Цветовое зрение. Цвет и личность. Причины нарушений цветового зрения

Человека и многих видов животных с дневной активностью различать цвета, т. е. ощущать отличия в спектральном составе видимых излучений и в окраске предметов. Видимая часть спектра включает излучения с разной длиной волны, воспринимаемые глазом в виде различных цветов.

Цветовое зрение обусловлено совместной работой нескольких светоприёмников, т. е. фоторецепторов (См. Фоторецепторы) сетчатки разных типов, отличающихся спектральной чувствительностью. Фоторецепторы преобразуют энергию излучения в физиологическое возбуждение, которое воспринимается нервной системой как различные цвета, т.к. излучения возбуждают приёмники в неодинаковой степени. Спектральная чувствительность фоторецепторов разного типа различна и определяется спектром поглощения зрительных пигментов (См. Зрительный пигмент).

Каждый светоприёмник в отдельности не способен различать цвета: все излучения для него отличаются лишь одним параметром - видимой яркостью, или светлотой, т.к. свет любого спектрального состава оказывает качественно одинаковое физиологическое воздействие на каждый из фотопигментов. В связи с этим любые излучения при определённом соотношении их интенсивностей могут быть полностью неразличимы друг от друга одним приёмником. Если в сетчатке (См. Сетчатка) есть несколько приёмников, то условия равенства для каждого из них будут различными. Поэтому для сочетания нескольких приёмников многие излучения не могут быть уравнены никаким подбором их интенсивностей.

Основы современных представлений о цветовом зрении человека разработаны в 19 веке английским физиком Т. Юнгом и немецким учёным Германом Гельмгольцем в виде т. н. трёхкомпонентной, или трихроматической, теории цветовосприятия. Согласно этой теории, в сетчатке имеются три типа фоторецепторов (колбочковых клеток (См. Колбочковые клетки)), чувствительных в разной степени к красному, зелёному и синему свету. Однако физиологический механизм цветовосприятия позволяет различать не все излучения. Так, смеси красного и зелёного в определённых соотношениях неотличимы от жёлто-зелёного, жёлтого и оранжевого излучений; смеси синего с оранжевым могут быть уравнены со смесями красного с голубым или с сине-зелёным. У некоторых людей наследственно отсутствует один (см. ) или два светоприёмника из трёх, в последнем случае цветовое зрение отсутствует.

Цветовое зрение свойственно многим видам животных. У позвоночных (обезьяны, многие виды рыб, земноводные), а из насекомых у пчёл и шмелей цветовое зрение трихроматическое, как и у человека. У сусликов и многих видов насекомых оно дихроматическое, т. е. основано на работе двух типов светоприёмников, у птиц и черепах, возможно, - четырёх. Для насекомых видимая область спектра смещена в сторону коротковолновых излучений и включает ультрафиолетовый диапазон. Поэтому мир красок насекомого существенно отличается от человеческого.

Основное биологическое значение цветового зрения для человека и животных, существующих в мире несамосветящихся объектов, - правильное узнавание их окраски, а не просто различение излучений. Спектральный состав отражённого света зависит как от окраски предмета, так и от падающего света и поэтому подвержен значительным изменениям при перемене условий освещения. Способность зрительного аппарата правильно узнавать (идентифицировать) окраску предметов по их отражательным свойствам в меняющихся условиях освещения называются константностью восприятия окраски (см. Цвет).

Цветовое зрение - важный компонент зрительной ориентации животных. В ходе эволюции многие животные и растения приобрели разнообразные средства сигнализации, рассчитанные на способность животных-«наблюдателей» воспринимать цвета. Таковы ярко окрашенные венчики цветков растений, привлекающие насекомых и птиц - опылителей; яркая окраска плодов и ягод, привлекающая животных - распространителей семян; предупреждающая и отпугивающая окраска ядовитых животных и видов, им подражающих; «плакатная» раскраска многих тропических рыб и ящериц, имеющая сигнальное значение в территориальных взаимоотношениях; яркий брачный наряд, носящий сезонный или постоянный характер, свойственный множеству видов рыб, птиц, пресмыкающихся, насекомых; наконец, специальные средства сигнализации, облегчающие у рыб и птиц взаимоотношения между родителями и потомством.

Более подробно о цветовом зрении читайте в литературе:

  • Нюберг Н. Д., Курс цветоведения, М. - Л., 1932;
  • Кравков С. В., Цветовое зрение, М., 1951;
  • Канаев И. И., Очерки из истории проблемы физиологии цветового зрения от античности до XX века, Л., 1971;
  • Физиология сенсорных систем, ч. 1, Л., 1971 (Руководство по физиологии);
  • Орлов О. Ю., Об эволюции цветового зрения у позвоночных, в кн.: Проблемы эволюции, том 2, Новосиб., 1972. О. Ю. Орлов.

Цветовое зрение . Способность человека различать цвета имеет огромное значение для многих сторон его жизни, часто придавая ей эмоциональную окраску. Гете писал: «Желтый цвет радует глаз, расширяет сердце, бодрит дух, и мы сразу ощущаем тепло. Синий цвет, наоборот, представляет все в печальном виде». Созерцание многообразия красок природы, картин замечательных художников, цветных фотографий и художественных цветных кинокартин доставляет человеку эстетическое наслаждение.

Велико практическое значение цветового зрения. Различение цветов позволяет лучше познавать окружающий мир, производить тончайшие цветные химические реакции, управлять движением железнодорожного, авто- и авиатранспорта с помощью цветовых сигналов, ставить диагноз, определяя изменения цвета кожи, глазного дна, воспалительных или опухолевых очагов и т. д. Без цветового зрения невозможна работа в тех областях, где приходится иметь дело с различной окраской предметов. Даже работоспособность человека зависит от цветности и освещенности помещения.



Начало исследованию цветового зрения положил Ньютон. Цветовое зрение, подобно остроте зрения, является функцией колбочкового аппарата, а следовательно, в основном зависит от состояния макулярной области сетчатки. Развитие цветового зрения идет параллельно остроте зрения, но обнаружить его удается значительно позже. Первая более или менее отчетливая реакция на яркие красные, желтые и зеленые цвета появляется у ребенка к первому полугодию его жизни. Нормальное формирование цветового зрения зависит от интенсивности света.

Доказано, что свет распространяется волнами различной длины, измеряемой в нанометрах (нм). Участок видимого глазом спектра лежит между лучами с длинами волн от 393 до 759 нм. Этот видимый спектр можно разделить на участки с различной цветностью. Лучи света с большой длиной волны вызывают ощущение красного, с малой длиной - синего и фиолетового цветов. Длины волн в промежутке между ними вызывают ощущение оранжевого, желтого, зеленого и голубого цветов.

Очень редко можно видеть монохроматический свет, т. е. свет, состоящий из волн одинаковой длины. Почти всегда видимый свет имеет сложный спектральный состав. Дневной свет обычно называют белым. Белый свет включает весь видимый солнечный спектр.

По отношению к световым явлениям все тела природы делятся на светящиеся (т. е. излучающие свет) и несветящиеся. Интенсивность и спектральный состав (т. е. длины волн) излучаемого света зависят от температуры и химического состава накаленных тел.

Несветящиеся тела не излучают света, но отражают падающий на них от световых источников свет или пропускают его через себя. В зависимости от этого все тела делятся на прозрачные и непрозрачные.

Цвет непрозрачного тела определяется длиной тех световых волн, которые от него отражаются, а прозрачного - длиной волн света, проходящего сквозь него, после того как часть его была отражена или поглощена этим телом.

Все цвета природы делятся на ахроматические (белые, черные и все промежуточные между ними серые) и хроматические (все остальные). Хроматические цвета отличаются друг от друга по трем основным признакам: цветовому тону, светлоте и насыщенности.

Цветовой тон - это основное качество каждого хроматического цвета, признак, позволяющий отнести данный цвет по сходству к тому или иному цвету спектра (ахроматические цвета цветового тона не имеют). Глаз человека может различать до 180 цветовых тонов.

Светлота, или яркость, цвета характеризуется степенью его близости к белому. Яркость - это субъективное наиболее простое ощущение интенсивности света, доходящего до глаза. Человеческий глаз может отличать до 600 градаций каждого цветового тона по его светлоте, яркости.

Насыщенность хроматического цвета - это степень его отличия от ахроматического такой же светлоты. Это как бы «густота» основного цветового тона и различных примесей к нему. Человеческий глаз может отличать приблизительно 10 градаций различной насыщенности цветовых тонов.

Если перемножить число различимых градаций цветовых тонов, светлоты и насыщенности хроматических цветов (180х600х10 = 1080000), то оказалось бы, что глаз человека может различать более миллиона цветовых оттенков. В действительности по многим причинам этого нет - глаз человека различает около 13 000 цветовых оттенков.

Зрительный анализатор человека обладает синтетической способностью, она заключается в оптическом смешении цветов. Это проявляется, например, тем, что сложный дневной свет ощущается как белый. Оптическое смешение цветов вызывается одновременным возбуждением глаза разными цветами и вместо нескольких составляющих цветов получается один результирующий.

Давно определены законы оптического смешения цветов. Для всякого цвета всегда существует такой другой, от смешения с которым получается ощущение белого цвета. Такое смешение можно осуществить, смотря на вращающийся цветовой круг, построенный Ньютоном, содержащий все основные цвета солнечного спектра плюс пурпурные (от смешения красного и фиолетового). Цвета таких пар называются дополнительными. Это красный и голубовато-зеленый, оранжевый и голубой, желтый и синий, зеленый и пурпурный и т. д. В круге Ньютона они являются диаметрально противоположными.

Первый закон оптического смешения цветов и заключается в том, что дополнительные цвета дают при смешении ощущение белого цвета.

Второй закон оптического смешения цветов заключается в том, что цвета, лежащие друг к другу ближе, чем дополнительные (следовательно, не противолежащие в цветовом круге), при смешении дают новый хроматический цвет, лежащий в цветовом круге между смешиваемыми цветами. Например, смесь красного с желтым дает оранжевый, синего с зеленым - голубой цвет и т. д.

Смешение цветов по этому закону получается не только тогда, когда оба цвета посылаются в один глаз, но и тогда, когда в один глаз направляют монохроматический свет одного цвета, а во второй - другого. Такое бинокулярное смешение цветов говорит о том, что основную роль в его осуществлении играют центральные (в головном мозге), а не периферические (в сетчатке) процессы.

М. В. Ломоносов в 1757 г. впервые показал, что, если в цветовом круге считать 3 цвета основными, то их попарным смешением (3 пары) можно создать любые другие (промежуточные в этих парах в цветовом круге). В 1802 г. с подобной теорией выступил Томас Юнг в Англии, а еще через 50 лет эта теория была развита в Германии Гельмгольцем. Таким образом, были заложены основы трехкомпонентной теории цветового зрения, которая схематично заключается в следующем.

В зрительном анализаторе допускается существование трех видов цветовых приемников, или, как говорят, цветоощущающих компонентов. Первый («протос») возбуждается сильнее всего длинными световыми волнами, слабее средними и еще слабее короткими. Второй («дейтерос») сильнее всего возбуждается средними, слабее длинными и короткими световыми волнами. Третий («тритос») слабо возбуждается длинными, сильнее средними и больше всего короткими волнами. Таким образом, свет любой длины волны возбуждает все 3 цветовых приемника, но в различной степени.

Смешение различных возбуждений в трех приемниках и приводит к ощущению хроматического цвета, соответствующего данной длине волны. Так, например, ощущение оранжевого цвета получается от смешения слабого ощущения синего цвета, более сильного ощущения зеленого цвета и наиболее сильного ощущения красного цвета. Смешение всех этих трех ощущений (красного, зеленого и синего) происходит по описанным законам оптического смешения цветов.

Исследования цветового зрения у животных позволяют сделать некоторые выводы о его эволюции у живых существ.

Среди позвоночных наличие цветового зрения доказано у рыб, лягушек, черепах, ящериц, у большинства птиц. Прекрасное цветовое зрение у пчел, стрекоз и других насекомых. У собак плохое цветовое зрение. Не доказано наличие цветового зрения у копытных животных. Цветового зрения нет у животных, ведущих ночной образ жизни; не всегда оно развито и у дневных животных.

У низших обезьян цветового зрения нет, а у человекообразных обезьян оно такое же, как у человека. У хвостатых обезьян - капуцинов было обнаружено цветовое зрение ни с тремя, а с двумя компонентами, сине- и желтоощущающими.

Цветовое зрение в норме называют трихроматичным, ибо для получения более 13 000 различных тонов и оттенков нужны лишь 3 цвета. В известной мере трехкомпонентность цветового зрения доказывается существованием в наружных коленчатых телах 6 клеточных слоев - по 3 для каждой сетчатки. Согласно гипотезе Ле Гро Кларка 1-й и 2-й слои-играют роль промежуточной станции для волокон, связанных с различением синего цвета, 3-й и 4-й слой являются промежуточной станцией для волокон, воспринимающих красный цвет, а 5-й и 6-й слои имеют отношение к восприятию зеленого цвета. Эти 6 слоев обнаружены только у трихроматов, а у дихроматов имеется лишь 4 слоя. Однако при смешении трех окрашенных световых лучей нельзя получить коричневый цвет, цвет серебра и золота. Следовательно, существует нечто сверх трех цветов. В связи с таким положением предлагаются четырех- (Черни) и поликомпонентные (Хартридж) теории цветового зрения, но они малодоказательны.

Расстройства цветового зрения могут быть врожденные и приобретенные. Врожденные расстройства носят характер дихромазии и зависят от ослабления или полного выпадения функции одного из компонентов (при выпадении красноощущающего компонента - протанопия, зеленоощущающего - дейтеранопия и синеощущающего - тританопия). Наиболее частая форма дихромазии - это смешение красного и зеленого цветов. Впервые дихромазию описал Дальтон, поэтому расстройства цветового зрения и носят название дальтонизма. Врожденная тританопия (слепота на синий цвет) почти не встречается.

Понижение цветоощущения встречается у мужчин в 100 раз чаще, чем у женщин. Среди мальчиков школьного возраста расстройство цветового зрения обнаруживается примерно в 5%, а среди девочек только в 0,05%. Расстройства цветоощущения передаются по наследству.

К приобретенным расстройствам цветового зрения можно отнести видение всех предметов в каком-либо одном цвете. Такая патология объясняется разными причинами. Так, эритропсия (видение всего в красном свете) бывает после ослепления глаз светом при расширенном зрачке. Цианопсия (видение в синем цвете) бывает после экстракции катаракты, когда в глаз попадает много коротковолновых лучей света вследствие удаления задерживающего их хрусталика. Хлоропсия (видение в зеленом цвете) и ксантопсия (видение в желтом цвете) возникают вследствие окраски прозрачных сред глаза при желтухе, отравлении акрихином, сантонином, никотиновой кислотой и т. д. Нарушения цветового зрения возможны при воспалительной и дистрофической патологии хориоидеи и сетчатки. Особенность приобретенных нарушений цветовосприятия состоит прежде всего в том, что чувствительность глаз снижается в отношении всех основных цветов, что эта чувствительность изменчива, лабильна.

Цветовое зрение исследуют чаще всего с помощью специальных полихроматических таблиц Рабкина (гласный метод). В них из кружочков разных цветов, но одинаковой светлоты составлены знаки или цифры, которые свободно различаются трихроматами, а дихроматы часть таблиц прочесть не могут, ибо для них кружочки разных цветов, но одинаковой светлоты могут казаться одинаковыми.

В таблицах некоторые цифры легко различаются дихроматами, но неразличимы при нормальном цветовом зрении. Такие «скрытые» цифры придают субъективному исследованию цветового зрения известную объективность.



Существуют и немые методы исследования цветового зрения. Мальчикам лучше предлагать отбор одинаковой по тону мозаики, а девочкам - отбор ниток мулине.

Диагностика протанопии или дейтеранопии основана на том, что исследуемый при предъявлении ему таблиц дает ответы по определенному типу. Этого нет при приобретенных расстройствах цветового зрения, чаще возникающих вследствие патологии нервно-зрительного аппарата. Для выявления приобретенной цветослепоты Е. Б. Рабкин предложил специальные таблицы.

Применение таблиц особенно ценно в детской практике, когда многие субъективные исследования вследствие малого возраста пациентов невыполнимы. Цифры на таблицах доступны, а для самого младшего возраста можно ограничиться тем, что ребенок водит кисточкой или указкой по цифре, которую он различает, но не знает, как ее назвать.

Кроме таблиц, для диагностики расстройств цветового зрения пользуются также специальными спектральными аппаратами - аномалоскопами с получением чистого желтого спектрального цвета путем оптического смешения красного и зеленого цветов.

Необходимо помнить о том, что если новорожденного содержать в плохо освещенном помещении, то развитие цветоощущения задерживается. Кроме того, становление цветового зрения обусловлено развитием условнорефлекторных связей. Следовательно, для правильного развития цветового зрения необходимо создать в комнате ребенка хорошую освещенность и с раннего возраста привлекать его внимание к ярким игрушкам, располагая эти игрушки на значительном расстоянии от глаз (50 см и более) и меняя их цвета. При выборе игрушек следует учитывать, что центральная ямка более всего чувствительна к желто-зеленой части спектра и малочувствительна к синей. С усилением освещенности все цвета, кроме синего, сине-зеленого, желтого и пурпурно-малинового в связи с изменением яркости воспринимаются как желто-белые.

Гирлянды должны иметь в центре красные, желтые, оранжевые и зеленые шары, а шары, имеющие цвет с примесью синего и синие, необходимо помещать по краям.

Цветоразличительная функция зрительного анализатора человека подчиняется суточному биоритму с максимумом чувствительности к 13-15 ч в красном, желтом, зеленом и синем участках спектра.

30-09-2011, 10:51

Описание

Сотни дополнительных долларов, которые покупатели соглашаются платить за цветной телевизор, предпочитая его черно-белому, означают, что цветовые ощущения для нас достаточно важны. Сложный аппарат глаза и мозга может воспринимать различия в спектральном составе света, отражаемого от видимых предметов, и легко представить себе, какие преимущества давала эта способность нашим предкам. Одним из преимуществ, несомненно, было то, что она затрудняла маскировку другим животным: потенциальной добыче намного труднее слиться с окружающим фоном, если хищник может различать не только интенсивность света, но и цвет.

Столь же важным цвет может быть при поиске растительной пищи: обезьяна легко найдет ярко-красную ягоду, выделяющуюся среди зеленой листвы, и это даст животному несомненное преимущество, как, впрочем, и растению, поскольку семена проходят невредимыми через пищеварительный тракт обезьяны и рассеиваются на обширной площади. Для некоторых животных цвет важен при размножении; примерами служат ярко-красная окраска области промежности у макаков и изумительное оперение у самцов многих птиц.

У людей давление отбора, направленное на сохранение или улучшение цветового зрения, видимо, ослабевает, судя по тому, что 7 или 8 процентов мужчин частично или полностью лишены цветового зрения, но отлично без него обходятся, причем этот дефект часто долгие годы остается незамеченным и выявляется лишь после того, как за рулем они проедут на красный свет. Даже те из нас, кто обладает нормальным цветовым зрением, могут испытывать подлинное наслаждение от черно-белых фильмов, которые в художественном отношении иногда могут быть шедеврами киноискусства. Как мы увидим позже, при слабом освещении все мы в цветовом отношении слепы.

Ощущение цвета у позвоночных встречается спорадически
; вероятно, в ходе эволюции оно неоднократно редуцировалось или даже исчезало, чтобы потом появиться снова. К млекопитающим, у которых цветовое зрение слабо развито или отсутствует, относятся мыши, крысы, кролики, кошки, собаки и ночная обезьяна дурукули. У сусликов и приматов, включая людей, человекообразных и большинство других обезьян, цветовое зрение хорошо развито. Из ночных животных, зрение которых приспособлено к слабому свету, лишь немногие хорошо различают цвета; это позволяет думать, что по каким-то причинам различение цветов и способность видеть при слабом свете несовместимы друг с другом. Среди других позвоночных цветовое зрение хорошо развито у многих рыб и птиц, но, вероятно, отсутствует или слабо выражено у рептилий и амфибий.

Цветовым зрением обладают многие насекомые, в том числе мухи и пчелы. В отношении подавляющего большинства животных у нас нет точных сведений о способности различать цвета - вероятно, потому, что проводить поведенческие или физиологические тесты на цветовое зрение не так легко.

Вопросом о цветовом зрении - несоразмерно его биологическому значению для человека - занимался ряд блестящих умов, включая Ньютона, Гёте (сильной стороной которого не были, однако, естественные науки) и Гельмгольца. Тем не менее до сих пор даже художники, физики и биологи часто плохо представляют себе, что такое цвет. Проблема возникает еще в детстве, когда нам впервые дают коробку с красками, а затем говорят, что желтый, синий и красный - это «основные» цвета и что желтый с синим дают зеленый. Многие из нас впоследствии поражаются кажущемуся противоречию с этим фактом, когда с помощью пары проекторов мы отбрасываем на экран два перекрывающихся пятна, желтое и синее, и видим в области их наложения красивый белый цвет. Результат смешения красок - это предмет физики; смешение же световых лучей - в основном вопрос биологии.

Рассуждая о цвете, полезно мысленно разделять эти два аспекта - физический и биологический. Физика, которую нам при этом следует знать, ограничивается лишь некоторыми фактами о световых волнах. Биология же включает психофизику и физиологию. Психофизику интересуют наши чувства как детекторы внешней информации, а физиологию - лежащие в их основе внутренние механизмы, в частности работа нашей зрительной системы. Мы многое знаем о физике и психофизике цвета, но физиология находится все еще на сравнительно примитивном уровне, главным образом из-за того, что необходимые методы стали доступны лишь в последние десятилетия.

Природа света

Свет состоит из частиц, называемых фотонами, каждую из которых можно рассматривать как пакет электромагнитных волн. Будет ли луч электромагнитной энергии именно светом, а не рентгеновскими лучами или радиоволнами, определяется длиной волны - расстоянием от одного гребня волны до следующего: в случае света это расстояние составляет приблизительно 0,0000001 (10~7) метра, или 0,0005 миллиметра, или 0,5 микрометра, или 500 нанометров (нм).

Свет - это по определению то, что мы можем видеть. Наши глаза могут воспринимать электромагнитные волны длиной от 400 до 700 нм. Обычно попадающий в наши глаза свет состоит из сравнительно однородной смеси лучей с различными длинами волн; такую смесь называют белым светом (хотя это весьма нестрогое понятие). Для оценки волнового состава световых лучей измеряют световую энергию, заключенную в каждом из последовательных небольших интервалов, например от 400 до 410 нм, от 410 до 420 нм и т. д., после чего рисуют график распределения энергии по длинам волн. Для света, приходящего от Солнца, этот график похож на левую кривую на рис. 116.

Это кривая без резких подъемов и спадов с пологим максимумом в области 600 нм. Такая кривая типична для излучения раскаленного объекта. Положение максимума зависит от температуры источника: для Солнца это будет область около 600 нм, а для звезды более горячей, чем наше Солнце, максимум сдвинется к более коротким волнам - к голубому концу спектра, т. е. на нашем графике - влево. (Представление художников о том, что красные, оранжевые и желтые цвета - теплые, а синие и зеленые - холодные, связано только с нашими эмоциями и ассоциациями и не имеет никакого отношения к спектральному составу света от раскаленного тела, зависящему от его температуры, - к тому, что физики называют цветовой температурой.)

Если мы будем каким-то способом фильтровать белый свет, удаляя все, кроме узкой спектральной полосы, то получим свет, который называют монохроматическим (см. график на рис. 116 справа).

Пигменты

Когда свет падает на некоторый объект, может происходить одно из трех событий: свет может поглощаться, а энергия его превращаться в тепло, как это бывает, когда что-то нагревается на солнце; он может проходить сквозь объект, если, например, на пути солнечных лучей окажется вода или стекло; либо он может отражаться, как в случае зеркала или любого светлого предмета, например куска мела. Часто происходят два или все три события; например, часть света может поглотиться, а часть - отразиться. Для многих объектов относительное количество поглощенного и отраженного света зависит от длины волны. Зеленый лист растения поглощает длинно- и коротковолновый свет и отражает свет промежуточной области спектра, так что при освещении листа солнечными лучами отраженный свет будет иметь выраженный широкий максимум на средних длинах волн (в области зеленого цвета). Красный объект будет иметь свой максимум, тоже широкий, в области длинных волн, как показано на рис. 117.

Вещество, которое поглощает часть падающего на него света и отражает остальную часть, называют пигментом. Если какие-то спектральные компоненты в диапазоне видимого света поглощаются лучше, чем другие, пигмент представляется нам окрашенным. Сразу же добавим: какой именно цвет мы видим, зависит не только от длины волн, но также от распределения энергии между разными участками спектра и от свойств нашей зрительной системы. Здесь замешаны как физика, так и биология.

Зрительные рецепторы

Каждая палочка или колбочка в нашей сетчатке содержит пигмент, поглощающий в каком-то участке спектра лучше, чем в других участках. Поэтому, если бы мы смогли собрать достаточное количество такого пигмента и посмотреть на него, он выглядел бы окрашенным. Зрительный пигмент обладает особым свойством: при поглощении им светового фотона он изменяет свою молекулярную форму и при этом высвобождает энергию, запуская таким образом цепь химических реакций, которые в конце концов приводят к появлению электрического сигнала и к выделению химического медиатора в синапсе. Пигментная молекула в своей новой форме, как правило, обладает совсем иными светопоглощающими свойствами, и если, как это обычно бывает, она поглощает свет хуже, чем в исходной форме, мы говорим, что она «выцветает» под действием света. Затем сложный химический механизм глаза восстанавливает первоначальную конфигурацию пигмента; в противном случае его запас быстро истощился бы.

Сетчатка содержит своего рода мозаику из рецепторов четырех типов - палочек и трех типов колбочек (рис. 118).

Каждый тип рецепторов содержит свой особый пигмент. Разные пигменты отличаются друг от друга в химическом отношении, а в связи с этим и по способности поглощать свет с различной длиной волн. Палочки ответственны за нашу способность видеть при слабом свете, т. е. за сравнительно грубую разновидность зрения, не позволяющую различать цвета. Палочковый пигмент родопсин обладает наибольшей чувствительностью в области около 510 нм, в зеленой части спектра. Палочки отличаются от колбочек во многих отношениях: они меньше и имеют несколько иное строение, по-иному распределены в разных частях сетчатки и имеют свои особенности в системе связей, образуемых с последующими уровнями зрительного пути. И наконец, по содержащимся в них светочувствительным пигментам три типа колбочек отличаются как друг от друга, так и от палочек.

Пигменты колбочек трех типов имеют пики поглощения в области 430, 530 и 560 нм (рис. 119); поэтому разные колбочки несколько неточно называют соответственно «синими», «зелеными» и «красными».

Неточность состоит в том, что

1) эти названия отражают максимумы чувствительности (которые в свою очередь зависят от светопоглощающей способности), а не то, как эти пигменты выглядели бы, если бы на них можно было посмотреть;

2) монохроматический свет с длинами волн 430, 530 и 560 нм будет не синим, зеленым и красным, а фиолетовым, сине-зеленым и желто-зеленым;

3) если бы можно было стимулировать колбочки только одного типа, мы видели бы не синий, зеленый и красный цвета, а, вероятно, фиолетовый, зеленый и желтовато-зеленый.

Однако приведенные выше названия колбочек широко распространены, а попытки изменить укоренившуюся терминологию обычно оканчиваются неудачей. Более корректными были бы названия «длинноволновые», «средневолновые» и «коротковолновые», но они затрудняли бы понимание для тех, кто не слишком хорошо знаком со спектром.

Имея максимум поглощения в зеленой области, палочковый пигмент родопсин отражает синие и красные лучи и поэтому выглядит пурпурным. Поскольку в наших сетчатках он присутствует в количествах, достаточных для того, чтобы химики смогли его выделить и можно было на него посмотреть, он издавна получил название зрительного пурпура. Само по себе это нелогично, поскольку «зрительный пурпур» называют так по его видимому цвету, тогда как названия для колбочек («красные», «синие» и «зеленые») соответствуют их относительной чувствительности, т. е. способности поглощать свет. Во избежание путаницы об этом следует помнить.

Три типа колбочек имеют широкие зоны чувствительности со значительным перекрыванием, особенно для красных и зеленых колбочек. Свет с длиной волны 600 нм вызовет наибольшую реакцию красных колбочек, пик чувствительности которых расположен при 560 нм; вероятно, он вызовет также некоторую, хотя и более слабую, реакцию колбочек двух других типов. Таким образом, «красная» колбочка реагирует не только на длинноволновый, т. е. красный, свет; она лишь реагирует на него лучше других колбочек. Сказанное относится и к колбочкам других типов.

До сих пор я рассматривал физические аспекты цветового зрения: природу света и пигментов, свойства объектов, отражающих свет к нашим глазам, и особенности палочковых и колбочковых пигментов, преобразующих поглощенный свет в электрические сигналы. Интерпретировать эти исходные сигналы как различные цвета - это уже задача мозга. Чтобы лучше дать почувствовать предмет обсуждения, я решил вначале кратко изложить элементарные факты о цветовом зрении, оставив пока в стороне трехсотлетнюю историю установления этих фактов, а также процессы обработки цветовой информации мозгом.

Общие замечания о цвете

Быть может, полезно начать с того, как оперируют с различными длинами волн две сенсорные системы - слуховая и зрительная . Деятельность одной из них приводит к восприятию высоты тона, а другой - к восприятию цвета, но между этими системами есть глубокое различие. Когда я беру на фортепиано аккорд из пяти нот, вы можете выделить отдельные ноты и пропеть каждую из них по отдельности. Ноты не смешиваются в нашем мозгу, но сохраняют свою индивидуальность, в то время как еще со времен Ньютона известно, что при смешивании двух или нескольких световых лучей разного цвета вы не можете выделить компоненты путем простого рассматривания.

Небольшое размышление убедит вас в том, что цветовое зрение неизбежно должно быть чувством менее совершенным, чем восприятие тонов. Звук, приходящий в любой данный момент в одно ухо и состоящий из колебаний с разной длиной волны, будет воздействовать на тысячи рецепторов внутреннего уха, каждый из которых настроен на высоту, слегка отличающуюся от настройки соседнего рецептора. Если звук состоит из многих волновых составляющих, информацию будет получать множество рецепторов, все выходные сигналы которых передаются в наш мозг. Богатство слуховой информации определяется способностью мозга анализировать такие комбинации звуков.

Совершенно иначе обстоит дело со зрением. Предметом обработки в зрительной системе служит изображение, схватываемое в каждый момент времени набором из миллионов рецепторов. Мы мгновенно воспринимаем сложную сцену. Если при этом мы захотели бы еще обрабатывать длины волн по принципам, используемым во внутреннем ухе, то сетчатка должна была бы иметь не только набор рецепторов, покрывающих всю ее поверхность, но и, скажем, по тысяче рецепторов в каждой отдельной точке, каждый из которых обладал бы максимальной чувствительностью к своей длине волны. Но втиснуть тысячу рецепторов в каждую точку сетчатки физически невозможно; поэтому здесь приходится идти на компромисс. Сетчатка содержит «цветовые» рецепторы трех типов с различной чувствительностью к длине волны в каждой из очень большого числа точек. Таким образом, ценой незначительного ущерба для разрешающей способности большая часть нашей сетчатки получает некоторую возможность обрабатывать информацию о длинах волн. Мы различаем семь цветов, а не 88 (впрочем, обе цифры следует многократно увеличить с учетом оттенков), но зато каждой из множества тысяч точек видимой сцены будет приписан определенный цвет. Сетчатка не могла бы обладать той способностью к пространственному анализу, которую она имеет, и одновременно обрабатывать информацию о длинах волн столь же изощренно, как слуховая система.

Теперь нужно дать читателю представление о том, что означает для нашего цветового зрения обладание тремя типами колбочек. Во-первых, может возникнуть вопрос: если данная колбочка при каких-то длинах волн работает лучше, чем при других, почему бы зрительной системе просто не измерить выход этой колбочки и не вычислить отсюда, каков здесь цвет? Почему бы тогда не иметь колбочки одного типа вместо трех? Да потому, что при одном типе колбочек, скажем красных, вы не смогли бы отличить свет с наиболее эффективной длиной волны в области 560 нм от более яркого света с менее эффективной длиной волны. Необходимо иметь возможность отличать изменения яркости от изменений длины волны.

Но предположим, что у вас есть два вида колбочек с перекрывающимися кривыми спектральной чувствительности, например красные и зеленые колбочки. Теперь вы можете определять длину волны простым сравнением выходов колбочек. При коротких волнах сильнее будут реагировать зеленые колбочки; по мере увеличения длины волны реакции тех и других колбочек будут все больше приближаться друг к другу, пока не сравняются; примерно при 580 нм красные начнут отвечать лучше зеленых, и эта разница будет постепенно увеличиваться по мере дальнейшего роста длины волны. Если мы вычтем из кривой чувствительности для одних колбочек кривую для других (это логарифмические кривые, поэтому мы фактически берем отношения величин), то мы получим некоторую кривую, не зависящую от интенсивности света. Таким образом, колбочки двух типов вместе образуют прибор для измерения длины волны.

Почему же тогда двух типов рецепторов мало, чтобы полностью объяснить свойства нашего цветового зрения? Двух и в самом деле было бы достаточно, если бы мы имели дело только с монохроматическим светом - если бы мы согласились отказаться от таких вещей, как способность отличать цветной свет от белого. Наше зрение таково, что никакой монохроматический свет с любой длиной волны не выглядит белым. Это было бы невозможно при колбочках только двух типов. В случае красных и зеленых колбочек, продвигаясь от коротких к длинным волнам, мы постепенно переходим от стимуляции только зеленых к стимуляции только красных рецепторов со всеми промежуточными соотношениями между реакциями тех и других. Белый свет, состоящий, по существу, из смеси всех волн, должен в определенной мере стимулировать и красные, и зеленые колбочки. Таким образом, если монохроматический свет будет иметь длину волны, дающую то же соотношение реакций, то он будет неотличим от белого. Именно так обстоит дело при наиболее распространенной форме цветовой слепоты, когда человек имеет только два вида колбочек: независимо от того, какой из трех пигментов отсутствует, всегда найдется свет с какой-то длиной волны, неотличимый от белого. (Эти люди обладают дефектами цветового восприятия, но, конечно, не являются полностью цветнослепыми.)

Чтобы иметь цветовое зрение
, подобное нашему, необходимо и достаточно иметь колбочки трех типов. Вывод о том, что у нас действительно именно три типа колбочек, был впервые сделан при исследовании особенностей цветового зрения человека, в результате ряда дедуктивных умозаключений, делающих честь человеческому интеллекту.

Теперь мы можем лучше понять, почему палочки не участвуют в восприятии цвета. При промежуточных уровнях освещенности могут функционировать как палочки, так и колбочки, но нервная система (если не считать редких искусственных ситуаций), по-видимому, не занимается вычитанием палочковых влияний из кол бочковых. Колбочки сравнивают друг с другом, а палочки работают сами по себе. Если вы хотите убедиться в том, что палочки не передают информацию о цвете, проснитесь лунной ночью и оглядитесь. Хотя форму предметов вы сможете видеть довольно хорошо, цвета будут полностью отсутствовать. Удивительно, как мало людей осознают, что при слабом свете они обходятся без цветового зрения.

Увидим ли мы данный объект белым или цветным, определяется главным образом (но не всецело) тем, какие из трех типов колбочек активируются. Цвет - это результат неодинаковой стимуляции колбочек разного типа. Понятно, что свет с широкой спектральной кривой, например от солнца или от свечи, будет стимулировать колбочки всех трех типов (возможно, почти одинаково), и тогда ощущение окажется лишенным цвета, или «белым». Если бы нам удалось стимулировать колбочки только одного вида (что с помощью света сделать нелегко из-за перекрывания кривых поглощения), то результатом, как уже говорилось, был бы яркий цвет - фиолетовый, зеленый или красный в зависимости от вида стимулируемых колбочек. То, что максимум чувствительности тех колбочек, которые мы называем «красными», соответствует длине волны света, видимого нами как зеленовато-желтый (560 нм), связано, по-видимому, с тем, что такой свет возбуждает как зеленые, так и красные колбочки - из-за перекрывания кривых их спектральной чувствительности. Используя свет с большей длиной волны, мы можем более эффективно стимулировать красные колбочки по сравнению с зелеными.

Графики на рис. 120 резюмируют цветовые ощущения, возникающие при активации разных сочетаний колбочек светом различного спектрального состава.

Первый и два последних примера должны убедительно показать, что ощущение «белого» цвета - результат примерно одинаковой стимуляции колбочек всех трех типов - может быть вызвано многими различными способами: и воздействием широкополосного света, и с помощью смеси узких спектральных полос, например желтого света с синим или красного с сине-зеленым. Два световых луча называют дополнительными, если их волновой состав и интенсивность подобраны так, что при смешении они дают ощущение «белого». В двух последних примерах синий и желтый, так же как красный с длиной волны 640 нм и сине-зеленый цвета являются дополнительными.

Теории цветового зрения

Все сказанное выше о зависимости видимого цвета от стимуляции тех или иных колбочек основано на исследованиях, начатых Ньютоном в 1704 году и продолжающихся до сих пор. Изобретательность, которую проявил Ньютон в своих экспериментах, трудно переоценить: в работе, посвященной цвету, он при помощи призмы расщеплял белый свет; воссоединял его компоненты второй призмой, вновь получая белый свет; изготовил волчок с цветовыми секторами, при вращении которого опять-таки получался белый цвет. Эти открытия привели к осознанию того, что обычный свет состоит из непрерывного ряда лучей с различными длинами волн.

В XVIII столетии постепенно выяснилось, что всякий цвет можно получить путем смешения трех цветных компонентов в надлежащих пропорциях при условии, что длины их волн достаточно отличаются друг от друга. Представление о том, что любой цвет может быть «составлен» путем манипулирования тремя управляющими факторами (в данном случае путем изменения интенсивности трех различных лучей) получило название трихроматичности . В 1802 году Томас Юнг выдвинул четкую и простую теорию, объясняющую трихрома-тичность: он предположил, что в каждой точке сетчатки должны существовать по меньшей мере три «частицы» - крошечные структуры, чувствительные соответственно к красному, зеленому и фиолетовому. Длительный временной интервал между Ньютоном и Юнгом трудно объясним, но различные «дорожные препятствия» вроде, например, того факта, что желтая и синяя краски, смешиваясь, дают зеленую, не способствовали, конечно, ясности мышления.

Решающие эксперименты,
прямо и недвусмысленно подтвердившие, наконец, идею Юнга о том, что цвет должен определяться мозаикой трех видов детекторов в сетчатке, были проведены в 1959 году: Джордж Уолд и Пол Браун в Гарварде и Эдвард Мак-Никол и Уильям Маркс в Университете Джонса Гопкинса изучали под микроскопом способность отдельных колбочек поглощать свет с различной длиной волны и обнаружили три и только три типа колбочек. До этого ученые прилагали все усилия, используя менее прямые методы, и за несколько столетий фактически пришли к такому же результату, доказав теорию Юнга о необходимости именно трех типов колбочек и оценив их спектральную чувствительность. Применялись в основном психофизические методы: ученые выясняли, какие цветовые ощущения вызывают различные смеси монохроматических лучей, как влияет на цветовое зрение избирательное обесцвечивание рецепторов под действием монохроматического света, а также исследовали цветовую слепоту.

Изучение эффектов смешения цветов необычайно интересно - настолько его результаты удивительны и противоречат интуиции. Никто без предварительного знания не угадал бы разнообразные явления, иллюстрируемые на рис. 120 и 121, - например, не мог бы предсказать, что два пятна, ярко-синее и ярко-желтое, при наложении друг на друга сольются в белый цвет, неотличимый на глаз от цвета мела, или что зеленый и красный спектральные цвета при их объединении дадут желтый, почти неотличимый от монохроматического желтого цвета.

Прежде чем обсуждать другие теории цвета, нужно сообщить ряд дополнительных сведений о разнообразии цветов, которое эти теории призваны объяснить. Какие существуют цвета помимо цветов радуги? По моему мнению, имеются три вида таких цветов. Один вид - пурпурные, которые отсутствуют в радуге, но появляются при одновременной стимуляции красных и синих колбочек, т. е. при смешении длинно- и коротковолнового, или, грубо говоря, красного и синего света.

Если к смеси спектрального красного и спектрального синего света - к пурпурному - мы добавим надлежащее количество зеленого, то мы получим белый цвет; поэтому мы говорим, что зеленый и пурпурный являются дополнительными. Можно, если угодно, представить себе круговую шкалу, включающую все цвета спектра от красного через желтый и зеленый до синего и фиолетового с последующим переходом к пурпурным цветам - сначала к синевато-пурпурному, затем к красновато-пурпурному и наконец опять к красному. Можно расположить эти оттенки так, чтобы дополнительные цвета располагались друг против друга. Понятие основных цветов не вписывается в эту схему: если определить основные цвета в соответствии с тремя типами рецепторов, то мы выделим зеленовато-желтый, зеленый и фиолетовый, т. е. оттенки, вряд ли согласующиеся с представлением о трех чистых базовых цветах. Но если под основными подразумевать три цвета, из которых можно получить любой другой оттенок, то упомянутые три цвета этому критерию удовлетворяют, как, впрочем, и любые другие три достаточно далеко отстоящие друг от друга цвета. Таким образом, ничто из сказанного выше не обосновывает представление о трех единственных основных цветах.

Второй тип цвета получается от добавления белого к любому цвету спектра или к пурпурному; мы говорим, что такое добавление «разбавляет» цвет, делает его бледнее - на профессиональном языке говорят, что белый уменьшает насыщенность цвета. Для подбора двух идентичных цветов мы должны сделать их одинаковыми по тону и насыщенности (выбрав, например, соответствующее положение на цветовом круге и затем добавив нужное количество белого), а потом уравнять по интенсивности. Таким образом, мы можем определить некоторый цвет, задав длину волны света (или в случае пурпурного - дополнительного к нему цвета), относительное содержание белого света и число, характеризующее интенсивность. Математически эквивалентная возможность определения цвета состоит в задании трех чисел, представляющих относительные влияния света на три типа колбочек. В любом случае необходимы три числа.

Типичным примером цвета третьего типа, не укладывающегося в приведенные выше объяснения, является коричневый. Я вернусь к нему позднее.

Герман Гельмгольц принял и отстаивал теорию Юнга, которая приобрела известность как теория Юнга-Гельмгольца. Между прочим, именно Гельмгольц объяснил, наконец, феномен, упомянутые в начале этой главы и заключающийся в том, что смесь желтой и синей красок дает зеленую. Вы можете легко убедиться, насколько это отличается от смешения желтого и синего света, проделав следующий опыт, для которого вам понадобятся всего лишь два диапроектора и немного желтого и синего целлофана. Сначала прикрепите желтый целлофан к линзе одного проектора, а синий - к линзе другого и наложите проецируемые изображения друг на друга.

Отрегулировав относительные интенсивности, вы получите в зоне перекрывания чистый белый свет. Этот вид смешения цветов мы уже рассматривали; как мы тогда объяснили, белый свет возникает из-за того, что совместное воздействие желтого и синего света активирует все три системы колбочек с той же относительной эффективностью, что и широкополосный, или белый, свет. Теперь выключите один проектор и расположите оба фильтра перед другим; вы получите зеленый цвет. Чтобы понять, отчего так происходит, мы должны знать, что синий целлофан поглощает из белого света длинноволновую часть, т. е. желтый и красный, а остальную, которая выглядит синей, пропускает, в то время как желтый фильтр поглощает в основном синюю часть, а остальную, кажущуюся желтой, пропускает. Схема на рис. 122 показывает спектральный состав света, пропускаемого каждым фильтром.

Обратите внимание на то, что в обоих случаях пропускаемый свет далек от монохроматического. Желтый свет - это не узкополосный спектральный желтый, а смесь спектрального желтого с более короткими зелеными, более длинными оранжевыми и красными волнами. Аналогичным образом, синий - это спектральный синий с примесью зеленого и фиолетового. Почему же в таком случае мы видим только желтый или только синий цвет? Дело в том, что ощущение желтого - результат одинаковой стимуляции красных и зеленых колбочек без какого-либо воздействия на синие колбочки; такую стимуляцию можно осуществлять как спектральным желтым (монохроматическим светом с длиной волны 580 нм), так и более широким волновым «мазком», который обычно свойствен пигментам, - нужно лишь, чтобы ширина спектра не была чрезмерно велика и спектр не содержал коротких волн, стимулирующих синие колбочки.

Аналогичным образом, спектральный синий свет оказывает приблизительно такое же воздействие, как синий плюс зеленый плюс фиолетовый. Теперь при использовании двух фильтров, расположенных один перед другим, мы получим то, что пропускают оба фильтра, т. е. зеленые лучи. Именно в этой области перекрываются приведенные на рис. 128 графики для широкополосного синего и желтого света. То же самое происходит с красками: желтая и синяя краски вместе поглощают весь свет, кроме зеленых участков, которые отражаются. Отметим, что если бы мы использовали в нашем опыте монохроматические желтый и синий фильтры, расположив их один перед другим, они не пропустили бы ничего. Смешивание происходит только потому, что свет, пропускаемый или отражаемый красящими веществами, имеет широкополосный спектральный состав.

Резюмируем это многословное объяснение того, почему «желтый плюс синий равен зеленому», следующим кратким утверждением о цвете и красителях: два фильтра, расположенные один перед другим, или две смешанные краски совместно поглощают из белого света все, кроме волн средней длины, т. е. зеленого цвета.

Почему я обсуждаю здесь этот феномен? Отчасти потому, что это объясняет драматичный и сенсационный результат смешения желтого и синего с получением зеленого, но еще больше из-за исторической важности этого результата для подтверждения нашего понимания цветового зрения. Феномен этот физический; он связан с цветовым зрением и биологией примерно так же, как с ними связаны перекрещивание поляроидов и получение черного или добавление к кислоте синего лакмуса и получение красного, - говоря коротко, никак. И все-таки мысль о связи смешения цветов с цветовым зрением еще продолжает смущать многих, и это обусловлено представлением о том, что красный, желтый и синий - основные цвета, а зеленый - нет. Если какой-либо набор цветов и можно признать основным, так это четыре цвета - красный, синий, желтый и зеленый. Как мы убедимся в разделе, посвященном теории Геринга, основание, с которым все четыре цвета могут претендовать на звание основных, мало связано с тремя типами колбочек и значительно больше - с последующей переработкой информации в сетчатке и в мозгу.

(Этим нисколько не обесценивается знание живописцем того факта, что всего тремя красками можно имитировать большинство цветовых оттенков. Но даже мастер в своей области может ошибиться. В одной книге, посвященной ткацкому делу, в главе, излагающей теорию цвета, я нашел утверждение, что если вы смешаете в ткани желтые и синие нити, то получите зеленый цвет. На самом же деле получится серый цвет - по биологическим причинам.)

Цветовая слепота

Из работ Дж. Уолда, У. Раштона у многих других мы знаем, что в основе обычных форм цветовой слепоты, имеющейся примерно у 8 процентов мужчин, лежит отсутствие или нехватка одного или нескольких типов колбочек. Число возможных комбинаций отсутствия или количественного недостатка тех или иных колбочек делает цветовую слепоту весьма сложным объектом исследования.

Иногда цветовая слепота возникает в левом или правом поле зрения после локального инсульта.в контралатеральном или ипсилатеральном полушарии. При этом, вероятно, повреждается какая-то высшая корковая зрительная зона, расположенная выше стриарной коры и зоны 18, - зона, названная V4 Семи-ром Зеки из Университетского колледжа.

Теория Геринга

Параллельно теории цвета Юнга-Гельмгольца возникла и до недавнего времени казалась с ней несовместимой вторая научная школа. Эвальд Геринг (1834-1918) интерпретировал результаты смешения цветов, предположив, что в глазу и/или мозгу существуют три оппонентных процесса: один для ощущения красного и зеленого, другой для желтого и синего и третий, качественно отличный от двух первых, - для черного и белого. Геринга поразило отсутствие (их невозможно даже представить себе!) цветов, которые можно было бы описать как желтовато-синий или красновато-зеленый, а также «взаимное уничтожение» синего и желтого или красного и зеленого при их смешении в надлежащих пропорциях - цвет при этом полностью исчезает, т. е. возникает ощущение белого цвета.

Геринг рассматривал красно-зеленый и желто-синий процессы как независимые в том смысле, что смесь синего и красного дает синевато-красный, или пурпурный; аналогично, смесь красного и желтого дает оранжевый, смесь зеленого и синего - синевато-зеленый, а смесь зеленого и желтого - зеленовато-желтый. В системе Геринга желтый, синий, красный и зеленый могут считаться «основными» цветами. Смотря на оранжевое, каждый может представить его себе как результат смешения красного и желтого, но никому не удается, глядя на красное или синее, видеть в нем результат смешения каких-либо других цветов. (Возникающее у некоторых людей ощущение, будто зеленый выглядит как желтый с добавкой синего, обусловлено, вероятно, их детским жизненным опытом, связанным с наборами красок.)

Многим казалось, что представления Геринга о сине-зеленом и желто-синем процессах опираются всего лишь на интуитивные впечатления о цвете. Но поражает, насколько хорошо согласуются мнения людей, которых просили указать точку спектра, где представлен чистый синий цвет без какой-либо кажущейся примеси зеленого или желтого. То же самое можно сказать о желтом и зеленом цветах. Что касается красного цвета, то оценка испытуемых вновь совпадает, но в этом случае они настаивают на том, что нужно добавить немного фиолетового, чтобы устранить чуть заметную желтизну длинноволнового света. [Именно такой субъективный красный при добавлении к зеленому дает белый; обычный (спектральный) красный, добавленный к зеленому, дает желтый.] Мы можем сравнить желто-синий и красно-зеленый процессы Геринга с двумя приборами вроде старинных вольтметров, стрелка одного из которых отклоняется влево при регистрации желтого и вправо при регистрации синего, а другой прибор ведет себя точно так же по отношению к паре «красный-зеленый». Цвет объекта при этом можно описать показаниями двух приборов.

Третий антагонистический процесс Геринга (его можно представить себе как третий вольтметр) регистрирует соотношение черного и белого. Геринг понимал, что ощущение черного и серого порождается не просто отсутствием света, поступающего от некоторого объекта или поверхности, а возникает тогда и только тогда, когда от объекта приходит меньше света, чем в среднем от окружающих областей. Ощущение белого возникает только в том случае, если фон темнее и отсутствует цвет. По теории Геринга черно-белый процесс предполагает пространственное сравнение или вычитание отражающих способностей, в то время как его желто-синий и красно-зеленый процессы происходят в одном определенном участке поля зрения и не связаны с окружением. (Геринг, несомненно, знал о взаимодействии соседних цветов, но его теория цвета, как она сформулирована в его поздних работах, не включает эти явления.) Мы уже видели, что черное и белое действительно представлены в сетчатке и в мозгу пространственно разделенными процессами возбуждения и торможения (on- off), которые в буквальном смысле слова антагонистичны.

Теория Геринга позволила объяснить не только все спектральные цвета и уровни насыщенности, но и такие цвета, как коричневый и оливково-зеленый, которые отсутствуют в радуге и даже не могут быть воспроизведены ни в одной из классических психофизических процедур смешения цветов, в которых мы с помощью диапроектора отбрасываем световые пятна на темный экран. Мы получим коричневый цвет лишь в том случае, если желтое или оранжевое световое пятно будет окружено в среднем более ярким светом. Возьмите любую коричневую поверхность, посмотрите на нее через свернутый трубкой кусок черной бумаги, чтобы исключить все ее окружение, и вы увидите желтый или оранжевый цвет. Мы можем считать коричневый цвет смесью черного, получаемого только в условиях пространственного контраста, с оранжевым или желтым. По терминологии Геринга, при этом работают по меньшей мере две системы - черно-белая и желто-синяя.

Теория Геринга о трех оппонентных системах - красно-зеленой, желтосиней и черно-белый - в его время и еще полстолетия рассматривали как альтернативную по отношению к трехкомпонентной («красный, зеленый, синий») теории Юнга - Гельмгольца. Сторонники каждой из них были, как правило, весьма фанатичны и зачастую чрезмерно эмоциональны. Физики обычно примыкали к лагерю Юнга - Гельмгольца, быть может потому, что их привлекали количественные аргументы (такие, например, как системы линейных уравнений) и отталкивали доводы, связанные с чистотой цветов. Психологи часто были на стороне Геринга, вероятно в связи с тем, что им приходилось иметь дело с более широким разнообразием психофизических феноменов.

Теория Геринга, казалось, содержала доводы в пользу либо четырех типов рецепторов (красный, зеленый, желтый и синий), либо трех (черно-белый, желтосиний и красно-зеленый); оба варианта противоречили накапливавшимся данным, которые подкрепляли исходную гипотезу Юнга. Ретроспективно можно сказать, как отмечают современные психофизики Лео Гурвич и Доротея Джеймсон, что одна из трудностей была связана с отсутствием до 1950-х годов каких-либо прямых физиологических данных о тормозных механизмах в сенсорных системах. Такие данные появились лишь тогда, когда стала возможной регистрация активности одиночных нейронов.

Представив себе вольтметры, измеряющие положительные величины отклонением вправо, а отрицательные - влево, вы сможете понять, почему теория Геринга предполагает наличие тормозных механизмов. Желтый и синий цвета взаимно антагонистичны; смешиваясь, они уничтожают друг друга, а если стрелка красно-зеленый системы тоже указывает на нуль, то цвет отсутствует. Геринг в известном смысле на пятьдесят лет опередил свое время. Как это случалось и раньше в истории науки, две теории, на протяжении десятилетий казавшиеся несовместимыми, обе оказались верны. В конце прошлого столетия никто не мог предположить, что представления Юнга - Гельмгольца окажутся верными для рецепторного уровня, а идеи Геринга об оппонентных процессах - для последующих уровней зрительной системы. Теперь стало ясно, что эти две формулировки не исключают друг друга: обе они предполагают наличие системы с тремя переменными - это три типа колбочек в теории Юнга-Гельмгольца и три измерительных прибора или процесса в теории Геринга.

Что нас сегодня изумляет, так это то, что Геринг, опираясь на столь ограниченный фактический материал, сумел сформулировать теорию, так хорошо согласующуюся с нейронной организацией центральных механизмов цветового зрения. Тем не менее специалисты по цветовому зрению все еще разделены на два лагеря: одни считают Геринга пророком, а другие видят в упомянутом соответствии лишь случайную удачу. Я наверняка наживу врагов среди тех и других, так как занимаю нейтральную позицию и только чуть-чуть склоняюсь в пользу первого мнения.

Цвет и пространство

Мы уже с Вами видели, что восприятие объекта как белого, черного или серого зависит от его относительной способности отражать свет по сравнению с другими предметами, находящимися в поле зрения. Таким образом, свойства широкополосных клеток нижних уровней зрительной системы - ганглиозных клеток сетчатки и клеток коленчатого тела - позволяют в значительной мере объяснить восприятие черного, белого и серого: именно такое сравнение они осуществляют при помощи своих рецептивных полей с центром и периферией. Несомненно, именно в этом состоит третий, пространственно оппонентный черно-белый процесс Геринга. То, что пространственная переменная важна и для восприятия других цветов, начали впервые осознавать еще столетие назад; однако аналитический подход к этому вопросу стал разрабатываться только в последние десятилетия, в основном усилиями таких психофизиков, как Лео Гурвич и Доротея Джеймсон, Дин Джадд и Эдвин Лэнд.

Лэнд с его глубоким интересом к проблемам освещения и фотографии был, естественно, заинтригован неспособностью фотокамеры компенсировать различия в источниках света. Если фотопленка сбалансирована так, что изображение белой рубашки выглядит белым при свете вольфрамовых ламп накаливания, то та же рубашка под синим небом будет светло-голубой; если же пленка предназначена для естественного света, рубашка при обычном электрическом свете будет розовой. При изготовлении хорошей цветной фотографии мы должны учитывать не только интенсивность света, но и его спектральный состав - будет ли свет голубоватым или красноватым. Если мы знаем это, мы сможем установить выдержку и диафрагму с учетом интенсивности и подобрать пленку или фильтры с учетом цветового баланса.

В отличие от фотокамеры наша зрительная система делает все это автоматически; она настолько хорошо решает эту задачу, что обычно мы даже не осознаем, что такая проблема существует. Белая рубашка выглядит белой, несмотря на большие сдвиги в спектральном составе света при переходе от освещения солнцем в зените к освещению заходящим солнцем, вольфрамовой или флуоресцентной лампой. То же постоянство сохраняется для окрашенных объектов, и этот феномен применительно к цветному и белому называют константностью цвета. Хотя константность известна уже давно, демонстрации Лэнда в 50-х годах явились большим сюрпризом даже для нейрофизиологов, физиков и большинства психологов.

Каковы же эти демонстрации? В типичном эксперименте мозаику из прямоугольных кусков бумаги разного цвета, напоминающую рисунки Мондриана, освещают тремя диапроекторами, один из которых снабжен красным, другой зеленым и третий синим фильтрами. Каждый проектор имеет регулируемый источник света, так что интенсивность его можно изменять в широких пределах. В остальном комната должна быть полностью затемнена. Если все три проектора установить на среднюю интенсивность, то цвета будут выглядеть примерно так же, как при дневном свете. Удивительно, что точная установка как будто не имеет значения. Выберем зеленый участок мозаики и фотометром точно измерим интенсивность приходящего от него света, когда включен только один проектор. Затем повторим измерение со вторым проектором, а потом с третьим. Это даст нам три числа, характеризующих свет, отражаемый при включении всех трех проекторов.

Выберем теперь другой участок, например оранжевый, и отрегулируем поочередно интенсивность каждого проектора так, чтобы показания фотометра для оранжевого участка совпадали с теми, которые мы получили ранее для зеленого. Таким образом, при включении трех проекторов свет, приходящий теперь от оранжевого участка, идентичен по составу тому, который минутой ранее приходил от зеленого участка. Что мы ожидаем увидеть? Рассуждая примитивным образом, мы скажем, что оранжевый участок превратился в зеленый. Но он все-таки выглядит оранжевым - его цвет даже нисколько не изменился. Мы можем повторить этот эксперимент с любыми двумя участками. Вывод таков: не столь важно, на какую интенсивность света установлены три проектора, пока от каждого из них поступает какой-то свет. Почти в любом случае мы заметим лишь очень малые изменения воспринимаемого цвета.

Такие эксперименты убедительно показали , что ощущение, возникающее в какой-либо части поля зрения, зависит как от света, приходящего от этой части, так и от света, приходящего от остальных участков. Иначе как мог бы свет одинакового спектрального состава вызывать в одном случае ощущение зеленого, а в другом - ощущение оранжевого? Принцип, применимый к черному, белому и серому и столь четко сформулированный Герингом, оказывается верным и в отношении цвета. Для цвета мы имеем оппонентность не только локальную (красный/зеленый и желтый/синий), но также и пространственную: красный/зеленый в центре против красного/зеленого на периферии и аналогичную оппонентность для желтого/синего.

В 1985 году Дэвиду Инглу в лаборатории Лэнда удалось в аквариуме с подводной мозаикой из разноцветных прямоугольников обучить золотую рыбку подплывать к участку определенного цвета. Он обнаружил, что рыбка плывет к одному и тому же цвету, например синему, независимо от спектрального состава света: она, как и мы, выбирает синий участок, даже если свет от него идентичен по составу свету, который в предыдущей пробе при ином источнике света приходил от желтого лоскута, отвергаемого рыбкой. Таким образом, рыба тоже выбирает участок поверхности по его собственному цвету, а не по спектральному составу отражаемого им света. Это означает, что феномен константности цвета не следует считать каким-то усовершенствованием, недавно добавленным в ходе эволюции к цветоощущению некоторых высших млекопитающих, в том числе и человека; наличие его у рыб указывает на то, что это примитивный, весьма общий аспект цветового зрения. Очень заманчиво (и довольно несложно) было бы проверить, обладают ли той же способностью насекомые с цветовым зрением. Я думаю, что это именно так.

Лэнд и его группа (среди прочих Дж. Мак-Кэнн, Н. Доу, М. Бёрнс и X. Перри) разработали несколько процедур для предсказания видимого цвета некоторого объекта по спектрально-энергетическому составу света от всех точек поля зрения, но без какой-либо информации о источнике света. Расчет заключается в том, что для каждого из трех отдельных проекторов определяют отношение света, приходящего от места, цвет которого нужно предсказать, к усредненному свету, приходящему от окружения. (Площадь «окружения», которую нужно учитывать, в разных вариантах теории Лэнда различна. В новейшем варианте предполагается, что влияние окружающих участков уменьшается с расстоянием.) Получаемая тройка чисел - отношения берутся для каждого проектора - однозначно определяет цвет данного места. Любому цвету, таким образом, можно поставить в соответствие некоторую точку в трехмерном пространстве, координатными осями которого будут три отношения, полученные для красного, зеленого и синего света. Чтобы сделать формулировку как можно более реалистичной, три источника света подбираются в соответствии с кривыми спектральной чувствительности трех типов колбочек человека.

То, что таким образом можно вычислить цвет, означает наличие константности цвета, поскольку для каждого проектора подсчитывается соотношение света от одной области к свету от усредненного окружения. Точная установка силы света в проекторах более не важна: единственным условием остается то, что мы должны иметь какой-то свет от каждого проектора - иначе нельзя будет вычислить никакого отношения. Одно из следствий всего этого заключается в том, что для появления цвета необходимы различия в спектральном составе света в пределах поля зрения. Для восприятия цвета нам нужны цветовые границы, точно так же как нужны границы освещенности для восприятия черного и белого.

Вы можете легко убедиться в этом, снова использовав два диапроектора. Поставьте перед одним из проекторов красный фильтр (подойдет красный целлофан) и осветите любую группу предметов. Я предпочитаю брать белую или желтую рубашку и яркий красный галстук. При таком освещении ни рубашка, ни галстук не выглядят вполне красными: и то и другое кажется розоватым и как бы полинявшим. Теперь осветите ту же комбинацию предметов вторым проектором, прикрыв его синим целлофаном.

Рубашка будет выглядеть бледно-голубоватой, а галстук - черным: красные объекты не отражают коротких световых волн. Вернитесь к красному проектору и убедитесь еще раз, что галстук не выглядит особенно красным. Теперь добавьте синий проектор. Вы знаете, что при добавлении синего света вы не получите от галстука какого-либо дополнительного отражения - вы только что это продемонстрировали, - но при включении синего проектора красный галстук внезапно засверкает хорошим ярким красным цветом. Это убедит вас в том, что галстук делают красным не только лучи, приходящие от него самого.

Эксперименты со стабилизированными цветовыми границами согласуются с представлением о том, что вообще для видения цвета необходимы различия на границах. Альфред Ярбус, имя которого упоминалось в главе 4 в связи с движением глаз, в 1962 году показал, что если смотреть на синее пятно, окруженное красным фоном, стабилизация границы пятна на сетчатке приводит к его исчезновению: синее пропадает, и все, что можно видеть, - это красный фон. Стабилизация границ на сетчатке явно делает их неэффективными, а без них исчезает и цвет.

Эти психофизические доказательства того, что для восприятия цвета нужны различия в спектральном составе света от разных участков поля зрения, указывают на возможное наличие в наших сетчатках или мозгу клеток, чувствительных к цветовым границам. Этот довод аналогичен тому, который приводился нами в главе 4 по поводу восприятия черных или белых объектов. Если на каком-то уровне нашей зрительной системы информация о цвете передается только на линиях цветового контраста, то клетки с рецептивными полями, лежащими целиком внутри областей однородного цвета, будут бездействовать. Результат - экономия при обработке информации.

Таким образом,
от передачи сведений о цвете лишь на границах мы получаем два преимущества: во-первых, цвет не меняется при изменениях освещения, так что мы узнаём о свойствах рассматриваемых объектов без искажений, вносимых источником света; во-вторых, информация обрабатывается экономным способом. Теперь мы можем задаться вопросом: почему система эволюционировала именно таким образом? Была ли главным фактором эволюции необходимость константности цвета, а экономия:- лишь сопутствующей выгодой? Или, наоборот, экономия играла ведущую роль, а константность - второстепенную. Второе предположение многим может показаться более убедительным: вряд ли эволюция могла предвидеть появление ламп накаливания или флуоресцентного освещения, да и наши рубашки вовсе не были такими белыми, пока не появились современные моющие средства.

Статья из книги: .

Профессор Е. Рабкин

На протяжении многих лет в единственной в нашей стране Лаборатории цветового зрения Всесоюзного научно-исследовательского института железнодорожной гигиены под руководством доктора медицинских наук профессора Е. Б. Рабкина разрабатываются проблемы, связанные с особенностями цветоразличительной функции зрительной системы человека.

Слева - репродукция с картины известного художника Ганса Гольбейна, справа - копия с репродукции этой же картины, выполненная художником, страдающим нарушением цветовосприятия (преимущественно красного цвета).

На графике показаны кривые зависимости влияния различных характеристик цвета на зрительно-нервный аппарат человека.

Наш корреспондент А. Быков попросил профессора Е. Б. Рабкина познакомить читателей журнала с историей науки о цвете, рассказать о причинах нарушения цветового зрения у человека.

Вопрос. Великий поэт Гёте писал: «Люди в общем очень радуются цветам. Глаз чувствует потребность их видеть... Вспомним о том приятном оживлении, которое мы испытываем, когда в пасмурный день лучи солнца упадут на часть видимого пейзажа и цвета освещенных предметов делаются для нас хорошо видимыми».

Где и когда возникла наука о цвете?

Ответ. Учение о цвете зародилось в Элладе. Еще Эмпедокл, философ и проповедник V века до нашей эры, высказывал мысли о существовании основных цветов. По его мнению, их было четыре: красный и желтый, белый, черный, что соответствовало «четырем основным элементам», установленным им же: огонь, земля, воздух, вода. Зрение Эмпедокл объяснял так. Он считал, что из глаза «истекают» потоки мелких частиц. Когда они встречаются, возникает зрительное ощущение, в том числе и цветовое.

В I веке до нашей эры Демокрит предпринял попытку объяснить природу отдельных цветов, используя свою атомную теорию. Он также признавал четыре основных цвета.

Учению о цвете придавали большое значение и Платон и его ученик Аристотель. А небольшой трактат «О цветах», авторство которого точно не установлено (оно приписывается Аристотелю или его ученику Теофрасту), хотя и не сыграл большой роли в теории цветоощущения, все же содержит ряд интересных и значительных мыслей.

Гениальный итальянский художник и ученый эпохи Возрождения Леонардо да Винчи, считавший глаз важнейшим из всех органов чувств, писал: «Глаз есть окно человеческого тела, через которое он глядит на свой путь и наслаждается красотою мира».

Сегодня исследователями "Наиболее принята трехкомпонентная теория, согласно которой в нашей зрительной системе существуют три цветоощущающих аппарата, которые реагируют на различные цвета и дают нам возможность их видеть.

Впервые основные идеи трехкомпонентной теории цветового зрения были высказаны М. В. Ломоносовым в его знаменитом сочинении «Слово о происхождении света, новую теорию о цветах представляющее: в публичном собрании Императорской Академии наук июля 1 дня 1756 года говоре иное...». Великий русский ученый считал, что причиной света является движение эфира, состоящего из частиц трех видов различных размеров. Частицы эфира могут совмещаться с частицами материи, из которых состоит «дно» глаза, и приводить их в «коловратное» движение. При этом «от первого рода эфира происходит цвет красной, от второго желтой, от третьего голубой. Прочие цвета рождаются от смешения первых».

К трехкомпонентной теории цветового зрения пришел и Томас Юнг. В 1801 году он писал: «В настоящее время, когда почти невозможно представить себе, что каждая чувствительная точка сетчатки содержит бесчисленное множество составных частиц, способных вибрировать в унисон с каждым возможным световым колебанием, мы приходим с необходимостью к предположению о существовании ограниченного числа рецепторов сетчатки, воспринимающих, например, такие основные цвета, как красный, желтый и синий...». В более поздних работах он остановился на трех «основных» цветах: красном, зеленом и фиолетовом. Опытным путем Юнг обнаружил, что любой видимый в спектре цвет может быть получен смешением не менее трех световых лучей (см. рисунок). Дальнейшее развитие трехкомпонентная теория цветового зрения получила в работах крупнейшего немецкого естествоиспытателя Г. Гельмгольца.

Таким образом, согласно теории Ломоносова - Юнга - Гельмгольца, существуют три типа цветочувствительных элементов, реагирующих на красный, зеленый и синий (фиолетовый) цвета. Каждый вид этих рецепторов возбуждается преимущественно одним из основных цветов, реагируя частично и на другие. Ощущение «неосновных» цветов возникает при смешении сигналов трех рецепторных систем, а ощущение белого цвета-при равномерном раздражении этих сигналов.

Вопрос. В 1666 году Ньютон, пропуская солнечный луч через трехгранную призму из стекла, впервые наблюдал образование спектральной полосы, состоящей из гаммы определенных цветов. Было установлено, что белый цвет неоднороден, это смесь нескольких цветов. Существует ли четкая классификация цветов?

Ответ. Все множество цветов подразделяется на две группы: ахроматические и хроматические.

К ахроматическим относятся белый цвет, черный и серый со всеми своими многочисленными оттенками (их более трехсот). Все остальные цвета - хроматические.

Ахроматические цвета можно представить себе расположенными на прямой, цвет которой постепенно изменяется от белого до черного. Друг от друга они разнятся только по одному признаку - яркости или светлоте.

Хроматическим цветам присуща уже не одна, а несколько характеристик. Они обладают, кроме светлоты, еще цветовым тоном и насыщенностью. К основным световым тонам относятся семь цветов солнечного спектра. Цветовой тон определяется длиной световой волны. Так, красный цвет - длинноволновой, зеленый - средневолновой, а фиолетовый - коротковолновой. Насыщенность хроматического цвета зависит от степени «разбавления» его белым. (Это свойство можно проследить на примере неравномерно выгоревшей на солнце материи.) Смещение трех основных цветов в различных соотношениях определяет все многообразие оттенков.

Указав цветовой тон, насыщенность и светлоту, можно математически точно обозначить любой из всего множества окружающих нас цветов.

Вопрос. Известно, что цвет играет большую роль в жизни человека. Движение транспорта регулируется сигналами различных цветов; характер окраски микроорганизмов играет большую роль в диагностировании того или иного заболевания; правильный подбор оттенков имеет первостепенное значение в красильной, ткацкой и полиграфической промышленности... Одним словом, знание цветовых характеристик необходимо для многих отраслей науки и техники. Каковы методы их определения?

Ответ. Цветовые характеристики определяются сложными приборами: колориметрами и спектрофотометрами. Однако более распространенный метод измерения цвета с помощью специальных атласов.

Атласов цветов много, но наибольшее признание получил атлас с колориметрированными образцами цветов, разработанный в нашей лаборатории. Для измерения цветности в атласе подбирается тождественный цветовой тон, а затем по специальным таблицам находят основные характеристики цвета.

Пользуясь атласом, измерение цвета необходимо проводить на ахроматическом фоне (серый, черный, белый и все их оттенки). Это позволяет избежать резких контрастов, отражающихся на правильном восприятии цвета. Наблюдать это можно, поместив образцы, к примеру, желтой бумаги на фоны разных хроматических цветов. На красном фоне желтое поле покажется зеленоватым, на зеленом - оранжевым.

Вопрос. Согласно данным исследователей различных стран, в мире сейчас насчитывается более ста миллионов человек, страдающих расстройствами цветового зрения. Когда впервые было обнаружено, что цветовое зрение может быть нарушено?

Ответ. Первым в мире описал странные явления, происходящие с его зрением, английский физик и химик Джон Дальтон. Если он достаточно легко и точно мог различать ахроматические цвета, а также синий, то восприятие красного и в несколько меньшей степени зеленого цветов его очень затрудняло. В 1794 году Дальтон сделал в Манчестере доклад о собственном недостатке цветового зрения - цветовой слепоте. В 1798 году доклад был напечатан и стал одной из основных работ по изучению врожденного цветового расстройства, названного в 1827 году дальтонизмом.

Нарушение цветового зрения может иметь серьезные последствия. Так, в 1875 году в Лагерлунде (Швеция) произошло крушение поезда, которое повлекло за собой много человеческих жертв. Причина катастрофы казалась необъяснимой. Действительно, как мог машинист повести состав на красный сигнал семафора? Ответил на этот вопрос физиолог, известный шведский ученый Гольмгрен. Показав оставшемуся в живых машинисту мотки цветной шерсти, он установил, что тот страдал расстройством цветового зрения, его глаза не воспринимали различий между красным и зеленым цветами. Это несчастье и послужило поводом к введению обязательной проверки цветового зрения у работников всех видов транспорта.

Вопрос. Каковы способы исследования недостатков цветового зрения?

Ответ. Еще в 1837 году Август Зеебек для изучения особенностей восприятия цвета использовал набор 300 самых разнообразных предметов, различных по цветовому тону и насыщенности. Упоминавшийся ранее набор Гольмгрена состоял только из однородных предметов - 133 мотков цветной шерсти.

В дальнейшем для определения цветовой слепоты применяли испытательные таблицы, на которых среди пятен одного цвета были помещены пятна другого цвета, образующие для нормально видящего цифру или фигуру. Люди с нарушенным цветовым восприятием не могут отличить цвет фигур или цифр от цвета фона. (Впервые такие таблицы были предложены в 1876 году немецким ученым Штиллингом.)

В нашей стране, да и за рубежом, широко применяются разработанные нами «Полихроматические таблицы для исследования цветоощущения». Они выдержали уже 9 изданий. Особенность этих таблиц заключается в том, что с их помощью можно не только констатировать наличие цветового расстройства, но и получить также полное представление о его форме и степени, что имеет важное теоретическое и практическое значение. Кстати, эти таблицы хорошо знакомы каждому, кто проходил медицинское освидетельствование для получения водительских прав.

Помимо таблиц, существуют специальные приборы для исследования цветового зрения - спектральные аномалоскопы. Первый аномалоскоп был создан еще в 1907 году немецким ученым Нагелем.

В нашей лаборатории разработан спектральный аномалоскоп - АСР, который определяет абсолютные пороги цветочувствительности, устанавливает степень функциональной устойчивости цветового зрения, исследует контрастную чувствительность и цветоразличительную способность человеческого глаза.

Вопрос. Каковы современные представления о типах расстройства цветоощущения и кто наиболее им подвержен?

Ответ. Нарушения цветовосприятия могут быть врожденными и приобретенными. Врожденное расстройство относительно стабильно, оно передается по наследству через поколение (от деда внуку) и касается почти исключительно красного и зеленого цветов. Приобретенное расстройство возникает вследствие заболеваний зрительно-нервного аппарата центральной нервной системы и может касаться всех основных цветов. Так, при отслоении сетчатки преподносит «сюрпризы» синий цвет. К приобретенному расстройству цветоощущения могут привести травмы, опухоли глаза и головного мозга.

Наиболее редко встречаются случаи полной цветовой слепоты, или монохромазии. Лица, подверженные монохромазии, воспринимают мир как черно-белую фотографию.

Значительное распространение имеют формы аномальной трихромазии и дихромазии. При аномальной трихромазии понижается восприятие либо преимущественно красного (протаномалия), либо зеленого (дейтераномалия). При дихромазии - частичной цветовой слепоте (в зависимости от восприятия цвета называемой протанопией и дейтеранопией) - расстройства цветового зрения выражены значительно резче.

Согласно предложенной нами классификации степеней расстройств, протаномалия и дейтераномалия делятся на типы: А - высокая, В - средняя, С - низкая степень аномалии.

Врожденное расстройство цветовосприятия встречается приблизительно у 8-10% мужчин, у женщин же наблюдается значительно реже - всего около 0,5%.

В 1931 году на Международном конгрессе офтальмологов немецкий ученый Энгелькинг сделал сенсационное сообщение. Он установил, что явления, аналогичные дальтонизму, наблюдаются у 42 процентов людей в состоянии утомления. Гипотезу Энгелькинга подтвердили и другие ученые. Действительно, при рассмотрении на спектральном аномалоскопе двух образцов различного цвета испытуемый через некоторый промежуток времени перестает различать эти цвета, попросту говоря, они сливаются.

Нам удалось доказать, что в своих исследованиях Энгелькинг не учел фактора времени. Дело в том, что при длительном наблюдении зрительная система утомляется, и наступает фаза временного неразличения цвета. Этот эффект получил название адиcпаропии, что в переводе означает «неразличение неравенства». Адиспаропия проявляется по-разному. Так, у людей с нормальным зрением она наступает медленнее, чем у людей, страдающих близорукостью. Достаточно точно момент появления адиспаропии можно определить при помощи аномалоскопа. Явление это носит временный характер благодаря колоссальным компенсаторным возможностям нашей зрительной системы.

Вопрос. XX век принято называть веком скоростей. Увеличение быстроты передвижения значительно увеличивает объем зрительной информации и требует улучшения цветовой сигнализации. В связи с этим возникает вопрос: как повысить цветоразличительную функцию зрительного анализатора?

Ответ. Длительные исследования, проведенные в нашей лаборатории, показали, что лучше всего стимулируют цветоразличительную функцию некоторые биологические вещества растительного происхождения. Это женьшень, лимонник китайский и элеутерококк. Эти препараты значительно повышают спектральную и контрастную чувствительность глаза и соответственно улучшают в 2,5-5,5 раза устойчивость восприятия красного и зеленого цветов, что особенно важно для лиц, деятельность которых связана с различием цветовых сигналов.

Особенно эффективен элеутерококк. Препарат действует в течение 29-33 часов. (Этого времени вполне достаточно, например, для самого длительного воздушного перелета.)

Аналогичное эффективное воздействие оказывают биологически активные вещества и на людей, страдающих врожденным расстройством цветового зрения.

По данным различных ученых, около 90 процентов информации человек получает с помощью зрительно-нервного аппарата. Установлено также, что около 80 процентов всех рабочих операций в значительной мере связаны со зрительным контролем. Цветовая среда оказывает и существенное влияние на психофизиологическое состояние человека, его работоспособность. Эксперименты, проведенные в ГДР, показали, что только за счет оптимальной окраски рабочих мест можно увеличить производительность труда более чем на 25 процентов.

Доказано, что цвета средневолновой зоны спектра (зеленый, желтый и их оттенки), а также белый цвет больше всего стимулируют функциональную способность зрительного анализатора, уменьшая утомление и повышая уровень устойчивости зрения. И наоборот, высокая степень чистоты цвета, то есть большая его насыщенность, особенно для крайних участков спектра, утомляет зрительно-нервный аппарат человека.

Результаты обширных исследований по изучению воздействий различных характеристик цвета на человека, проведенных в нашей лаборатории за последние годы, легли в основу подготавливаемого в настоящее время к печати проекта Государственного стандарта СССР «Гамма цветов для цветового оформления объектов народного хозяйства». Цель этого стандарта - создание оптимальной цветовой среды на производстве и в быту.

В ГОСТе на основе научно обоснованных физиолого-гигиенических принципов выделены две основные группы цветов: оптимальная и субоптимальная, а также и третья группа, включающая серию предупреждающих цветов.

Оптимальные цвета - основные. К ним относятся цвета средневолновой части спектра и группы оттенков, близко к ней расположенных. Оптимальными цветами окрашивается все, что нуждается в цветовом оформлении.

К субоптимальным цветам отнесены цветовые оттенки той же средневолновой зоны спектра и расположенные за ее пределами. Это предупреждающие цвета. Они применяются главным образом для облегчения распознавания тех объектов, обращение с которыми может привести к травматизму.

Введение нового ГОСТа обеспечит создание оптимальной цветовой среды, в значительной мере улучшит условия труда.

Цветоощущение (цветовая чувствительность, цветовое восприятие) - способность зрения воспринимать и преобразовывать световое излучение определённого спектрального состава в ощущение различных цветовых оттенков и тонов, формируя целостное субъективное ощущение («хроматичность», «цветность», колорит).

Цвет характеризуется тремя качествами:

  • цветовым тоном, который является основным признаком цвета и зависит от длины световой волны;
  • насыщенностью, определяемой долей основного тона среди примесей другого цвета;
  • яркостью, или светлотой, которая проявляется степенью близости к белому цвету (степень разведения белым цветом).

Человеческий глаз замечает изменения цвета только в случае превышения так называемого цветового порога (минимального изменения цвета, заметного глазом).

Физическая сущность света и цвета

Светом или световым излучением называются видимые электромагнитные колебания.

Световые излучения подразделяются на сложные и простые .

Белый солнечный свет - сложное излучение, которое состоит из простых цветных составляющих – монохроматических (одноцветных) излучений. Цвета монохроматических излучений называют спектральными.

Если луч белого цвета разложить с помощью призмы в спектр, то можно увидеть ряд непрерывно изменяющихся цветов: темно-синий, синий, голубой, сине-зеленый, желто-зеленый, желтый, оранжевый, красный.

Цвет излучения определяется длиной волны. Весь видимый спектр излучений расположен в диапазоне длин волн от 380 до 720 нм (1 нм = 10 -9 м, т.е. одной миллиардной доли метра).

Всю видимую часть спектра можно разделить на три зоны

  • Излучением длиной волны от 380 до 490 нм называется синей зоной спектра;
  • от 490 до 570 нм - зеленой;
  • от 580 до 720 нм - красной.

Различные предметы человек видит окрашенными в разные цвета потому, что монохроматические излучения отражаются от них по-разному, в разных соотношениях.

Все цвета делятся на ахроматические и хроматические

  • Ахроматические (бесцветные) - это серые цвета различной светлоты, белый и черный цвета. Ахроматические цвета характеризуются светлотой.
  • Все остальные цвета – хроматические (цветные): синий, зеленый, красный, желтый и т.д. Хроматические цвета характеризуются цветовым тоном, светлотой и насыщенностью.

Цветовой тон - это субъективная характеристика цвета, которая зависит не только от спектрального состава излучений, попавших в глаз наблюдателя, но и от психологических особенностей индивидуального восприятия.

Светлота субъективно характеризует яркость цвета.

Яркость определяет силу света, излучаемую или отражаемую с единицы поверхности в перпендикулярном к ней направлении (единица яркости – кандела на метр, кд/м).

Насыщенность субъективно характеризует интенсивность ощущения цветового тона.
Поскольку в возникновении зрительного ощущения цвета участвует не только источник излучения и окрашенный предмет, но и глаз и мозг наблюдателя, то следует рассмотреть некоторые основные сведения о физической сущности процесса цветового зрения.

Восприятие цвета глазом

Известно, что глаз по устройству представляет собой подобие фотоаппарата, в котором сетчатка играет роль светочувствительного слоя. Излучения различного спектрального состава регистрируются нервными клетками сетчатки (рецепторами).

Рецепторы, обеспечивающие цветовое зрение, подразделяются на три типа. Каждый тип рецепторов по-разному поглощает излучение трех основных зон спектра - синей, зеленой и красной, т.е. обладает различной спектральной чувствительностью. Если на сетчатку глаза попадает излучение синей зоны, то оно будет воспринято только одним типом рецепторов, которые и передадут информацию о мощности этого излучения в мозг наблюдателя. В результате возникнет ощущение синего цвета. Аналогично будет протекать процесс и в случае попадания на сетчатку глаза излучений зеленой и красной зон спектра. При одновременном возбуждении рецепторов двух или трех типов будет возникать цветовое ощущение, зависящее от соотношения мощностей излучения различных зон спектра.

При одновременном возбуждении рецепторов, регистрирующих излучения, например, синей и зеленой зон спектра, может возникнуть световое ощущение, от темно-синего до желто-зеленого. Ощущение в большей степени синих оттенков цвета будет возникать в случае большей мощности излучений синей зоны, а зеленых оттенков - в случае большей мощности излучения зеленой зоне спектра. Равные по мощности излучения синей и зеленой зон вызовут ощущение голубого цвета, зеленый и красной зон - ощущение желтого цвета, красной и синей зон - ощущение пурпурного цвета. Голубой, пурпурный и желтый цвета называются в связи с этим двухзональными. Равные по мощности излучения всех трех зон спектра вызывают ощущение серого цвета различной светлоты, который превращается в белый цвет при достаточной мощности излучений.

Аддитивный синтез света

Это процесс получения различных цветов за счет смешивания (сложения) излучений трех основных зон спектра - синего, зеленого и красного.

Эти цвета называются основными или первичными излучениями адаптивного синтеза.

Различные цвета могут быть получены этим способом, например, на белом экране с помощью трех проекторов со светофильтрами синего (Blue), зеленого (Green) и красного (Red) цветов. На участках экрана, освещаемых одновременно из разных проекторов могут быть получены любые цвета. Изменение цвета достигается при этом изменением соотношения мощности основных излучений. Сложение излучений происходит вне глаза наблюдателя. Это одна из разновидностей аддитивного синтеза.

Еще одна разновидность аддитивного синтеза - пространственное смещение. Пространственное смещение основано на том, что глаз не различает отдельно расположенных мелких разноцветных элементов изображения. Таких, например, как растровые точки. Но вместе с тем мелкие элементы изображения перемещаются по сетчатке глаза, поэтому на одни и те же рецепторы последовательно воздействует различное излучение соседних разноокрашенных растровых точек. В связи с тем, что глаз не различает быстрой смены излучений, он воспринимает их как цвет смеси.

Субтрактивный синтез цвета

Это процесс получения цветов за счет поглощения (вычитания) излучений из белого цвета.

В субтрактивном синтезе новый цвет получают с помощью красочных слоев: голубого (Cyan), пурпурного (Magenta) и желтого (Yellow). Это основные или первичные цвета субтрактивного синтеза. Голубая краска поглощает (вычитает из белого) красные излучения, пурпурная - зеленые, а желтая - синие.

Для того, чтобы субтрактивным способом, получить, например, красный цвет нужно на пути белого излучения поместить желтый и пурпурный светофильтры. Они будут поглощать (вычитать) соответственно синие и зеленые излучения. Такой же результат будет получен, если на белую бумагу нанести желтую и пурпурные краски. Тогда до белой бумаги дойдет только красное излучение, которое отражается от нее и попадает в глаз наблюдателя.

  • Основные цвета аддитивного синтеза - синий, зеленый и красный и
  • основные цвета субтрактивного синтеза - желтый, пурпурный и голубой образуют пары дополнительных цветов.

Дополнительными называют цвета двух излучений или двух красок, которые в смеси делают ахроматический цвет: Ж + С, П + З, Г + К.

При аддитивном синтезе дополнительные цвета дают серый и белый цвета, так как в сумме представляют излучение всей видимой части спектра, а при субтрактивном синтезе смесь указанных красок дает серый и черный цвета, в виде того, что слои этих красок поглощают излучения всех зон спектра.

Рассмотренные принципы образования цвета лежат и в основе получения цветных изображений в полиграфии. Для получения полиграфических цветных изображений используют так называемые триадные печатные краски: голубую, пурпурную и желтую. Эти краски прозрачны и каждая из них, как уже было указано, вычитает излучение одной из зон спектра.

Однако, из-за неидеальности компонентов субтактивного синтеза при изготовлении печатной продукции используют четвертую дополнительную черную краску.

Из схемы видно, что если наносить на белую бумагу триадные краски в различном сочетании, то можно получить все основные (первичные) цвета как для аддитивного синтеза, так и для субтрактивного. Это обстоятельство доказывает возможность получения цветов необходимых характеристик при изготовлении цветной полиграфической продукции триадными красками.

Изменение характеристик воспроизводимого цвета происходит по-разному, в зависимости от способа печати. В глубокой печати переход от светлых участков изображения к темным осуществляется благодаря изменению толщины красочного слоя, что и позволяет регулировать основные характеристики воспроизводимого цвета. В глубокой печати образование цветов происходит субтрактивно.

В высокой и офсетной печати цвета различных участков изображения передаются растровыми элементами различной площади. Здесь характеристики воспроизводимого цвета регулируются размерами растровых элементов различного цвета. Ранее уже отмечалось, что цвета в этом случае образуются аддитивным синтезом – пространственным смешиванием цветов мелких элементов. Однако, там, где растровые точки различных цветов совпадают друг с другом и краски накладываются одна на другую, новый цвет точек образуется субтрактивным синтезом.

Оценка цвета

Для измерения, передачи и хранения информации о цвете необходима стандартная система измерений. Человеческое зрение может считаться одним из наиболее точных измерительных приборов, но оно не в состоянии ни присваивать цветам определенные числовые значения, ни в точности их запоминать. Большинство людей не осознает, насколько значительно воздействие цвета на их повседневную жизнь. Когда дело доходит до многократного воспроизведения, цвет, кажущийся одному человеку «красным», другим воспринимается как «красновато-оранжевый».

Методы, которыми осуществляется объективная количественная характеристика цвета и цветовых различий, называют колориметрическими методами.

Трехцветная теория зрения позволяет объяснить возникновение ощущений различного цветового тона, светлоты и насыщенности.

Цветовые пространства

Координаты цвета
L (Lightness) - яркость цвета измеряется от 0 до 100%,
a - диапазон цвета по цветовому кругу от зеленого -120 до красного значения +120,
b - диапазон цвета от синего -120 до желтого +120

В 1931 г. Международная комиссия по освещению – CIE (Commission Internationale de L`Eclairage) предложила математически рассчитанное цветовое пространство XYZ, в котором весь видимый человеческим глазом спектр лежал внутри. В качестве базовых была выбрана система реальных цветов (красного, зеленого и синего), а свободный пересчет одних координат в другие позволял проводить различного рода измерения.

Недостатком нового пространства была его неравноконтрастность. Понимая это, ученые проводили дальнейшие исследования, и в 1960 г. Мак-Адам внес некоторые дополнения и изменения в существовавшее цветовое пространство, назвав его UVW (или CIE-60).

Затем в 1964 г. по предложению Г. Вышецкого было введено пространство U*V*W* (CIE-64).
Вопреки ожиданию специалистов предложенная система оказалась недостаточно совершенной. В одних случаях используемые при расчете цветовых координат формулы давали удовлетворительные результаты (в основном при аддитивном синтезе), в других (при субтрактивном синтезе) погрешности оказывались чрезмерными.

Это заставило CIE принять новую равноконтрастную систему. В 1976 г. были устранены все разногласия и на свет появились пространства Luv и Lab, базирующиеся на том же XYZ.

Эти цветовые пространства принимают за основу самостоятельных колориметрических систем CIELuv и CIELab. Считается, что первая система в большей мере отвечает условиям аддитивного синтеза, а вторая - субтрактивного.

В настоящее время цветовое пространство CIELab (CIE-76) служит международным стандартом работы с цветом. Основное преимущество пространства - независимость как от устройств воспроизведения цвета на мониторах, так и от устройств ввода и вывода информации. С помощью стандартов CIE могут быть описаны все цвета, которые воспринимает человеческий глаз.

Количество измеряемого цвета характеризуется тремя числами, показывающими относительные количества смешиваемых излучений. Эти числа называются цветовыми координатами. Все колориметрические методы основаны на трехмерности т.е. на своего рода объемности цвета.

Эти методы дают столь же надежную количественную характеристику цвета, как например измерение температуры или влажности. Отличие состоит лишь в количестве характеризующих значений и их взаимосвязи. Эта взаимосвязь трех основных цветных координат выражается в согласованном изменении при изменении цвета освещения. Поэтому «трехцветные» измерения проводятся в строго определенных условиях при стандартизованном белом освещении.

Таким образом, цвет в колориметрическом понимании однозначно определяется спектральным составом измеряемого излучения, цветовое же ощущение не однозначно определяется спектральным составом излучения, а зависит от условий наблюдения и в частности от цвета освещения.

Физиология рецепторов сетчатки

Восприятие цвета связано с функцией колбочковых клеток сетчатки глаза. Пигменты, содержащиеся в колбочках поглощают часть падающего на них света и отражающее остальную. Если какие-то спектральные компоненты видимого света поглощаются лучше других, то этот предмет мы воспринимаем как окрашенный.

Первичное различение цветов происходит в сетчатке- в палочках и колбочках свет вызывает первичное раздражение, которое превращается в электрические импульсы для окончательного формирования воспринимаемого оттенка в коре головного мозга.

В отличие от палочек, содержащих родопсин, колбочки содержат белок йодопсин. Йодопсин - общее название зрительных пигментов колбочек. Существует три типа йодопсина:

  • хлоролаб («зелёный», GCP),
  • эритролаб («красный», RCP) и
  • цианолаб («синий», BCP).

В настоящее время известно, что светочувствительный пигмент йодопсин находящийся во всех колбочках глаза, включает в себя такие пигменты, как хлоролаб и эритролаб. Оба эти пигмента чувствительны ко всей области видимого спектра, однако первый из них имеет максимум поглощения, соответствующий жёлто-зеленой (максимум поглощения около 540 нм.), а второй жёлто-красной (оранжевой) (максимум поглощения около 570 нм.) частям спектра. Обращает на себя внимание тот факт, что их максимумы поглощения расположены рядом. Это не соответствуют принятым «основным» цветам и не согласуется с основными принципами трёхкомпонентной модели.

Третий, гипотетический пигмент, чувствительный к фиолетово-синей области спектра, заранее получивший название цианолаб, на сегодняшний день так и не найден.

Кроме того, найти какую-либо разницу между колбочками в сетчатке глаза не удалось, не удалось и доказать наличие в каждой колбочке только одного типа пигмента. Более того, было признано, что в колбочке одновременно находятся пигменты хлоролаб и эритролаб.

Неаллельные гены хлоролаба (кодируется генами OPN1MW и OPN1MW2) и эритролаба (кодируется геном OPN1LW) находятся в Х-хромосомах. Эти гены давно хорошо выделены и изучены. Поэтому чаще всего встречаются такие формы дальтонизма, как дейтеронопия (нарушение образования хлоролаба) (6 % мужчин страдают этим заболеванием) и протанопия (нарушение образования эритолаба) (2 % мужчин). При этом некоторые люди, имеющие нарушения восприятия оттенков красного и зелёного, лучше людей с нормальным восприятием цветов воспринимают оттенки других цветов, например, цвета хаки.

Ген цианолаба OPN1SW расположен в седьмой хромосоме, поэтому тританопия (аутосомная форма дальтонизма, при которой нарушено образования цианолаба) - редкое заболевание. Человек, больной тританопией, всё видит в зеленых и красных цветах и не различает предметы в сумерках.

Нелинейная двухкомпонентная теория зрения

По другой модели (нелинейная двухкомпонентная теория зрения С. Ременко), третий «гипотетический» пигмент цианолаб не нужен, приёмником синей части спектра служит палочка. Это объясняется тем, что при яркости освещения достаточной для различения цветов, максимум спектральной чувствительности палочки (благодаря выцветанию содержащегося в ней родопсина) смещается от зелёной области спектра к синей. По этой теории колбочка должна содержать в себе всего два пигмента с рядом расположенными максимами чувствительности: хлоролаб (чувствительный к жёлто-зелёной области спектра) и эритролаб (чувствительный к жёлто-красной части спектра). Эти два пигмента давно найдены и тщательно изучены. При этом колбочка является нелинейным датчиком отношений, выдающем не только информацию о соотношении красного и зелёного цвета, но и выделяющем уровень жёлтого цвета в этой смеси.

Доказательством того, что приёмником синей части спектра в глазу является палочка, может служить и тот факт, что при цветоаномалии третьего типа (тританопия), глаз человека не только не воспринимает синей части спектра, но и не различает предметы в сумерках (куриная слепота), а это указывает именно на отсутствие нормальной работы палочек. Сторонники трёхкомпонентных теорий объяснить, почему всегда, одновременно с прекращением работы синего приёмника, перестают работать и палочки до сих пор не могут.

Кроме того, подтверждением этого механизма является и давно известный Эффект Пуркинье, суть которого заключается в том, что при наступлении сумерек, когда освещённость падает, красные цвета чернеют, а белые кажутся голубоватыми . Ричард Филлипс Фейнман отмечает, что: «это объясняется тем, что палочки видят синий край спектра лучше, чем колбочки, но зато колбочки видят, например, тёмно красный цвет, тогда как палочки его совершенно не могут увидеть».

В ночное время, когда поток фотонов недостаточен для нормальной работы глаза, зрение обеспечивают в основном палочки, поэтому ночью человек не может различать цвета.

На сегодняшний день придти к единому мнению о принципе цветовосприятия глазом пока не удалось.

Похожие публикации