Толстые линзы. Главные точки и плоскости. Расчет. Формулы. Главные плоскости и точки


Главные плоскости расположены ближе к поверхностям с большей кривизной, т.е. меньшим радиусом.  

Главные плоскости и главные точки позволяют производить построение лучей, проходящих через систему, без учета действительного преломления их на поверхностях линз или отражения от зеркал.  

Главные плоскости расположены симметрично реальным преломляющим поверхностям только у одиночных двояковыпуклых или двояковогнутых симметричных линз. В реальных системах передняя и задняя преломляющие поверхности находятся на различных расстояниях от соответствующих передней и задней главных точек. Поэтому кроме фокусных расстояний необходимо определить отрезки между главным фокусом и соответствующей передней или задней преломляющей (отражающей) поверхностью системы. Они называются вершинными фокусными расстояниями или соответственно передним SF и задним S F отрезками. Величина заднего отрезка является конструктивным параметром, определяющим расстояние от задней фокальной плоскости до последней линзы системы.  

Главная плоскость - плоскость, проходящая через ось б руса и одну из главных центральных осей инерции сечения.  

Главные плоскости и главные точки могут лежать как внутри, так и вне системы несимметрично относительно поверхностей, ограничивающих систему. Если размер системы в направлении главной оптической оси значительно меньше фокусного расстояния, то луч, проходя внутри системы, мало смещается. Поэтому точки BI и Ci, B2 и С2 (см. рис. 5.1) практически совпадают, а главные плоскости PI и Р2 совмещаются друг с другом и располагаются посередине системы. Такая система называется тонкой линзой. Формулы (1) - (4) остаются справедливыми и для тонкой линзы.  


Главные плоскости в этом интервале изменения Q перекрещены. При дальнейшем уменьшении Q фокусное расстояние становится отрицательным, а главные плоскости располагаются в прямой последовательности.  


Главная плоскость - плоскость, перпендикулярная оптической оси, и проходящая через точку пересечения луча, параллельного оптической оси, и луча, являющегося продолжением его последнего преломленного отрезка. В некоторых случаях габаритные размеры ОС могут быть в 3 - 4 раза меньше ее фокусного расстояния.  

Главные плоскости и главные точки могут лежать и внутри и вне системы, совершенно несимметрично относительно поверхностей, ограничивающих систему, например даже по одну сторону от нее.  

Две условные плоскости H и H ", от которых производится отсчет главных фокусных расстояний f и f " и сопряженных фокусных расстояний а и b связанных формулой:

Положение главных плоскостей в линзе зависит от формы линзы и ее толщины. В сложных объективах положение главных плоскостей зависит от оптических сил отдельных линз и их положения в системе.

Рис. Положение главных плоскостей в линзах разной формы

В симметричных объективах главные плоскости расположены обычно внутри системы, сравнительно недалеко от плоскости диафрагмы. В телеобъективах главные плоскости вынесены далеко вперед и расположены вне объектива.

Рис. Положение задней главной плоскости в объективах различного типа: а - в симметричном объективе задний отрезок короче фокусного расстояния; б - в телеобъективе задний отрезок значительно короче фокусного расстояния; в - в объективе с удлиненным отрезком задний отрезок больше фокусного расстояния

Когда между объективом и светочувствительным слоем необходимо иметь большое расстояние (например, в зеркальных камерах), главные плоскости выносятся назад, и такой объектив называется объективом с удлиненным задним отрезком.

Введение главных плоскостей облегчает графическое построение изображения, так как, зная положение главных плоскостей, можно совершенно не принимать во внимание фактического преломления лучей на многочисленных поверхностях системы и считать, что все преломляющее действие оптической системы сосредоточено в ее главных плоскостях.

Рис. Построение главных плоскостей

На рисунке показано построение главных плоскостей в двояковыпуклой линзе. Луч АВ, идущий параллельно главной оптической оси ОО", преломляясь на первой поверхности, отклоняется к оси и идет в линзе по линии ВС, затем, преломившись на второй поверхности, идет по линии CF " пересекая главную ось в точке F".

Если продолжить с одной стороны луч A By а с другой - провести луч CF " в обратную сторону до их пересечения в точке h ", то два фактических преломления в точках В и С можно заменить одним фиктивным преломлением в точке h ". Разумеется, то же самое имело бы место в сложной системе со многими преломляющими поверхностями, т. е. несколько преломлений может быть заменено совершенно равноценным им одним преломлением в точке h ". Плоскость, проведенная через точку h " перпендикулярно главной оптической оси, называется задней главной плоскостью H".

Таблица

ПОЛОЖЕНИЕ ГЛАВНЫХ ПЛОСКОСТЕЙ В НАИБОЛЕЕ РАСПРОСТРАНЕННЫХ СОВЕТСКИХ ОБЪЕКТИВАХ

Главное фокусное расстояние f , мм

Вершинное фокусное расстояние

Длина объектива 1, мм

Расстояния между главными

плоскостями

Расстояние от вершины объектива до главной плоскости

Объектив

переднее V, мм

заднее V", мм

передней t, мм

задней V, мм.

«Юпитер-3»

«Юпитер-8»

«Юпитер-9»

«Юпитер-11»

«Юпитер-12»

«Индустар-22»

«Индустар-23

«Индустар-51»

«Индустар- 1 0», (ФЭД 1: 3,5)

Знак минус указывает, что расстояние НН" следует не прибавлять к сумме расстояний а+ b , а вычитать из нее, т. е. выражение L = a + b + HH " принимает вид: L = a + b - HH ".

Рис. Положение главных плоскостей в советских объективах

Если луч ab входит в линзу справа и, преломившись дважды в точках b и с, пересекает ось в переднем главном фокусе, то так же можно найти переднюю главную плоскость Н.

В таблице и на рисунке приведено положение главных плоскостей наиболее распространенных советских объективов. Наличие этих данных позволяет точно рассчитать взаимное положение предмета съемки и его изображения относительно объектива для получения заданного масштаба съемки, что особенно важно при съемках на близких расстояниях.

Главные плоскости - это плоскости, перпендикулярные оптической оси и проходящие через точки H и H", называемые главными точками. Особенность главных плоскостей в том, что лучи между ними идут параллельно оптической оси, или как говорят - линейное увеличение в этих главных плоскостях равно +1. Иными словами, если совместить главные плоскости вместе, то они будут служить единственной условной преломляющей поверхностью.

Осуществим сложную оптическую систему, расположив несколько линз одну за другой так, чтобы их главные оптические оси совпадали (рис. 224). Эта общая главная ось всей системы проходит через центры всех поверхностей, ограничивающих отдельные линзы. Направим на систему пучок параллельных лучей, соблюдая, как и в § 88, условие, чтобы диаметр этого пучка был достаточно мал. Мы обнаружим, что по выходе из системы пучок собирается в одной точке F"", которую, так же как и в случае тонкой линзы, назовем задним фокусом системы. Направив параллельный пучок на систему с противоположной стороны, найдем передний фокус системы F. Однако при ответе на вопрос, каково фокусное расстояние рассматриваемой системы, мы встречаем затруднение, ибо неизвестно, до какого места системы надо отсчитывать это расстояние от точек F и F". Точки, аналогичной оптическому центру тонкой линзы, в оптической системе, вообще говоря, нет, и нет оснований отдать предпочтение какой-нибудь из многих поверхностей, составляющих систему; в частности, расстояния от F Рис. 224. Фокусы оптической системы и F" до соответствующих наружных поверхностей системы не являются одинаковыми. Эти затруднения разрешаются следующим образом. В случае тонкой линзы все построения можно сделать, не рассматривая хода лучей в линзе и ограничившись изображением линзы в виде главной плоскости (см. §97). Исследование свойств сложных оптических систем показывает, что и в этом случае мы можем не рассматривать действительного хода лучей в системе. Однако для замены сложной оптической системы приходится использовать не одну главную плоскость, а совокупность двух главных плоскостей, перпендикулярных к оптической оси системы и пересекающих ее в двух так называемых главных точках (H и H"). Отметив на оси положение главных фокусов, мы будем иметь полную характеристику оптической системы (рис. 225). При этом изображение очертаний наружных поверхностей, ограничивающих систему (в виде жирных дуг рис. 225), является излишним. Две главные плоскости системы заменяют единую главную плоскость тонкой линзы: переход от системы к тонкой линзе означает сближение двух главных плоскостей до слияния, так что главные точки H и H" сближаются и совпадают с оптическим центром линзы. Таким образом, главные плоскости системы представляют собою как бы расчленение главной плоскости тонкой линзы. Это обстоятельство находится в соответствии с их основным свойством: луч, входящий в систему, пересекает первую главную плоскость на той же высоте h, на какой выходящий из системы луч пересекает вторую главную плоскость (см, рис. 225). Мы не будем приводить доказательства того, что такая пара плоскостей действительно существует во всякой оптической системе, хотя доказательство это и не представляет особых трудностей; ограничимся лишь указанием метода использования этих характеристик системы для построения изображения. Главные плоскости и главные точки могут лежать и внутри и вне системы, совершенно несимметрично относительно поверхностей, ограничивающих систему, например даже по одну сторону от нее. С помощью главных плоскостей решается и вопрос о фокусных расстояниях системы. Фокусными расстояниями оптической системы называются расстояния от главных точек до соответствующих им фокусов. Таким образом, если мы обозначим F и Н - передний фокус и переднюю главную точку, F" и Н" - задний фокус и заднюю главную точку; то f"=H"F" есть заднее фокусное расстояние системы, f=HF - ее переднее фокусное расстояние. Если по обе стороны системы находится одна и та же среда (например, воздух), так что в ней расположены передний и задний фокусы, то (100.1) как и для тонкой линзы.

Построение изображения в толстой линзе. Тонкая линза - линза, толщина которой много меньше ее радиуса кривизны. Если линзу нельзя считать тонкой, то каждую из двух сферических поверхностей линзы можно рассматривать как отдельную тонкую линзу. Подход при построении изображений состоит в том, что вводится понятие главных плоскостей центрированной оптической системы, частным случаем которой может быть толстая линза. Центрированная оптическая система, которая может состоять и из большого числа линз, полностью характеризуется двумя фокальными и двумя главными плоскостями. Полностью характеризуется в том смысле, что знание положения этих четырех плоскостей достаточно для построения изображений. Все четыре плоскости перпендикулярны оптической оси, следовательно свойства оптической системы полностью определяются четырьмя точками пересечения четырех плоскостей с оптической осью. Эти точки называются кардинальными точками системы. Для тонкой линзы обе главные плоскости совпадают с положением самой линзы. Для более сложных оптических систем существуют формулы расчета положения кардинальных точек через радиусы кривизны поверхностей линз и показатели их преломления. Для построения изображения точечного источника достаточно рассмотреть прохождение через оптическую систему двух удобных нам лучей и найти точку их пересечения после оси. Две сопряженные плоскости Р1 И Р2, отражающие друг друга с поперечным увеличением V=+1, называются главными плоскостями, а точки H1 и H2 – главными точками системы. Расстояния от главных точек до фокусов называются фокусными расстояниями: f1 = H1F1; f2 = H2F2. Любой отрезок в передней главной плоскости изображается равным и одинаково расположенным отрезком в задней главной плоскости. Отсюда следует, что входящий в оптическую систему и выходящий из нее лучи,пересекают главные плоскости на равных высотах h = h. Таким образом действие всех преломляющих поверхностей оптической системы для лучей, идущих из бесконечности, можно свести к действию плоскости, перпендикулярной оптической оси, содержащей в себе точку пересечения лучей входящих в эту систему и выходящих из нее. Для лучей, идущих слева направо, это будет задняя главная плоскость, а для лучей, идущих справа налево - передняя главная плоскость. Положение фокусов и главных плоскостей определяют путем расчета или графического построения хода лучей, параллельных оптической оси, в прямом и обратном направлениях. При построениях изображений в оптический системе можно считать, что между главными плоскостями лучи идут параллельно оптической На этом рисунке показан ход лучей от объекта h к изображению h" через линзу. Точка F", расположенная на оси оптической системы (линзы), в которой сходятся лучи, бывшие до прохождения линзы параллельными оси, называется фокусом линзы. Расстояние от точки F" до главной точки P" называется фокусным расстоянием линзы. Для линзы, имеющей толщину CT, фокусное расстояние рассчитывается по формуле: где R1 и R2 - радиуса поверхностей линзы, n - коэффициент преломления материала линзы. У тонкой линзы толщина CT принимается равной нулю, главные плоскости P и P" совпадают. Формула тонкой линзы имеет вид: Задний фокальный отрезок, BFL - расстояние от вершины последней поверхности линзы до задней фокальной плоскости рассчитывается по формуле: Формула расчета линейного увеличения V имеет следующий вид: Стрелка прогиба поверхности линзы рассчитывается по формуле: Упражнение 1. Определение фокусного расстояния объектива. Для определения фокусного расстояния f воспользуемся выражением для линейного увеличения β = y′/y (рис. 1), где y′ – линейная величина изображения, y – линейная величина предмета. Рассматривая подобные Рис. 1. треугольники в левой и правой части чертежа, можно написать y ′ a′ f z′ β= = = = , y a z f′ z′ = a′ − f ′, a′ = s′ + d ′. Отсюда z′ s′+d′−f′ β= = . (1) f′ f′ В этой формуле все величины измеряемы, кроме d ′ . Эту величину можно определить следующим образом: 9 s′ + d β = a′ = ′ a s+d или: d ′ = sβ + βd − s′ . Произведением βd можно пренебречь ввиду малости обеих величин. Тогда: d ′ = sβ − s′ . Подставляя это выражение в (1), получим: βs = f′ β+1. (2)

Рассмотрим две сопряжённые плоскости, перпендикулярные к оптической оси системы. Отрезок прямой , лежащий в одной из этих плоскостей, будет иметь своим изображением отрезок прямой . Из осевой симметрии системы вытекает, что отрезки и должны лежать в одной проходящей через оптическую ось плоскости (в плоскости рисунка). При этом изображение может быть обращено либо в ту же сторону, что и предмет (Рис. 6.9а), либо в противоположную сторону (Рис. 6.9б). В первом случае изображение называется прямым, во втором – обратным. От

резки, откладываемые от оптической оси вверх принято считать положительными, откладываемые вниз – отрицательными.

Отношение линейных размеров изображения и предмета называется линейным или поперечным увеличением :

Линейное увеличение является алгебраической величиной. Оно положительно, если изображение прямое, и отрицательно, если изображение обратное.

Можно доказать, что существуют две такие сопряжённые плоскости, которые отображаются друг в друга с линейным увеличением . Данные плоскости называются главными . Главная плоскость в пространстве предметов называется передней главной плоскостью . Главная плоскость в пространстве изображений называется задней главной плоскостью . Обозначаются данные плоскости буквами и , соответственно. Аналогично обозначаются и их точки пересечения с оптической осью системы. В зависимости от устройства системы главные плоскости могут находиться как вне, так и внутри системы (Рис.9.10). Возможны ситуации, когда одна из главных плоскостей находится внутри системы, а другая – снаружи её. Иногда реализуется ситуация, когда обе главные плоскости находятся вне системы с одной стороны.

Фокусные расстояния и оптическая сила системы . Расстояние от передней главной точки до переднего фокуса называется передним фокусным расстоянием . Расстояние от до называется задним фокусным расстоянием . Фокусные расстояния – алгебраические величины. Они положительны, если соответствующий фокус лежит справа от своей главной точки, и наоборот. Для фокусных расстояний центрированной оптической системы, образованной двумя сферическими преломляющими поверхностями, имеется соотношение:

где - показатель преломления среды, находящейся перед оптической системой, а - преломления среды, находящейся за системой. При равенстве показателей преломления слева и справа модули фокусных расстояний равны. Величина

называется оптической силой системы. Чем больше , тем сильнее система преломляет лучи. Действительно, тем меньше будет фокусное расстояние, и тем меньше будет расстояние от главной плоскости до точки сбора параллельных лучей, падающих на линзу. Измеряется оптическая сила в диоптриях – 1/м.

Формула оптической системы . Задание кардинальных плоскостей или точек полностью определяет свойства оптической системы. В частности, зная их расположение, можно построить изображение предмета, даваемое системой. Возьмём в пространстве предметов отрезок , перпендикулярный к оптической оси (Рис. 6.11). Положение этого отрезка можно задать либо расстоянием от точки до точки , либо расстоянием от до . Величины являются алгебраическими (на рисунках указаны их модули).

Проведём из точки луч 1, параллельный оптической оси. Он пересечёт плоскость в точке . В соответствии со свойствами главных плоскостей сопряжённый лучу 1 луч должен проходить через сопряжённую с точкой точку . Так как луч 1 параллелен оптической оси, из точки он пойдёт в точку . Теперь проведём из точки луч 2, проходящий через передний фокус. Он пересечёт плоскость в точке . Сопряжённый с ним луч пройдёт точку и пойдёт далее параллельно оптической оси. Изображение точки будет находиться на месте пересечения лучей и обозначаться . Изображение также перпендикулярно оптической оси системы.

Между расстояниями имеется соотношение, называемое формулой Ньютона:

Из формулы легко получить соотношение между :

Принцип Гюйгенса-Френеля.

Далее мы перейдём к рассмотрению процессов, происходящих при падении света на преграду с отверстиями. При этом свет проникает в те области, куда по правилам геометрической оптики он проникать не должен. Данное явление соответствует волновой природе света и объясняется принципом Гюйгенса-Френеля : каждая точка, до которой в момент времени доходит фронт волны, становится источником вторичных сферических волн; огибающая этих волн проходит через фронт волны в момент времени (Рис.6.12).

Интерференция света.

Пусть две ЭМВ с одинаковой частотой находятся в одной области пространства и возбуждают колебания в одной плоскости:

При сложении данных волн амплитуда результирующего колебания будет подчиняться следующему выражению:

где - разность фаз. Если остаётся постоянной во времени, то волны называются когерентными. В случае некогерентных волн член, содержащий косинус, в среднем равен нулю, и амплитуда колебаний будет определяться как . С учётом того, что интенсивность , в некоторой точке пространства будет наблюдаться простое сложение интенсивностей. Иная картина происходит в случае сложения когерентных волн. Например, при и равных амплитудах можно наблюдать увеличение амплитуды в одних точках пространства в два раза, а в других – полное отсутствие поле. То есть, в пространстве будут чередоваться стационарные мини

мумы и максимумы интенсивности. Данное явление называется интерференцией волн.

Явление интерференции используется в самых различных областях науки и техники. Специальные приборы – интерферометры, тем или иным способом используют интерференцию когерентных световых волн для определения их длины волны, точного измерения длин, оценки качества поверхностей в оптических системах. Кроме того, интерференция рентгеновских лучей (с длиной волны ( м) при отражении от кристаллов позволяет определить расстояние между его атомными плоскостями, кристаллическую структуру. В качестве примера можно привести интерферометр Фабри-Перо (Рис.6.14), который используется для исследования тонкой структуры спектральных линий. Он представляет собой две стеклянные или кварцевые пластины, разделённые воздухом или кольцом инвара (сплав никеля (0,36) и железа). Стороны пластин, обращённые друг к другу, тщательно отшлифованы (отклонения – до сотых долей длины волны). При попадании луча на внешнюю сторону одной из пластин в промежутке между ними происходит многолучевая интерференция, в результате которой формируется специфическая интерференционная картина по выходу из интерферометра.

Дифракция света

Дифракцией называется совокупность явлений, сопровождающих распространение волны в среде с резкими неоднородностями. Например, к ним относится огибание светом препятствий и его проникновение в область геометрической тени. В качестве другого примера можно привести прутик в воде, по которой бегут волны. Данные волны «не замечают» прутика, огибая его.

Различают два вида дифракции света. При падении на препятствие практически параллельного пучка лучей и прохождении через точку наблюдения также параллельного пучка лучей говорят о дифракции Фраунгофера . В противном случае говорят о дифракции Френеля .

Дифракционная решётка . Дифракционной решёткой называется совокупность большого числа одинаковых отстоящих друг от друга на одно и то же расстояние щелей. Она характеризуется периодом – расстоянием между серединами соседних щелей. При спектральных исследованиях после решётки, обычно, помещают собирающую линзу (Рис.6.15а), и затем проводят измерения на основе полученной интерференционной картины (Рис.6.15б).

Положение главных максимумов определяется формулой:

где - направление на максимум порядка , - период решётки, - длина волны излучения.

Похожие публикации