Таблица различия между стадиями митоза и мейоза. Митоз и мейоз в эволюции. Чем отличается митоз от мейоза

Все живые организмы состоят из клеток, которые живут своей жизнью, делятся и развиваются. Процесс деления может происходить двумя совершенно противоположными способами, которые имеют одинаковые этапы: мейоз и митоз.

Для живых организмов, клетки которых содержат ядро свойствен преимущественно животные, растения и грибы. В науке данный способ деления принято называть вегетативным размножением. Мейоз также является способом деления, однако его особенность - сокращение в два раза количества хромосом.

Разберемся, чем отличается митоз от мейоза. Каждый процесс проходит аналогичные стадии, однако для каждого из них свойственны особенности, которые и являются основными отличиями.

Первый этап - это процесс деления. Процесс митоза предполагает деление хромосом. Каждая из них образует две новые, которые распределяются между двумя появившимися клетками. Наука доказала, что дальнейшая судьба новых клеток может иметь совершенно разный исход. Так, к примеру, они могут далее делиться, либо деление будет продолжать одна клетка. Возможно прекращение процесса деления одновременно в двух клетках.

Процесс мейоза проходит немного иначе. В его основе заложено два деления. Первое сопровождается уменьшением количества хромосом ровно в два раза. Диплоидная клетка распадается на две гаплоидные. Для каждой хромосомы характерно наличие двух хроматид. Второе деление не предполагает уменьшение количества хромосом. В результате второго деления образовываются четыре новые клетки. В каждой клетке локализируется одна хромосома и одна хроматида. Мейоз и митоз, несмотря на свою схожесть, имеют отличия уже на первой стадии.

Второй этап - конъюгация. Первое в процессе мейоза предполагает объединение гомологических хромосом. Процесс митоза отличается полным отсутствием любого вида спаривания. Далее следует выстраивание хромосом. Митоз характеризируется наличием парных хромосом, однако их равномерное распределение по экватору происходит не парами, а по раздельности. При этом процесс мейоза предполагает совершенно другой эффект. Тут выстраивание вдоль экватора проходит попарно.

Сравнение процессов митоза и мейоза показало, что различия появляются не только в процессе деления, но и в конечном итоге. Митоз становится основой для образования пары соматических и диплоидных клеток. При этом стоит обратить внимание, что на протяжении всего процесса сохраняются наследственные факторы. В итоге протекания мейоза, образуются две пары гаплоидного характера. Что касается вопроса наследственности, то она не сохраняется и в конечном итоге полностью изменена.

Однако самое главное отличие кроется в характере процесса размножения. Мейоз - это процесс полового размножения, который, как правило, протекает исключительно в половых клетках на стадии созревания. Митоз лежит в основе клеток соматического характера. К тому же, именно митоз является единственным способом для восстановиться.

Кроме этого, мейоз и митоз имеют значительные отличия в характере своего предназначения. Мейоз сопутствует поддержанию постоянного количества хромосом и стимулирует появление новых. Они имеют в своем составе наследственные задатки. Митоз основан на удвоении хромосом. Оно проходит на основе продольного деления. Далее образовавшиеся хромосомы расходятся по дочерним клеткам. Исходная информации передается в полном объеме и не меняется. Именно процесс митоза заложен в основе развития организмов, состоящих из множества клеток. Можно сделать вывод, что мейоз и митоз, хоть и следуют одной цели, имеют огромное количество отличий и противоположностей.

Обобщающий урок

Цель: выявить признаки сходства и различия в процессах митоза и мейоза; сделать вывод об их биологическом значении.

Задачи:

Образовательные:

Актуализировать знания учащихся о разных видах деления клетки (митозе, амитозе, мейозе);

Сформировать представление о главных чертах сходства и различия между процессами митоза и мейоза, их биологической сущности.

Развивающая:

Продолжить работу над развитием навыков анализировать и сравнивать процессы деления клетки.

Воспитательная:

Развивать познавательный интерес к информации из разных областей науки.

Оборудование: компьютер с мультимедийным проектором, видеоролик «мейоз» .

План урока:

1. Организационный момент (1,5 мин)

2. Актуализация знаний, основных терминов, связанных с процессами деления клетки (7 мин)

3. Обобщение знаний о процессах митоза и мейоза (10 мин)

4. Практическая работа «Черты сходства и различия между митозом и мейозом» (11 мин)

5. Закрепление знаний (10 мин)

6. Домашнее задание (2 мин)

7. Подведение итогов (2 мин)

Ход урока

Организационный момент

Пояснение цели урока, задач урока, особенности проведения урока

2. Актуализация знаний, основных терминов, понятий, связанных с процессами деления клетки: (ученики дают определение терминам)

Митоз;

Мейоз;

Половые, соматические клетки;

Гаплоидный, диплоидный набор хромосом;

Редукционное деление;

Конъюгация хромосом;

Кроссинговер

3. Обобщение знаний о процессах митоза и мейоза

А) Пользуясь схемой на слайде, ученики рассказывают название каждой фазы митоза(поясняя основные процессы в каждой фазе).

Б) Обьясняют, результат митоза.

В) Работа с микроскопом - рассмотреть микропрепарат «Митоз корешка лука» выявить фазу митоза, которую учащиеся увидели под микроскопом.

Г) Беседа о результатах митоза

Д) Беседа о биологическом значении митоза

А) Просмотр фрагмента учебного фильма «Сущность мейоза»

Б) Беседа о результатах мейоза

Д) Беседа о биологическом значении мейоза

3. Практическая работа «Черты сходства и различия между митозом и мейозом» с использованием мультимедийной презентации «Сравнение митоза и мейоза» (Приложение № 2)

Учащиеся самостоятельно заполняют таблицу Черты сходства и различия между митозом и мейозом

Таблица «Сравнение митоза и мейоза»

Сравнение

Митоз

Мейоз

Сходство

Имеют одинаковые фазы деления.

Происходит редупликация ДНК и спирализация хромосом (перед митозом и мейозом)

Различия

Одно деление

Два деления

В метафазе все удвоенные хромосомы выстраиваются по экватору раздельно

Гомологичные удвоенные хромосомы выстраиваются по экватору парами (бивалентами)

Нет конъюгации

Есть конъюгация

Удвоение ДНК происходит в интерфазе, которая разделяет два деления

Между 1 и 2 делением нет интерфазы, удвоения ДНК не происходит

Образуются 2 диплоидные (соматические) клетки

Образуются 4 гаплоидные (половые) клетки

Происходит в соматических клетках

Происходит в созревающих половых клетках

Лежит в основе бесполого размножения

Лежит в основе полового размножения

Правильность заполнения таблицы проверяется с помощью слайдов презентации

6. Закрепление знаний

Выполнение теста (два варианта) (Приложение № 3)

7. Домашнее задание

Повторить параграф

8. Подведение итогов.

Оценка работы класса и отдельных учащихся. Аргументация выставленных оценок, замечания по уроку, предложения о возможных изменениях на последующих уроках.

Методическая литература:

А.А.Каменский, Е.А.Криксунов, В.В.Пасечник. Общая биология, 10-11 классы. М., «Дрофа», 2009

Биология, 10 класс. Поурочные планы. Издательство «Учитель - АСТ», 2005

А.В.Кулев. Общая биология, 11 класс. Методическое пособие. Санкт-Петербург, «Паритет», 2001

О.А.Пепеляева, И.В.Сунцова. Универсальные поурочные разработки по общей биологии. Москва, «ВАКО», 2006

С.С.Красновидова. Дидактические материалы по общей биологии, 10-11 классы. Москва, «Просвещение», 2000

Уроки биологии Кирилла и Мефодия. Общая биология, 10 класс (СD - ROM for Windows )

Установите последовательность стадии митоза.

Ответ_______________________________2,1,4,3

Приложение № 1.

Ответ: 4, 5,9,7,1,3,2,8,6

Соотнесите отличительные признаки и типы деления клетки:

(1 вариант - для митоза; 2 вариант - для мейоза)

Отличительные признаки

1. Происходит одно деление

2. Гомологичные удвоенные хромосомы выстраиваются по экватору парами (бивалентами)

3. Нет конъюгации

4. Поддерживает постоянное число хромосом вида из поколения в поколение

5. Два последовательных деления

6. Удвоение молекул ДНК происходит в интерфазе, разделяющее два деления

7. Образуются четыре гаплоидные клетки (половые клетки)

8. Между первым и вторым делением нет интерфазы, и не происходит удвоения молекул ДНК

9. Есть конъюгация

10. Образуются две диплоидные клетки (соматические клетки)

11. В метафазе по экватору выстраиваются все удвоенные хромосомы раздельно

12. Обеспечивает бесполое размножение, регенерацию утраченных частей, замещение клеток у многоклеточных организмов

13. Обеспечивает стабильность кариотипа соматических клеток в течение всей жизни

14.Является одним из механизмов возникновения наследственной изменчивости (комбинативной изменчивости)

Типы деления клеток:

А) митоз

В) мейоз

Ответы: 1-1,3,6,10,11,12,13 2-2,4,5,7,8,9,14


Мейоз (от греч. meiosis – уменьшение) - это особый способ деления клеток, в результате которого происходит редукция (уменьшение) числа хромосом и переход клеток из диплоидного состояния 2n в гаплоидное n. Этот вид деления был впервые описан В. Флемингом в 1882 г. у животных и Э. Страсбургером в 1888 г. у растений. Мейоз включает два последовательных деления: первое (редукционное) и второе (эквационное). В каждом делении выделяют 4 фазы: профаза, метафаза, анафаза, телофаза. Все фазы первого мейотического деления обозначают цифрой I, а все фазы второго деления - цифрой II. Мейозу предшествует интерфаза, в процессе которой происходит удвоение ДНК и клетки вступают в мейоз с хромосомным набором 2n4с (n - хромосомы, с - хроматиды).

Профаза I мейоза отличается значительной продолжительностью и сложностью. Ее условно разделяют на пять последовательных стадий: лептотена, зиготена, пахитена, диплотена и диакинез. Каждая из этих стадий обладает своими отличительными особенностями.

Лептотена (стадия тонких нитей). Для этой стадии характерно наличие тонких и длинных хромосомных нитей. Число хромосомных нитей соответствует диплоидному числу хромосом. Каждая хромосомная нить состоит из двух хроматид, соединенных общим участком - центромерой. Хроматиды очень близко сближены, и поэтому каждая хромосома кажется одиночной.

Зиготена (стадия соединения нитей). Моментом перехода лептотены в зиготену считают начало синапса. Синапс – процесс тесной конъюгации двух гомологичных хромосом. Подобная конъюгация отличается высокой точностью. Конъюгация часто начинается с того, что гомологичные концы двух хромосом сближаются на ядерной мембране, а затем процесс соединения гомологов распространяется вдоль хромосом от обоих концов. В других случаях синапс может начаться во внутренних участках хромосом и продолжаться по направлению к их концам. В результате каждый ген входит с соприкосновение с гомологичным ему геном той же хромосомы. Такой тесный контакт между гомологичными участками хроматид обеспечивается благодаря специализированной структуре – синаптонемальному комплексу. Синаптонемальный комплекс представляет собой длинное белковое образование, напоминающее веревочную лестницу, к противоположным сторонам которого плотно прилегают два гомолога.

Пахитена (стадия толстых нитей). Как только завершается синапс по всей длине хромосом, клетки вступают в стадию пахитены, на которой они могут оставаться несколько суток. Соединение гомологов становится столь тесным, что уже трудно отличить две отдельные хромосомы. Однако это пары хромосом, которые называют бивалентами. В этой стадии происходит кроссинговер, или перекрест хромосом.

Кроссинговер (от англ. crossingover - пересечение, скрещивание) - взаимный обмен гомологичными участками гомологичных хромосом. В результате кроссинговера хромосомы несут комбинации генов в новом сочетании. Например, ребенок родителей, один из которых имеет темные волосы и карие глаза, а другой - светловолосый и голубоглазый, может иметь карие глаза и светлые волосы.

Диплотена (стадия двойных нитей). Стадия диплотены начинается с разделения конъюгировавших хромосом. Процесс отталкивания начинается в области центромеры и распространяется к концам. В это время хорошо видно, что бивалент состоит из двух хромосом (откуда и название стадии «двойные нити»), и что каждая хромосома состоит из двух хроматид. Всего в биваленте структурно обособлены четыре хроматиды, поэтому бивалент называют тетрадой. В это же время становится видно, что тела двух гомологичных хромосом переплетаются. Фигуры перекрещенных хромосом напоминают греческую букву «хи» (χ), поэтому места перекреста назвали хиазмами. Наличие хиазм связано с произошедшим кроссинговером. По мере прохождения этой стадии хромосомы как бы раскручиваются, происходит перемещение хиазм от центра к концам хромосом (терминализация хиазм). Это обеспечивает возможность движения хромосом к полюсам в анафазе.

Диакинез. Диплотена незаметно переходит в диакинез, завершающую стадию профазы I. На этой стадии биваленты, которые заполняли весь объем ядра, начинают перемещаться ближе к ядерной оболочке. К концу диакинеза контакт между хроматидами сохраняется на одном или обоих концах. Исчезновение оболочки ядра и ядрышек, а также окончательное формирование веретена деления завершают профазу I.

Метафаза I. В метафазе I биваленты располагаются в экваториальной плоскости клетки. Нити веретена прикрепляются к центромерам гомологичных хромосом.

Анафаза I. В анафазе I к полюсам отходят не хроматиды, как при митозе, а гомологичные хромосомы из каждого бивалента. В этом принципиальное отличие мейоза от митоза. При этом расхождение гомологичных хромосом носит случайный характер.

Телофаза I очень короткая, в процессе ее идет формирование новых ядер. Хромосомы деконденсируются и деспирализуются. Так заканчивается редукционное деление, и клетка переходит в короткую интерфазу, после которой наступает второе мейотическое деление. От обычной интерфазы эта интерфаза отличается тем, что в ней не происходит синтеза ДНК и дупликации хромосом, хотя синтез РНК, белка и других веществ может происходить.

Цитокинез у многих организмов происходит не сразу после деления ядер, так что в одной клетке лежат два ядра более мелких, чем исходное.

Затем наступает второе деление мейоза, сходное с обычным митозом.

Профаза II очень короткая. Она характеризуется спирализацией хромосом, исчезновением ядерной оболочки, ядрышка, формированием веретена деления.

Метафаза II. Хромосомы располагаютсяв экваториальной плоскости. Центромеры, соединяющие пары хроматид, делятся (в первый и единственный раз в течение мейоза), что свидетельствует о начале анафазы II.

В анафазе II хроматиды расходятся и быстро увлекаются нитями веретена от плоскости экватора к противоположным полюсам.

Телофаза II. Для этой стадии характерно деспирализация хромосом, образование ядер, цитокинез. В итоге из двух клеток мейоза I в телофазе II образуются четыре клетки с гаплоидным числом хромосом. Описанный процесс типичен для образования мужских половых клеток. Образование женских половых клеток идет аналогично, но при овогенезе развивается лишь одна яйцеклетка, а три мелких направительных (редукционных) тельца впоследствии отмирают. Направительные тельца несут полноценные хромосомные наборы, но практически лишены цитоплазмы и вскоре погибают. Биологический смысл образования этих телец заключается в необходимости сохранения в цитоплазме яйцеклетки максимального количества желтка, потребного для развития будущего зародыша.

Таким образом, для мейоза характерно два деления: в ходе первого расходятся хромосомы, в ходе второго - хроматиды.

Разновидности мейоза. В зависимости от места в жизненном цикле организма выделяют три основных типа мейоза: зиготный, или начальный, споровый, или промежуточный, гаметный, или конечный. Зиготный тип происходит в зиготе сразу после оплодотворения и приводит к образованию гаплоидного мицелия или таллома, а затем спор и гамет. Этот тип характерен для многих грибов и водорослей. У высших растений наблюдается споровый тип мейоза, который проходит перед цветением и приводит к образованию гаплоидного гаметофита. Позднее в гаметофите образуются гаметы. Для всех многоклеточных животных и ряда низших растений свойственен гаметный, или конечный, тип мейоза. Протекает он в половых органах и приводит к образованию гамет.

Биологическое значение мейоза заключается в том, что:

· поддерживается постоянный кариотип в ряду поколений организмов, размножающихся половым путем (после оплодотворения образуется зигота, содержащая характерный для данного вида набор хромосом).

· обеспечивается перекомбинация генетического материала как на уровне целых хромосом (новые комбинации хромосом), так и на уровне участков хромосом.

Сопровождающееся уменьшением числа хромосом вдвое. Он состоит из двух последовательно идущих деле­ний, имеющих те же фазы, что и митоз. Однако, как показано в таблице «Сравнение митоза и мейоза» , продолжительность отдельных фаз и происходящие в них процессы значительно отличаются от процессов, происходящих при митозе.

Эти отличия в основном состоят в следующем.

В мейозе профаза I более продолжительна. В ней происходит конъюгация (соединение гомологичных хромосом) и обмен генетической информацией . В анафазе I центроме­ры , скрепляющие хроматиды, не делятся , а к полюсам отходит одна из гомологмейоза митоза и ичных хромосом. Интерфаза перед вторым делением очень короткая , в ней ДНК не синтезируется . Клетки (галиты ), образующиеся в результате двух мейотических делений, содержат гаплоидный (одинарный) набор хромосом. Диплоидность восстанавливается при слиянии двух клеток - материнской и отцовской. Опло­дотворенную яйцеклетку называют зиготой .

Митоз и его фазы

Митоз, или непрямое деление , наиболее широко рас­пространен в природе. Митоз лежит в основе деления всех неполовых клеток (эпителиальных, мышечных, нервных, костных и др.). Митоз состоит из четырех последователь­ных фаз (см. далее таблицу). Благодаря митозу обеспечи­вается равномерное распределение генетической информа­ции родительской клетки между дочерними. Период жизни клетки между двумя митозами называют интерфазой . Она в десятки раз продолжительнее митоза. В ней совершается ряд очень важных процессов, предшествующих делению клетки: синтезируются молекулы АТФ и белков , удваивается каждая хромосома, образуя две сестринские хроматиды , скрепленные общей центромерой , увеличивается число основных органоидов цитоплазмы.

В профазе спиралируются и вследствие этого утолща­ются хромосомы , состоящие из двух сестринских хроматид, удерживаемых вместе центромерой. К концу профазы ядерная мембрана и ядрышки исчезают и хромосомы рас­средоточиваются по всей клетке, центриоли отходят к полюсам и образуют веретено деления . В метафазе проис­ходит дальнейшая спирализация хромосом. В эту фазу они наиболее хорошо видны. Их центромеры располагаются по экватору. К ним прикрепляются нити веретена деления.

В анафазе центромеры делятся, сестринские хроматиды отделяются друг от друга и за счет сокращения нитей веретена отходят к противоположным полюсам клетки.

В телофазе цитоплазма делится, хромосомы раскручи­ваются, вновь образуются ядрышки и ядерные мембраны. В животных клетках цитоплазма перешнуровывается, в растительных - в центре материнской клетки образуется перегородка. Так из одной исходной клетки (материнской) образу­ются две новые дочерние.

Таблица - Сравнение митоза и мейоза

Фаза Митоз Мейоз
1 деление 2 деление
Интерфаза

Набор хромосом 2n.

Идет интенсивный синтез белков, АТФ и других органических веществ.

Удваиваются хромосомы, каждая оказывается состоящей из двух сестринских хроматид, скрепленных общей центромерой.

Набор хромосом 2n Наблюдаются те же процессы, что и в митозе, но более продолжительна, особенно при обра­зовании яйцеклеток. Набор хромосом гаплоидный (n). Синтез органических веществ отсутствует.
Профаза Непродолжительна, происходит спирализация хро­мосом, исчезают ядерная оболочка, ядрышко, образуется веретено деления. Более длительна. В начале фазы те же процессы, что и в митозе. Кроме того, происходит конъюгация хромосом, при которой гомологичные хромосомы сближаются по всей длине и скру­чиваются. При этом может происходить обмен генетической информацией (перекрест хромосом) - кроссинговер . Затем хромосомы расходятся. Короткая; те же процессы, что и в митозе, но при n хромосом.
Метафаза Происходит дальнейшая спирализация хромосом, их центромеры располагаются по экватору. Происходят процессы, аналогичные тем, что и в митозе.
Анафаза Центромеры, скрепляющие се­стринские хроматиды, делятся, каждая из них становится новой хромосомой и отходит к противоположным полюсам. Центромеры не делятся. К противоположным полюсам отходит одна из гомологичных хро­мосом, состоящая из двух хроматид, скрепленных общей центромерой. Происходит то же, что и в митозе, но при n хромосом.
Телофаза Делится цитоплазма, образуются две дочерние клетки, каждая с диплоидным набором хромосом. Исчезает веретено деления, формируются ядрышки. Длится недолго Гомологичные хро­мосомы попадают в разные клетки с гаплоидным набором хромосом. Цитоплазма делится не всегда. Делится цитоплазма. После двух мейотических делений образуется 4 клетки с гаплоидным набором хромосом.

Таблица сравнения митоза и мейоза.

А Отличия митоза от мейоза. Цели этих процессов, их основные стадии.

Митоз и мейоз – два вида процесса делœения клеток. Οʜᴎ имеют одинаковые фазы делœения, но сами эти процессы и их результаты существенно различаются.

Митоз – непрямое делœение соматических клеток (клеток тела). Биологическое значение митоза – получение клеток-копий. Таким способом делятся клетки растений, животных, грибов. Также его называют клонированием или вегетативным способом размножения.

Мейоз - ϶ᴛᴏ делœение ядра, при котором получаются половые клетки (у растений – споры). Биологическое значение мейоза:

· Рекомбинация (перемешивание наследственной информации);

· Редукция (уменьшение количества хромосом в 2 раза).

Отличия митоза от мейоза:

1. Мейоз происходит только в половых клетках в отличие от митоза, лежащего в базе бесполого размножения клеток тела.

2. Итог мейоза - четыре половых гаплоидных клетки, наследственность которых изменена; Итог митоза – две копии родительской диплоидной клетки.

3. Митоз происходит в одну стадию, а мейоз поделœен на два этапа делœения клетки. На первом этапе гомологические хромосомы тесно сближаются и обмениваются своими участками, что и приводит к перекомбинации наследственной информации.

4. После митоза получаются клетки тела (соматические), а после мейоза половые: сперматозоиды, яйцеклетки, споры.

Основные стадии митоза: профаза, метафаза, анафаза, телофаза. Так как он непрерывен, смена фаз осуществляется плавно - одна незаметно переходит в другую. Продолжительность митоза – 1-2 часа.

Профаза

· Увеличивается объём ядра, и вследствие спирализации хроматина формируются хромосомы;

· Постепенно растворяются ядрышки и ядерная оболочка, и хромосомы оказываются беспорядочно расположенными в цитоплазме клетки.

· Ядерная оболочка распадается;

· Центриоли расходятся к полюсам клетки, в цитоплазме начинается формирование веретена делœения.

2) Метафаза – хромосомы достигают максимальной спирализации и располагаются упорядоченно на экваторе клетки;

3) Анфаза – каждая хромосома ʼʼрасщепляетсяʼʼ на 2 хроматиды, которые с этого момента называются дочерними хромосомами; эти дочерние хромосомы отделяются друг от друга (хроматиды становятся хромосомами) и расходятся к полюсам.

А Отличия митоза от мейоза. Цели этих процессов, их основные стадии. - понятие и виды. Классификация и особенности категории "А Отличия митоза от мейоза. Цели этих процессов, их основные стадии." 2017, 2018.

Похожие публикации