосечение»). В его процессе под наркозом производят хирургическое

Связь физиологии с другими науками
Физиология - теоретическая основа медицины. Она является фундаментом для решения проблем, связанных с сохранением здоровья и работоспособности человека в разных условиях существования и в разные во

Механизм регуляции функций организма
Организм - сложная саморегулирующаяся система, состоящая из клеток, тканей, органов. Они в свою очередь образуют физиологические системы, которые выполняют комплекс однородных функций (например, си

Нервная регуляция функций
Животные имеют специальные органы движения и им требуется быстрое и точное согласование сокращения мышц. В результате у животных в процессе эволюции сформировалась нервная регуляция. Нервная

Биологические и функциональные системы
Развитие физиологии в 19-20 вв. позволило осуществить глубинные механизмы, субмолекулярные процессы в организме. Было накоплено огромное количество аналитических данных о функциях клеток, тканей, о

Принципы саморегуляции организма. Понятие о гомеостазе, гомеокинезе
Основным свойством живых систем является способность к саморегуляции, к созданию оптимальных условий для взаимодействия всех элементов организма и обеспечения его целостности.

Законы раздражения. Параметры возбудимости
Реакция клеток, тканей на раздражитель определяется законами раздражения: 1) Закон "все или ничего": При допороговых раздражениях клетки ответной реакции не возникает, при

Строение и функции цитоплазматической мембраны клеток
Цитоплазматическая клеточная мембрана состоит из трех слоев: наружного - белкового; среднего - бимолекулярного слоя липидов; внутреннего - белкового. Толщи

Механизмы возбудимости клеток. История исследования биоэлектрических явлений
В основном передаваемая в организме информация имеет вид электрических сигналов (например, нервные импульсы). Впервые наличие животного электричества установил физиолог Л. Гальвани в 1786 г. С цель

Ультраструктура скелетного мышечного волокна
Двигательные единицы. Основным морфо-функциональным элементом нервно-мышечного аппарата скелетных мышц является двигательная единица. Она включает мотонейрон спинного мозга с иннервируемыми

Биомеханика мышечных сокращений. Одиночное сокращение, суммация, тетанус
При нанесении на двигательный нерв или мышцу одиночного порогового или сверхпорогового раздражения, возникает одиночное сокращение. При его графической регистрации, на полученной кривой можно выдел

Режимы сокращения. Сила и работа мышц
Различают следующие режимы мышечного сокращения: 1. Изотонические сокращения. Длина мышцы уменьшается, а тонус не изменяется. В двигательных функциях организма не участвуют.

Физиология процессов межклеточной передачи возбуждения
Проведение возбуждения по нервам Функцию быстрой передачи возбуждения к нервной клетке и от нее выполняют ее отростки – дендриты и аксоны, т.е. нервные во

Механизмы синаптической передачи. Постсинаптические потенциалы
Медиатор, находящийся в пузырьках, выделяется в синаптическую щель с помощью экзоцитоза (пузырьки подходят к мембране, сливаются с ней и разрываются, выпуская медиатор). Его выделение происх

Торможение в ЦНС
Явление центрального торможения обнаружено И.М. Сеченовым в 1862 году. Он удалял у лягушки полушария мозга и определял время спинномозгового рефлекса на раздражение лапки серной кислотой. За

Закономерности проведения возбуждения и процессов торможения в нервных центрах
Простейшим нервным центром является нервная цепь, состоящая из трех последовательно соединенных нейронов. Нейроны сложных нервных центров имеют многочисленные связи между собой, обр

Механизмы координации рефлексов
Рефлекторная реакция в большинстве случаев осуществляется не одной, а целой группой рефлекторных дуг и нервных центров. Координация рефлекторной деятельности – это такое взаимодействие нервных цент

Функции спинного мозга
Спинной мозг выполняет рефлекторную и проводниковую функции. Первая обеспечивается его нервными центрами, вторая - проводящими путями. Он имеет сегментарное строение. Причем деление на сегменты явл

Рефлексы спинного мозга
Все рефлексы спинного мозга делятся на соматические (двигательные) и вегетативные. Соматические рефлексы делятся на сухожильные (миотатические) и кожные. Сухож

Функции моста и среднего мозга
Мост имеет тесные функциональные связи со средним мозгом. Эти отделы ствола мозга также осуществляют проводниковую и рефлекторную функции. Проводниковая обеспечивается восходящими и нисходящими пут

Функции промежуточного мозга
Функционально в нем выделяют 2 отдела: таламус и гипоталамус. В таламусе происходит обработка почти всей информации, идущей от рецепторов к коре. Через него проходя

Лимбическая система
К лимбической системе (ЛС) относятся такие образования древней и старой коры, как обонятельные луковицы, гиппокамп, поясная извилина, зубчатая фасция, парагиппокампальная извилина, а также п

Структурно-функциональные особенности вегетативной нервной системы
Все функции организма условно делят на соматические и вегетативные. Первые связаны с деятельностью мышечной системы, вторые выполняются внутренними органами, кровеносными сосудами, кровью, железами

Физиология системы крови
Кровь, лимфа, тканевая жидкость являются внутренней средой организма, в которой протекают многие процессы гомеостаза. Кровь является жидкой тканью и вместе с кроветворными и депонирующими органами

Механизмы поддержания кислотно-щелочного равновесия крови
Для организма важнейшее значение имеет поддержание постоянства реакции внутренней среды. Это необходимо для нормального протекания ферментативных процессов в клетках и внеклеточной среде, синтеза и

Строение и функции эритроцитов. Гемолиз
Эритроциты (Э) – это высокоспециализированные безъядерные клетки крови. Ядро у них утрачивается в процессе созревания. Эритроциты имеют форму двояковогнутого диска. В среднем их диаметр около 7,5 м

Гемоглобин. Его разновидности и функции
Гемоглобин (Нb) это хемопротеин, содержащийся в эритроцитах. Его молекулярная масса 66"000 Дальтон. Молекулу гемоглобина образуют четыре субъединицы, каждая из которых включает гем, соединенный с а

Функции лейкоцитов
Лейкоциты (белые кровяные тельца) – это клетки крови, содержащие ядро. У одних лейкоцитов цитоплазма содержит гранулы, поэтому их называют гранулоцитами. У других зернистость отсутствует, их

Структура и функции тромбоцитов
Тромбоциты (кровяные пластинки) имеют дисковидную форму и диаметр 2-5 мкм. Они образуются в красном костном мозге путем отщепления участка цитоплазмы с мембраной от мегакариоцитов. Тромбоциты не им

Регуляция эритро- и лейкопоэза
У взрослых процесс образования эритроцитов – эритропоэз, происходит в красном костном мозге плоских костей. Они образуются из ядерных стволовых клеток, проходя стадии проэри

Механизмы остановки кровотечения. Процесс свертывания крови
Остановка кровотечения, т.е. гемостаз может осуществляться двумя путями. При повреждении мелких сосудов она происходит за счет первичного или сосудисто-тромбоцитарного гемостаза. Он о

Противосвертывающая система
В здоровом организме не возникает внутрисосудистого свертывания крови, потому что имеется и система противосвертывания. Обе системы находятся в состоянии динамического равновесия. В противосвертыва

Физиология кровообращения
Кровообращение – это процесс движения крови по сосудистому руслу, обеспечивающий выполнение ею своих функций. Физиологическую систему кровообращения составляют сердце и сосуд

Соотношение возбуждения, возбудимости и сокращения сердца. Нарушения ритма и функций проводящей системы сердца
В связи с тем, что сердечная мышца является функциональным синцитием, сердце отвечает на раздражение по закону "все или ничего". При исследовании возбудимости сердца в различные фазы серд

Рефлекторная и гуморальная регуляция деятельности сердца
Выделяют 3 группы сердечных рефлексов: 1. собственные или кардиокардиальные – возникают при раздражении рецепторов самого сердца; 2. кардиовазальные – наблюдаются при возбуждении

Проявления сердечной деятельности. Механические и акустические проявления
Деятельность сердца сопровождается механическими, акустическими и биоэлектрическими явлениями. К механическим проявлениям активности сердца относится верхушечный толчок – это

Движение крови по сосудам
Функциональная классификация кровеносных сосудов. Факторы, обеспечивающие движение крови Все сосуды малого и большого круга, в зависимости от строения и ф

Механизмы регуляции тонуса сосудов
Миогенная регуляция. Тонус сосудов во многом определяет параметры системной гемодинамики и регулируется миогенными, гуморальными и нейрогенными механизмами. В основе миогенн

Рефлекторная регуляция системного артериального кровотока
Все рефлексы, посредством которых регулируется тонус сосудов и деятельность сердца, делятся на собственные и сопряженные. Собственными являются рефлексы, возникающие при раздражении

Особенности кровообращения в сердце, мозге, легких, почках. Регуляция органного кровообращения
СЕРДЦЕ снабжается кровью через коронарные артерии, отходящие от аорты. Они разветвляются на эпикардиальные артерии, от которых отходят интрамуральные снабжающие кровью миокард. В с

Механизмы внешнего дыхания
Внешнее дыхание осуществляется в результате ритмических движений трудной клетки. Дыхательный цикл состоит из фаз вдоха (inspiratio) и выдоха (exspiratio), между которыми отсутствует пауза. В покое

Функции воздухоносных путей. Защитные дыхательные рефлексы. Мертвое пространство
Воздухоносные пути делятся на верхние и нижние. К верхним относятся носовые ходы, носоглотка, к нижним гортань, трахея, бронхи. Трахея, бронхи и бронхиолы являются проводящей зоной легких. К

Дыхание при повышенном атмосферном давлении. Кессонная болезнь
Дыхание при повышенном атмосферном давлении имеет место во время водолазных и кессонных (колокол-кессон) работ. В этих условиях дыхание урежается до 2-4 раз в минуту. Вдох укорачивается, а выдох уд

Физиология пищеварения
Значение пищеварения и его виды. Функции пищеварительного тракта Для существования организма необходимо постоянное восполнение энергетических затрат и пос

Состав и свойства желудочного сока. Значенние его компонентов
В сутки образуется 1,5-2,5 литра сока. Вне пищеварения выделяется всего 10-15 мл сока в час. Такой сок обладает нейтральной реакцией и состоит из воды, муцина и электролитов. При приеме пищи количе

Регуляция желудочной секреции
Пищеварительная секреция регулируется посредством нейрогуморальных механизмов. В ней выделяют три фазы: сложнорефлекторную, желудочную и кишечную. Сложнорефлекторная делится на условнорефл

Механизмы выработки и регуляции секреции панкреатического сока
Проферменты и ферменты поджелудочной железы синтезируются рибосомами ацинарных клеток и сохраняются в них в виде гранул. В период пищеварения они выделяется в ацинарные протоки и разбавляются в них

Функции печени. Роль печени в пищеварении
Из всех органов печень играет ведущую роль в обмене белков, жиров, углеводов, витаминов, гормонов и других веществ. Ее основные функции: 1. Антитоксическая. В ней обезвреживаются токсическ

Значение тонкого кишечника. Состав и свойства кишечного сока
Кишечный сок является продуктом бруннеровых, либеркюнновых желез и энтероцитов тонкого кишечника. Железы вырабатывают жидкую часть сока, содержащую минеральные вещества и муцин. Ферменты сока выдел

Полостное и пристеночное пищеварение
Пищеварение в тонком кишечнике осуществляется с помощью двух механизмов: полостного и пристеночного гидролиза. При полостном пищеварении ферменты действуют на субстраты, находящиеся в полост

Функции толстого кишечника
Заключительное пищеварение происходит в толстом кишечнике. Его железистые клетки выделяют небольшое количество щелочного сока, с рН=8,0-9,0. Сок состоит из жидкой части и слизистых комочков. Жидкая

Моторная функция тонкого и толстого кишечника
Сокращения кишечника обеспечиваются гладкомышечными клетками, образующими продольный и циркулярный слои. Благодаря связям клеток между собой гладкие мышцы кишечника являются функциональным синцитие

Механизмы всасывания веществ в пищеварительном канале
Всасыванием называют процесс переноса конечных продуктов гидролиза из пищеварительного канала в межклеточную жидкость, лимфу и кровь. Главным образом оно происходит в тонком кишечнике. Его длина со

Пищевая мотивация
Потребление пищи организмом происходит в соответствии с интенсивностью пищевой потребности, которая определяется его энергетическими и пластическими затратами. Такая регуляция потребления пищи назы

Обмен веществ в организме. Пластическая и энергетическая роль питательных веществ
Постоянный обмен веществ и энергии между организмом и окружающей средой является необходимым условием его существования и отражает их единство. Сущность этого обмена заключается в том, что поступаю

Основной обмен
Количество энергии, которое затрачивается организмом на выполнение жизненно важных функций называется основным обменом. Это затраты энергии на поддержание постоянства температуры тела, работу внутр

Физиологические основы питания. Режимы питания
В зависимости от возраста, пола, профессии потребление белков, жиров и углеводов должно составлять: у мужчин I-IV групп Б: 96-108 г, Ж: 90-120 г, У: 382-552 г; у женщин I-IV групп Б: 82-92 г, Ж: 77

Обмен воды и минеральных веществ
Содержание воды в организме в среднем 73%. Водный баланс организма поддерживается путем равенства потребляемой и выделяемой воды. Суточная потребность в воде составляет 20-40 мл/кг веса. С жидкостя

Терморегуляция
Филогенетически сложились два типа регуляции температуры тела. У холоднокровных или пойкилотермных организмов интенсивность обмена веществ небольшая, поэтому низка теплопродукция. Они неспос

Функции почек. Механизмы мочеобразования
В паренхиме почек выделяется корковое и мозговое вещество. Структурной единицей почки является нефрон. В каждой почке около миллиона нефронов. Каждый нефрон состоит сосудистого клубочка, находящего

Регуляция мочеобразования
Почки имеют высокую способность к саморегуляции. Чем ниже осмотическое давление крови, тем выраженное процессы фильтрации и слабее реабсорбция и наоборот. Нервная регуляция осуществляется посредств

Невыделительнные функции почек
1. Регуляция постоянства ионного состава и объема межклеточной жидкости организма. Базисным механизмом регуляции объема крови и межклеточной жидкости является изменение содержания натрия. При увели

Мочевыведение
Моча постоянно вырабатывается в почках и по собирательным трубочкам поступает в лоханки, а затем мочеточникам в мочевой пузырь. Скорость наполнения пузыря около 50 мл/час. В это время, называемое п

Врождённые формы поведения. Безусловные рефлексы
Безусловные рефлексы - это врождённые ответные реакции организма на раздражение. Свойства безусловных рефлексов: 1. они являются врождёнными, т.е. наследуются; 2. на

Условные рефлексы, механизмы образования, значение
Условные рефлексы (УР) - это индивидуально приобретённые в процессе жизнедеятельности реакции организма на раздражение. Создатель учения об условных рефлексах И.П. Павлов называл их в

Безусловное и условное торможение
Изучая закономерности ВНД, И.П. Павлов установил, что существует 2 вида торможения условных рефлексов: внешнее или безусловное и внутреннее или условное. Внешнее тормож

Динамический стереотип
Все сигналы, поступающие из внешней среды, подвергаются анализу и синтезу. Анализ - это дифференцировка, т.е. различение сигналов. Безусловнорефлекторный анализ начинается в самих рец

Структура поведенческого акта
Поведением называется комплекс внешних взаимосвязанных реакций, которые осуществляются организмом для приспособления к изменяющимся условиям среды. Наиболее просто структура поведения

Память и её значение в формировании приспособительных реакций
Огромное значение для индивидуального поведения имеют обучение и память. Выделяют генотипическую или врождённую память и фенотипическую, т.е. приобретённую память. Генотипическая памя

Физиология эмоций
Эмоции - это психические реакции, отражающие субъективное отношение индивида к объективным явлениям. Эмоции возникают в составе мотиваций и играют важную роль в формировании поведения

Функциональные состояния организма. Стресс, его физиологическое значение
Функциональным состоянием называется тот уровень активности организма, при котором выполняется та или иная его деятельность. Низшими уровнями ФС - кома, затем сон. Высшим - агрессивно-оборонительно

Физиологические механизмы сна. Значение сна. Теории сна
Сон - это долговременное функциональное состояние, характеризующееся значительным снижением нервно-психической и двигательной активности, которое необходимо для восстановления способности

Теории механизмов сна
1. Химическая теория сна. Выдвинута в прошлом веке. Считалось, что в процессе бодрствования образуются гипнотоксины, которые вызывают засыпание. В последующем была отвергнута. Однако сейчас вновь в

Типы ВНД
На основании изучения условных рефлексов и оценки внешнего поведения животных И.П. Павлов выделил 4 типа ВНД. В основу своей классификации он положил 3 показателя процессов возбуждения и торможения

Сигнальные системы. Функции речи. Речевые функции полушарий
По И.П. Павлову взаимодействие организма с внешней средой осуществляется посредством раздражителей или сигналов. В зависимости от характера, действующих на организм сигналов, он выделил две сигналь

Мышление и сознание
Мышление это процесс познавательно деятельности человека, проявляющийся обобщенным отражением явлений внешнего мира и своих внутренних переживаний. Сущность мышления состоит в способн

Формирование половой мотивации
Безусловнорефлекторные, условнорефлекторные, гуморальные механизмы регуляции половых функций Особую роль в различных формах поведения играет половое поведение. Оно необходимо для со

Адптация, ее виды и периоды
Адаптация - это приспособление строения, функций органов и организма в целом, а также популяции живых существ к изменениям окружающей среды. Различают генотипическую и

Физиологические основы трудовой деятельности
Физиология труда, является прикладным разделом физиологии человека и изучает физиологические явления, сопровождающие различные виды физического и умственного труда. Умственный труд делится

Физиология гипофиза
Гипофиз состоит из трех долей - передней, промежуточной и задней, каждая из которых является железой внутренней секреции. Заднюю долю, богато снабженную разветвлениями нервных волокон, связывающих

Регуляция секреции гипофиза
Большое значение в регуляции функций передней доли гипофиза имеют особенности ее кровоснабжения, а именно то, что кровь, оттекающая от капилляров гипоталамической области, поступает в так называемы

Гормоны щитовидной железы
В ткани щитовидной железы содержится йод, который входит в состав гормонов, образуемых фолликулами этой железы. Характерной особенностью клеток этой железы является их способность поглощать йод, та

Регуляция секреции ПЖЖ
Образование инсулина (а также глюкагона) регулируется уровнем глюкозы в крови. Увеличение содержания глюкозы в крови после приема ее больших количеств, а также при гипергликемии, связанной с напряж

Адреналин и норадреналин
Гормон мозгового слоя надпочечников – адреналин - представляет собой производное аминокислоты тирозина. Мозговой слой надпочечников секретирует также норадреналин, являющийся непосред

Кора надпочечников
В коре надпочечников различают три зоны: наружную - клубочковую, среднюю - пучковую и внутреннюю - сетчатую. Из коры надпочечника выделено около 50 кортикостероидов, однако тол

Рецепторный аппарат зрительного анализатора. Структура и функция отдельных слоев сетчатки
Сетчатка представляет собой внутреннюю оболочку глаза, имеющую сложную многослойную структуру. Здесь расположены два вида различных по своему функциональному значению фоторецепторов - палочки и кол

Кожная рецепция
Кожные рецепторы. Рецепторная поверхность кожной чувствительной системы огромна - от 1,4 до 2,1 м2. В коже сосредоточено большое количество чувствительных к прикосновени

Физиология обонятельного анализатора
Рецепторы обонятельной сенсорной системы расположены в области верхних носовых ходов. Обонятельный эпителий находится в стороне от главного дыхательного пути. На поверхности каждой обонятельной кле

Похожие публикации