Переменная звезда. Физические переменные звезды

В далекие древние времена люди часто обращали свой взор к звездам. Изучали этот загадочный мир философы и звездочеты, жрецы и мудрецы. Как вы думаете, откуда мы знаем так много созвездий? Еще в древности люди заметили, что звездное небо практически неизменно, а сами звезды не меняют своего блеска. Так и начали наши предки считать, что небесный мир неизменен, а наш, земной постоянно изменяется. Наверно поэтому все боги всех религий и мировоззрений обитали либо на небе либо в созвездиях. В созвездиях увековечивали могучих животных, мифических героев, царей. Но иногда появлялись «нарушители», это очень яркие звезды, которые внезапно вспыхивали, а потом, после некоторого промежутка времени исчезали. Это были новые звезды. И явление это было не столь частым. А ученые того времени называли их не настоящими. То, что в старину называли новыми звёздами, сейчас относят к одной из двух важных разновидностей переменных: новым либо сверхновым. Вплоть до XVI в. никаких других переменных звёзд ученые не знали. Существует, правда, легенда, что название звезды Персея - Алголь (араб. – «звезда дьявола») - появилось из-за якобы замеченной древними арабами (и хорошо известной сегодня) её переменности.

В 1596 г. немецкий астроном Давид Фабрициус открыл новую звезду 2-й звёздной величины в созвездии Кита. Он некоторое время следил за ней, и, как обычно, новая бесследно исчезла. Но неожиданно в 1609 г. Фабрициус опять нашёл её на небе! Так впервые была обнаружена переменная звезда, которая очень сильно меняла свой блеск: иногда становилась невидимой для невооружённого глаза, иногда вспыхивала вновь, но не пропадала навсегда. Интересно, что в промежутке между двумя открытиями Фабрициуса, в 1603 г., эту звезду наблюдал другой немецкий астроном Иоганн Байер, автор первого полного звёздного атласа неба. Он не заметил переменности, зато нанёс звезду на карту своего атласа под именем Омикрон Кита. Другое её название Мира Кита, или просто Мира (лат. «удивительная»).


Итак, переменные звезды – это звёзды, блеск которых меняется До сих пор астрономы не пришли к единому мнению, какого минимального изменения блеска достаточно для того, чтобы причислить звезду к данному классу. Поэтому в каталоги переменных звезд включают все звезды, у которых достоверно выявлены даже очень незначительные колебания блеска. Сейчас в нашей Галактике известно несколько десятков тысяч переменных звёзд (примечательно, что около 10 тыс. из них открыл один человек – немецкий астроном Куно Хофмейстер), и это число очень быстро растёт благодаря современным точным методам наблюдений. Количество переменных звёзд, обнаруженных в других галактиках, достигает десятков тысяч.
Основные типы переменных звезд

Переменные звёзды различаются массой, размерами, возрастом, причинами переменности и подразделяются на несколько больших групп. Одна из них - пульсирующие звёзды , яркость которых меняется из-за колебания размеров. К ним принадлежат звёзды типа Миры , или мириды , - красные гиганты, меняющие блеск на несколько звёздных величин с периодами в среднем от нескольких месяцев до полутора лет. Среди пульсирующих звёзд очень интересны цефеиды , названные так по имени одной из первых открытых переменных этого типа - Цефея. Цефеиды - это звёзды высокой светимости и умеренной температуры (жёлтые сверхгиганты). В ходе эволюции они приобрели особую структуру на определённой глубине возник слой, который аккумулирует энергию, приходящую из недр, а потом вновь отдает ее. Звезда периодически сжимается, разогреваясь и расширяется, охлаждаясь. Поэтому и энергия излучения то поглощается звездным газом, ионизуя его, то опять выделяется, когда при охлаждении газа ионы захватывают электроны, излучая при этом световые кванты. В результате блеск цeфеиды меняется, как правило, в несколько раз с периодом в несколько суток. Физику пульсаций цефеид впервые успешно объяснил в 50-е гг. советский ученый С. А. Жевакин.

Цефеиды играют особую роль в астрономии. В 1908 г. американский астроном Генриетта Ливитт, исследовавшая цефеиды в одной из ближайших галактик - Малом Магеллановом Облаке, обратила внимание на то, что эти звёзды оказывались тем ярче, чем продолжительнее был период изменения их блеска. Размеры Малого Магелланова Облака небольшие по сравнению с расстоянием до него, а это означает, что разница в видимой яркости отражает отличие в светимости. Благодаря найденной Ливитт зависимости период-светимость легко рассчитать расстояние до каждой цефеиды, измерив её средний блеск и период переменности. А так как сверхгиганты хорошо заметны, цефеиды можно использовать для определения расстояний даже до сравнительно далёких галактик, в которых они наблюдаются. Есть и вторая причина особой роли цефеид. В 60-е гг. советский астроном Юрий Николаевич Ефремов установил, что чем продолжительнее период цефеиды, тем моложе эта звезда. По зависимости период-возраст нетрудно определить возраст каждой цефеиды. Отбирая звёзды с максимальными периодами и изучая звёздные группировки, в которые они входят, астрономы исследуют самые молодые структуры Галактики.

Цефеиды больше других пульсирующих звёзд заслуживают названия периодических переменных. Каждый следующий цикл изменений блеска обычно весьма точно повторяет предыдущий. Однако встречаются и исключения, самое известное из них - Полярная звезда. Уже давно обнаружено, что она относится к цефеидам, хотя и меняет блеск в довольно незначительных пределах. Но в последние десятилетия эти колебания стали затухать, а к середине 90-х гг. Полярная звезда практически перестала пульсировать. Навсегда ли – покажет будущее.

Кроме цефеид и мирид есть немало других типов пульсирующих звёзд. Некоторые из них в противоположность цефеидам принадлежат к самым старым представителям звёздного населения. Так, пульсирующие переменные типа RR Лиры во множестве встречаются в шаровых звёздных скоплениях, возраст которых свыше 12 млрд. лет.

Пульсирующая звезда в определённом смысле подобна колеблющемуся пружинному маятнику: аналогом жёсткости пружины при этом является средняя плотность вещества звезды. Звёзды эволюционируют: меняются их размеры, а, следовательно, и средняя плотность. Всё это отражается на частоте колебаний «звёздной пружины». Систематически измеряя блеск пульсирующей звезды, нетрудно с высокой точностью определить период колебаний. По изменению периода можно понять, какой этап переживает звезда.

Пристальное внимание астрофизиков привлекают не только пульсирующие переменные. Так называемые взрывные (или катаклизмические ) звёзды - пример сложных процессов в двойных звёздных системах, где расстояние между компонентами ненамного превосходит их размеры. В результате взаимодействия компонентов вещество из поверхностных слоев менее плотной из звёзд начинает перетекать на другую звезду. В большинстве взрывных переменных та звезда, на которую перетекает газ – белый карлик. Если на его поверхности накапливается много вещества и резко начинаются термоядерные реакции, то наблюдается вспышка новой звезды. В видимой области спектра блеск при этом возрастает не менее чем на 6 звёздных величин, а иногда и гораздо сильнее (вспыхнувшая в 1975 г. новая V 1500 Лебедя увеличила свой блеск примерно на 19 звёздных величин!). Полная продолжительность вспышки новой - порядка года и больше.

Но и без столь бурных процессов тесная двойная система может быть интересной переменной звездой. Перетекающее вещество не сразу падает на поверхность белого карлика. Если он не обладает сильным магнитным полем, газ образует вокруг белого карлика диск. Этот диск нестабилен, вследствие чего у звезды могут отмечаться вспышки, только менее масштабные, чем у новых, и гораздо меньшей продолжительности (обычно несколько суток от возгорания до затухания). Такие переменные называют карликовыми новыми или переменными типа U близнецов . Если же у белого карлика сильное магнитное поле, вещество падает на звезду в области полюсов и характер переменности становится ещё сложнее.

При внешнем сходстве со вспышкой новой явление сверхновой звезды имеет совсем иную природу: вероятно, это один из последних этапов жизни звезды, когда она катастрофически сжимается, лишившись основных источников термоядерной энергии.

Если в двойной системе, подобной новым или карликовым новым звёздам, вместо белого карлика находится нейтронная звезда пли чёрная дыра, система тоже может наблюдаться как переменная звезда, и при этом она окажется сильным источником рентгеновского излучения. Открыв новый рентгеновский источник, астрономы нередко находят в той же области неба переменную звезду в оптическом диапазоне, а затем им удастся доказать, что именно она испускает рентгеновские лучи. Изучая белые карлики, нейтронные звёзды и чёрные дыры в системах переменных звёзд, астрофизики исследуют вещество в состояниях, которые невозможно воспроизвести в физической лаборатории.

Особая группа переменных - самые молодые звёзды, сравнительно недавно (по космическим масштабам) сформировавшиеся в областях концентрации межзвёздного газа. Такие звёзды впервые обнаружил в XIX в. русский астроном Отто Васильевич Струве в огромном комплексе вокруг туманности Ориона, поэтому их стали называть орионовыми переменными . Нередко они именуются и переменными типа Т Тельца , по одной из известных молодых переменных звёзд. Орионовы переменные часто меняют блеск беспорядочным образом, но иногда у них прослеживаются и признаки периодичности, связанной с вращением вокруг оси.

Мы знаем всего два-три десятка звёзд, принадлежащих к интересному типу R Северной Короны , характерный признак которого, образно говоря «вспышки наоборот». Звезда, давшая название этой разновидности переменных, иногда неожиданно падает в блеске на несколько (до восьми) звёздных величин, а потом медленно, в течение недель или даже месяцев, восстанавливает яркость. Атмосферы таких звёзд имеют необычный химический состав: в них практически отсутствует самый распространённый во Вселенной элемент - водород, зато много гелия и углерода. Предполагается, что углерод конденсируется в потоках вещества, истекающего с поверхности звезды, образуя сажу, которая и поглощает излучение. У некоторых звёзд типа R Северной Короны зарегистрированы также пульсации с периодами в десятки суток.

Переменные звёзды, описанные выше, меняют свой блеск вследствие сложных физических процессов в недрах или на поверхности либо в результате взаимодействия в тесных двойных системах. Это физически переменные звёзды (разумеется, здесь рассмотрены далеко не все их разновидности). Однако найдено немало звёзд, переменность которых объясняется чисто геометрическими эффектами. Известны тысячи затменных переменных звёзд в двойных системах. Их компоненты, перемещаясь по своим орбитам, временами заходят один за другой. Самая знаменитая затменная переменная звезда – Алголь. В этой системе компоненты не слишком близки между собой, поэтому их форма мало искажена взаимодействием - они почти шарообразны. Переменные, подобные Алголю, практически не меняют блеска, пока не наступит затмение. Обнаружить такую переменность непросто, ведь продолжительность затмения обычно невелика по сравнению с интервалом времени, когда блеск звезды постоянен. Но встречаются и другие затменные переменные. Их компоненты имеют форму вытянутых эллипсоидов - столь сильно притяжение каждого из них влияет на соседа. При орбитальном вращении таких тел блеск меняется непрерывно, и довольно трудно определить, в какой момент начинается затмение.

Яркость может быть непостоянной и из-за того, что на поверхности звезды имеются тёмные или светлые пятна. Вращаясь вокруг оси, звезда поворачивается к земному наблюдателю то более светлой, то более тёмной стороной. На некоторых холодных карликовых звёздах пятна подобны солнечным, но, поскольку они занимают большую часть диска, переменность при осевом вращении становится вполне заметной.

У Солнца пятна маленькие. Если наблюдать Солнце издалека, как звезду, его переменность вряд ли будет заметна. Ещё труднее обнаружить её с Земли - Солнце слишком яркое. Однако для человека Солнце - самая важная звезда, от которой зависит жизнь на нашей планете, поэтому и внимание к нему особое. Специальными исследованиями с космических аппаратов было установлено, что, действительно, при прохождении по солнечному диску крупных пятен на Землю поступает чуть-чуть меньше света. Так что Солнце вполне может считаться слабой пятнистой переменной звездой. Небольшая переменность Солнца наблюдается и с периодом, равным одиннадцатилетнему циклу солнечной активности.

Очень часто геометрическая переменность сочетается с физической. Так, многие красные карлики - пятнистые переменные и в то же время принадлежат к одному из самых распространённых типов физически переменных - вспыхивающим звёздам. Вспышки таких звёзд похожи на некоторые виды солнечных вспышек, только гораздо мощнее. Иногда во время вспышки, длящейся считанные минуты, блеск звезды возрастает на несколько звёздных величин. (Напомним, что разница в одну звёздную величину означает отличие освещённости примерно в 2,5 раза.) Представьте себе, что было бы, если бы при солнечных вспышках на Землю приходило вдвое больше света, чем обычно!

Переменными не считаются звёзды, блеск которых меняется вследствие микролинзирования или затмения малыми планетами Солнечной системы, т. е. явлений, не связанных с процессами в самой звезде.

Любительские наблюдения переменных звезд

Современные методы научных исследований очень сложны, чтобы правильно их использовать, нужна многолетняя специальная подготовка. Без неё невозможно создать новую физическую теорию или грамотно поставить эксперимент. Наука стала почти на сто процентов профессиональной. Однако в области изучения переменных звёзд и сейчас, в XXI в., существует обширное поле деятельности для любителей астрономии. Держать в поле зрения каждую из десятков тысяч переменных звёзд профессиональные астрономы пока не в состоянии. Такая возможность появится, вероятно, только после организации автоматического слежения за всем звёздным небом с оперативной обработкой информации на мощных компьютерах. Пока же астрономы-любители (многие из которых объединены в ассоциации) наблюдают множество переменных звёзд, преимущественно ярких, и сообщают астрономическим научным учреждениям ценные сведения об изменениях их блеска.

Ассоциация эффективно взаимодействует с профессиональными астрономическими учреждениями. Например, астрономы поручали её членам проследить, когда у определённой карликовой новой произойдёт вспышка, чтобы, получив сообщение об этом, немедленно начать наблюдения на больших телескопах. Неоценим вклад любителей астрономии в наблюдения переменных типа Миры Кита, которые ведутся ими на протяжении десятилетий. Результаты публикуются в изданиях Американской ассоциации наблюдателей переменных звёзд и других подобных объединений.

Нередко астрономам-любителям удаётся первыми заметить вспышки новых звёзд. Здесь наибольший успех в последнее время выпадает на долю японских наблюдателей, тоже объединённых в ассоциацию. Пользуясь электронной почтой, они поддерживают постоянную связь, помогают друг другу проверить возможные открытия, оперативно извещают профессионалов. А протестантский священник Р. Эванс из Австралии сумел запомнить облик окрестностей большого числа близких галактик, чтобы, наводя на них телескоп, проверять (даже без помощи звёздной карты), не вспыхнули ли в этих галактиках сверхновые звёзды. Так ему удалось открыть десятки сверхновых.

Любительские наблюдения переменных звёзд проводятся и в России и в Украине, где имеются свои объединения любителей (некоторые наши соотечественники участвуют и в работе Американской ассоциации наблюдателей переменных звёзд). О наиболее интересных результатах они сообщают институтам, занимающимся этими вопросами.


Пульсирующие звезды расширяются и сжимаются, становясь больше и меньше, горячее и холоднее, ярче и тусклее. Физические свойства этих звезд таковы, что они просто переходят из одного состояния в другое и обратно, как будто совершают некие колебания или пульсируют, совсем как бьющиеся в небе сердца.


Переменные звезды-цефеиды

Американский астроном Генриетта Ливитт обнаружила, что у цефеид существует зависимость между периодом изменения блеска и светимостью (period-luminosity relation). Этот термин означает, что, чем дольше период изменения блеска (интервал между последовательными пиками блеска), тем выше средний истинный блеск звезды. Поэтому, если измерять видимую звездную величину переменной звезды-цефеиды по мере ее изменения с течением дней и недель и затем определить период изменения блеска, то можно легко вычислить истинный блеск звезды.


Зачем это нужно? А затем, что, зная истинный блеск звезды, можно определить расстояние до нее. Ведь чем дальше звезда, тем более тусклой она выглядит, но это все та же звезда с тем же истинным блеском.

Удаленные тусклые звезды подчиняются закону обратных квадратов (inverse square law). Это значит, что если звезда в 2 раза дальше, то она выглядит в 4 раза более тусклой. А если звезда в 3 раза дальше, то она выглядит в 9 раз тусклее. Если же звезда в 10 раз дальше, то она выглядит в 100 раз более тусклой.


Недавно в СМИ появились сообщениях о том, что с помощью космического телескопа "Хаббл" удалось определить масштабы и возраст Вселенной. На самом деле это результат исследования с помощью телескопа "Хаббл" переменных звезд-цефеид. Эти цефеиды находятся в далеких галактиках. Но, наблюдая за изменением их блеска и используя зависимость между периодом изменения блеска и светимостью, астрономы определили расстояние до этих галактик.


Звезды типа RR Лиры

Звезды типа RR Лиры подобны цефеидам, но они не такие большие и яркие. Некоторые из них расположены в шаровом звездном скоплении в нашей галактике Млечный Путь, и у них тоже существует зависимость между периодом изменения блеска и светимостью.

Шаровые скопления - это огромные сферические образования, заполненные старыми звездами, рожденными еще в период формирования Млечного Пути. Это участки космоса шириной всего лишь 60-100 световых лет, в которых "упаковано" от нескольких сотен тысяч до миллиона звезд. Наблюдая за изменением блеска звезд типа RR Лиры, астрономы могут оценить расстояние до таких звезд. А если эти звезды находятся в шаровых скоплениях, то можно определить расстояние до этих шаровых скоплений.

Почему так важно знать расстояние до звездного скопления? А вот почему. Все звезды, расположенные в одном скоплении, образовались одновременно из общего облака. И все они расположены примерно на одинаковом расстоянии от Земли, поскольку находятся в одном и том же скоплении. Поэтому, когда ученые строят H-R-диаграмму для звезд из скопления, в ней не будет ошибок, вызванных разницей расстояний до различных звезд. А если мы знаем расстояние до звездного скопления, то все нанесенные на диаграмму значения звездных величин можно преобразовать в светимость, т. е. в интенсивность излучения звездой энергии в секунду. И эти значения можно непосредственно сравнить с теоретическими данными. Именно этим и занимаются астрофизики.


Долгопериодические переменные звезды

В то время как астрофизики обрабатывают информацию, полученную от цефеид и переменных звезд типа RR Лиры, астрономы-любители наслаждаются наблюдением долгопериодических переменных звезд, так называемых переменных звезд типа Мира Кита. Мира - это другое название звезды Омикрон Ки

Переменные звезды типа Миры Кита пульсируют, как цефеиды, но у них намного большие периоды изменения блеска, в среднем 10 месяцев и больше, и, кроме того, у них больше амплитуда изменения блеска. Когда блеск Миры Кита достигает максимального значения, ее можно увидеть невооруженным глазом, а когда блеск минимален, необходим телескоп. Изменение блеска долгопериодических звезд также происходит гораздо нерегулярнее, чем у цефеид. Максимальная звездная величина, которой достигает некоторая звезда, может очень сильно меняться от одного периода к другому. Наблюдения таких звезд, проводить которые совсем нетрудно, позволяют ученым получить важную научную информацию. И вы тоже можете внести свой вклад в исследование переменных звезд (более подробно я расскажу об этом в последнем разделе данной главы).

> Переменные звезды

Рассмотрите переменные звезды : описание звездного класса, почему умеют менять яркость, длительность изменения величины, колебания Солнца, типы переменных.

Переменной называют звезду , если она способна менять яркость. То есть, ее видимая величина по какой-то причине периодически меняется для земного наблюдателя. Подобные изменения могут занимать годы, а порой всего секунды и граничат между 1/1000-й величины и 20-й.

Среди представителей переменных звезд в каталоги попало более 100000 небесных тел и еще тысячи выступают подозрительными переменными. также является переменной, чья светимость колеблется на 1/1000-ю величину, а период охватывает 11 лет.

История переменных звезд

История изучения переменных звезд начинается с Омикрона Кита (Мира). Дэвид Фабриций описал ее в качестве новой в 1596 году. В 1638 году Йоханнес Хогвальдс заметил ее пульсацию в течение 11 месяцев. Это стало ценным открытием, так как подсказывало, что звезды не выступают чем-то вечным (как утверждал Аристотель). Сверхновые и переменные помогли перешагнуть в новую эру астрономии.

После этого только за один век удалось отыскать 4 переменные типа Мира. Оказалось, что о них знали до появления в записях западного мира. Например, трое числилось в документах Древнего Китая и Кореи.

В 1669 году нашли переменную затмевающую звезду Алголь, хотя ее изменчивость сумел объяснить только Джон Гудрик в 1784 году. Третья – Хи Лебедя, найденная в 1686 и 1704 годах. За следующие 80 лет нашли еще 7.

С 1850 года начинается бум на поиски переменных, потому что активно развивается фотография. Чтобы вы понимали, с 2008 года только в насчитывали больше 46000 переменных.

Характеристика и состав переменных звезд

У изменчивости есть причины. Это касается изменения светимости или массы, а также некоторых препятствий, мешающих свету поступать к . Поэтому выделяют типы переменных звезд. Пульсирующие переменные звезды раздуваются и сжимаются. Двойные затменные теряют яркость, когда одна из них перекрывает вторую. Некоторые переменные представляют две близко расположенных звезды, обменивающиеся массой.

Можно выделить два главных типа переменных звезд. Есть внутренние переменные – их яркость меняется из-за пульсации, смены размера или извержения. А есть внешние – причина кроется в затмении, возникающем из-за обоюдного вращения.

Внутренние переменные звезды

Цефеиды – невероятно яркие звезды, превышающие солнечную светимость в 500-300000 раз. Периодичность – 1-100 дней. Это пульсирующий тип, способный резко расширяться и сокращаться за короткий срок. Это ценные объекты, так как с их помощью отмеряют дистанции к другим небесным телам и формированиям.

Среди других пульсирующих переменных можно вспомнить RR Лиры, у которой период намного короче, и она старше. Есть RV тельца – сверхгиганты с заметным колебанием. Если мы смотрим на звезды с длинным периодом, то это объекты типа Мира – холодные красные сверхгиганты. Полурегулярные – красные гиганты или сверхгиганты, чья периодичность занимает 30-1000 дней. Одна их наиболее популярных – .

Не забывайте про переменную цефеиды V1, которая отметилась в истории изучения Вселенной. Именно с ее помощью Эдвин Хаббл понял, что туманность, в которой она располагалась, это галактика. А значит, пространство не ограничивается Млечным Путем.

Катаклизматические переменные («взрывные») светятся из-за резких или очень мощных вспышек, создаваемых термоядерными процессами. Среди них присутствуют новые, сверхновые и карликовые новые.

Сверхновые – отличаются динамичностью. Количество извергаемой энергии порой превосходит возможности целой галактики. Могут разрастаться до величины 20, становясь в 100 миллионов раз ярче. Чаще всего, образуются в момент смерти массивной звезды, хотя после этого может остаться ядро (нейтронная звезда) или же сформироваться планетарная туманность.

Например, V1280 Скорпиона достигла максимальной яркости в 2007 году. За последние 70 лет ярчайшей была Новая Лебедя. Поразила всех также V603 Орла, взорвавшаяся в 1901 году. В течение 1918 года она не уступала по яркости .

Карликовые новые – двойные белые звезды, переносящие массу, из-за чего производят регулярные вспышки. Есть симбиотические переменные – близкие двойные системы, в которых фигурирует красный гигант и горячая голубая звезда.

Извержения заметны на эруптивных переменных, способных взаимодействовать с другими веществами. Здесь очень много подтипов: вспыхивающие, сверхгиганты, протозвезды, переменные Ориона. Некоторые из них выступают бинарными системами.

Внешние переменные звезды

К затменным относятся звезды, которые периодически перекрывают свет друг друга в наблюдении. У каждой из них могут быть свои планеты, повторяющие механизм затмения, происходящий в . Таким объектом является Алголь. Аппарату Кеплер НАСА удалось отыскать более 2600 затменных двойных звезд во время миссии.

Вращающиеся – это переменные, демонстрирующие небольшие колебания в свете, создаваемые поверхностными пятнами. Очень часто это двойные системы, сформированные в виде эллипсов, что вызывает изменения яркости во время движения.

Пульсары – вращающиеся нейтронные звезды, вырабатывающие электромагнитное излучение, которое можно заметить только в случае, если оно направлено на нас. Световые интервалы можно измерить и отследить, потому что они точные. Очень часто их называют космическими маяками. Если пульсар вращается очень быстро, то теряет огромное количество массы за секунду. Их именуют миллисекундными пульсарами. Наиболее быстрый представитель способен за минуту совершить 43000 оборотов. Их скорость объясняется гравитационной связью с обычными звездами. Во время подобного контакта газ от обычной переходит к пульсару, ускоряя вращение.

Будущие исследования переменных звезд

Важно понимать, что эти небесные тела чрезвычайно полезны астрономам, так как позволяют разобраться в радиусах, массе, температуре и видимости других звезд. Кроме того, они помогают проникнуть в состав и изучить эволюционный путь. Но их изучение – кропотливый и длительный процесс, для которого используют не только специальные приборы, но и любительские телескопы.

Любую звезду можно назвать переменной - с течением времени ее блеск и даже цвет меняются. Но эти изменения происходят настолько медленно, что никакой человеческой жизни не хватит для того, чтобы их обнаружить. Недаром с глубокой древности звездное небо считалось символом неизменности и вечности.

Но и в кажущемся постоянным звездном мире немало исключений. Это большая группа звезд, чей блеск изменяется через сравнительно короткие промежутки времени и эти изменения могут быть зарегистрированы с помощью астрономических инструментов.

Переменными называют «мигающие» звезды , которые хотя бы однажды изменяли свою яркость. Но большинство переменных меняет свой блеск периодически, и это свидетельствует, что в окрестностях такой звезды или в ее недрах происходят необычные физические процессы.

Изменения блеска звезд не следует путать с их мерцанием, которое происходит из-за движения масс воздуха, имеющих различную температуру, в земной атмосфере. При наблюдении из космоса, звезды не мерцают, и если уж зарегистрированы колебания их яркости - перед нами переменная.

Звезда-чудовище

В созвездии Персея есть хорошо известная астрономам яркая звезда второй величины Алголь. Это имя переводится с арабского как «чудовище», а в средневековых изображениях Персея эта звезда играла роль «глаза» отрубленной головы Медузы Горгоны. И недаром - давным-давно было замечено, что Алголь с периодичностью около трех земных суток внезапно резко уменьшает яркость почти на полторы звездных величины - то есть в три с половиной раза!

Лишь в наши дни удалось точно выяснить причину такого «подмигивания». Алголь оказался необыкновенно тесной системой из двух звезд - Алголя A и Алголя B, расстояние между которыми в 16 раз меньше расстояния от Земли до Солнца. Менее массивный Алголь B имеет большие размеры, чем Алголь A, но блеск этого субгиганта гораздо слабее, чем у его партнера Алголя А - тот является звездой главной последовательности. Когда для земного наблюдателя происходит «затмение» более яркой звезды менее яркой, общее количество света, приходящего от системы, становится значительно меньше.

Такие переменные - а их оказалось довольно много среди двойных звезд - называют оптическими, или затменными переменными.

Тайна Дельты Цефея

Другое дело звезды, не являющиеся двойными, однако периодически сильно меняющие свой блеск. Очевидно, что дело тут не в характере движения звезды, а в сложных процессах, происходящих в их недрах. Первой из таких звезд, исследованных астрономами, была Дельта Цефея - она изменяет свой блеск за 5 дней и 9 часов на целую звездную величину. Исследования спектра этой звезды показали, что его линии периодически смещаются то в красную, то в фиолетовую область. В случае с одиночной звездой это означает, что ее поверхность то стремительно удаляется от наблюдателя, то стремительно приближается к нему - звезда пульсирует, увеличиваясь и опадая, а заодно меняя цвет и температуру поверхности. Причем, если в минимуме ее диаметр равен сорока диаметрам нашего Солнца, то в максимуме она увеличивается сразу на четыре солнечных диаметра.

Что же происходит в недрах Дельты Цефея и подобных ей звезд?

Астрофизикам удалось построить теоретическую модель звезд такого типа. В недрах Дельты Цефея существует слой вещества с особыми свойствами, который как бы накапливает энергию, выделяющуюся в ядре звезды. Когда количество энергии в нем достигает максимума, слой мгновенно отдает всю накопленную энергию «наверх». От такого «энергетического удара» внешние слои звезды то разогреваются, то охлаждаются, соответственно сжимаясь или расширяясь. При этом в минимуме блеска Дельта Цефея относится к тому же спектральному классу, что и наше , а в максимуме превращается в белую звезду с температурой поверхности выше 10 тыс. градусов.

Маяки вселеннной

В начале 20 столетия американский астроном Генриетта Ливитт (1868-1921), обнаружившая около 2400 переменных звезд, открыла зависимость между периодом изменения блеска переменных звезд и их светимостью: чем больше период, тем выше светимость. Измерив период, отныне можно было определить светимость, а зная ее - измерить расстояние до звезды.

Так звезды, подобные Дельте Цефея - их назвали цефеидами, - стали для астрономов своего рода маяками, по которым исследователи могут определить расстояния до тех звездных систем, в которых находятся переменные. А поскольку большинство цефеид относятся к классу желтых сверхгигантов и выделяют много энергии, их можно заметить на огромных расстояниях и даже в других галактиках.

Существуют также переменные звезды, изменяющие свой блеск без всяких видимых закономерностей - неправильные переменные, а цефеидами оказываются даже те звезды, которые мы по привычке считаем самыми обычными и устойчивыми. Такой, например, является Полярная звезда, - просто изменения в ее блеске выражаются не так очевидно, как у других цефеид.

В 1922 г. выдающийся американский астроном Эдвин Пауэлл Хаббл обнаружил несколько цефеид в и, используя переменные звезды как эталон светимости, вычислил расстояние до них. Так впервые в истории астрономии было доказано существование космических объектов за пределами нашей звездной системы - Туманность Андромеды оказалась гигантской спиральной галактикой, удаленной от Млечного пути на 2,5 млн световых лет.



Звезды, светимость которых меняется за относительно короткие промежутки времени, называются физическими переменными звездами . Изменения светимости этого типа звезд вызваны физическими процессами, которые происходят в их недрах. По характеру переменности различают пульсирующие переменные и эруптивные переменные. В отдельный вид выделяют также новые и сверхновые звезды, которые являются частным случаем эруптивных переменных. Все переменные звезды имеют специальные обозначения, кроме тех, которые были ранее обозначены буквой греческого алфавита. Первые 334 переменные звезды каждого созвездия обозначаны последовательностью букв латинского алфавита (например, R, S, Т, RR, RS, ZZ, AA, QZ) с добавлением названия соответствующего созвездия (например, RR Lyr). Следующие переменные обозначаются V 335, V 336 и т.д. (например, V 335 Cyg).

Физические переменные звезды


Звезды, которые характеризуются особой формой кривой блеска, отображающей плавное периодическое изменение видимой звездной величины и изменение светимости звезды в несколько раз (обычно от 2 до 6), называют физическими переменными звездами или цефеидами . Данный класс звезд был назван именем одной из типичных его представительниц – звезды δ (дельта) Цефея. Цефеиды можно отнести к гигантам и сверхгигантам спектральных классов F и G. Благодаря этому обстоятельству имеется возможность наблюдать их с огромных расстояний, в том числе и далеко за пределами нашей звездной системы - Галактики. Одна из важнейших характеристик цефеид - период. Для каждой отдельно взятой звезды он постоянен с большой степенью точности, но у разных цефеид периоды различны (от суток до нескольких десятков суток). У цефеид одновременно с видимой звездной величиной меняется и спектр. Это означает, что вместе с изменением светимости цефеид происходит и изменение температуры их атмосфер в среднем на 1500°. По смещению спектральных линий в спектрах цефеид обнаружено периодическое изменение их лучевых скоростей. Кроме того, периодически меняется и радиус звезды. Такие звезды как δ Цефея относятся к молодым объектам, которые располагаются преимущественно вблизи основной плоскости нашей звездной системы - Галактики. Цефеиды встречаются и в , но отличаются большим возрастом и несколько меньшей светимостью. Эти звезды, достигшие стадии цефеид, менее массивные, поэтому эволюционируют медленнее. Их называют звездами типа W Девы. Такие наблюдаемые особенности цефеид свидетельствуют о том, что атмосферы этих звезд испытывают регулярные пульсации. Таким образом, в них имеются условия для поддержания в течение долгого времени на постоянном уровне особого колебательного процесса.


Рис. Цефеиды


Задолго до того, как удалось выяснить природу пульсаций цефеид , было установлено существование зависимости между их периодом и светимостью. При наблюдении цефеид в Малом Магеллановом Облаке – одной из ближайших к нам звездных систем - было замечено, что чем меньше видимая звездная величина цефеиды (т.е. чем ярче она кажется), тем больше период изменения ее блеска. Эта зависимость оказалась линейной. Из того, что все принадлежали одной и той же системе, следовало, что расстояния до них практически одинаковы. Следовательно, обнаруженная зависимость одновременно оказалась зависимостью между периодом Р и абсолютной звездной величиной М (или светимостью L) для цефеид. Существование зависимости между периодом и абсолютной звездной величиной цефеид играет значительно важную роль в астрономии: благодаря ей определяют расстояния до очень далеких объектов, когда другие методы не могут быть применены.

Кроме цефеид, существуют также другие типы пульсирующих переменных звезд . Самыми известными среди них являются звезды типа RR Лиры, которые ранее назывались короткопериодическими цефеидами из-за своего сходства с обычными цефеидами. Звезды типа RR Лиры - гиганты спектрального класса А, светимость которых превышающей светимость Солнца более чем в 100 раз. Периоды звезд типа RR Лиры заключены в пределах от 0,2 до 1,2 суток, а амплитуда изменения блеска достигает одной звездной величины. Другим интересным типом пульсирующих переменных является небольшая группа звезд типа β Цефея (или типа β Большого Пса), принадлежащих преимущественно к гигантам ранних спектральных подклассов В. По характеру переменности и форме кривой блеска эти звезды напоминают звезды типа RR Лиры, отличаясь от них исключительно малой амплитудой изменения звездной величины. Периоды заключены в пределах от 3 до 6 часов, причем, как и у цефеид, наблюдается зависимость периода от светимости.



Кроме пульсирующих звезд с правильным изменением светимости существует также несколько типов звезд, характер кривой блеска которых меняется. Среди них можно выделить звезды типа RV Тельца , изменения светимости которых характеризуются чередованием глубоких и мелких минимумов, происходящим с периодом от 30 до 150 дней и с амплитудой от 0,8 до 3,5 звездных величин. Звезды типа RV Тельца принадлежат к спектральным классам F, G или К. Звезды типа m Цефея принадлежат к спектральному классу М и называются красными полуправильными переменными . Они отличаются иногда очень сильными неправильностями изменения светимости, происходящими за время от нескольких десятков до нескольких сотен суток. Рядом с полуправильными переменными на диаграмме спектр – светимость располагаются звезды класса М, в которых не удается обнаружить повторяемости изменения светимости (неправильные переменные). Ниже их находятся звезды с эмиссионными линиями в спектре плавно меняющие свою светимость за очень большие промежутки времени (от 70 до 1300 дней) и в очень больших пределах. Замечательной представительницей звезд этого типа является о (омикрон) Кита, или, как иначе называемая Мира. Этот класс звезд называют долгопериодическими переменными типа Миры Кита . Длина периода у долгопериодических переменных звезд колеблется около среднего значения в пределах от 10% в обе стороны.


Среди звезд-карликов с меньшей светимостью также имеются переменные различных типов, общее число которых примерно в 10 раз меньше количества пульсирующих гигантов. Эти звезды проявляют свою переменность в виде периодически повторяющихся вспышек, природа которых объясняется различного рода выбросами вещества, или эрупциями. Поэтому всю эту группу звезд вместе с новыми звездами называют эруптивными переменными . Стоит отметить, что среди них есть звезды самой различной природы, как находящиеся на ранних этапах своей эволюции, так и завершающие свой жизненный путь. Самыми молодыми звездами, по-видимому, еще не завершившими процесса гравитационного сжатия, следует считать переменные типа τ (тау) Тельца . Это карлики спектральных классов чаще всего F - G, в большом количестве обнаруженные, например, в туманности Ориона. Очень похожи на них звезды типа RW Возничего, принадлежащие спектральным классам от В до М. У всех этих звезд изменение светимости происходит настолько неправильно, что нельзя установить никакой закономерности.



Эруптивные переменные звезды особого типа, у которых хотя бы один раз наблюдалась вспышка (внезапное резкое увеличение светимости) не менее чем на 7-8 звездных величин, называются новыми . Обычно во время вспышки новой звезды видимая звездная величина уменьшается на 10m-13m, что соответствует росту светимости в десятки и сотни тысяч раз. После вспышки новые звезды являются очень горячими карликами. В максимальной фазе вспышки они напоминают сверхгиганты классов А - F. Если вспышка одной и той же новой звезды наблюдалась не менее двух раз, то такая новая называется повторной. Возрастание светимости у повторных новых звезд несколько меньше, чем у типичных новых. Всего в настоящее время известно около 300 новых звезд, из них около 150 появились в нашей Галактике и свыше 100 - в туманности Андромеды. У известных семи повторных новых в сумме наблюдалось около 20 вспышек. Многие (возможно даже все) новые и повторные новые являются тесными двойными системами. После вспышки новые звезды часто обнаруживают слабую переменность. Изменение светимости новой звезды показывает, что во время вспышки происходит внезапный взрыв, вызванный неустойчивостью, возникшей в звезде. Согласно различным гипотезам, эта неустойчивость может возникать у некоторых горячих звезд в результате внутренних процессов, определяющих выделение энергии в звезде, либо вследствие воздействия каких-либо внешних факторов.

Сверхновые

Сверхновыми называются звезды, которые вспыхивают так же, как новые и достигают абсолютной звездной величины от -18m до -19m и даже -21m в максимуме. У сверхновых происходит возрастание светимости более чем в десятки миллионов раз. Общая энергия, излучаемая сверхновой за время вспышки, в тысячи раз больше, чем для новых. Фотографически зарегистрировано около 60 вспышек сверхновых в других галактиках, причем нередко их светимость оказывалась сравнимой с интегральной светимостью всей галактики, в которой произошла вспышка. По описаниям более ранних наблюдений, выполненных невооруженным глазом, установлено несколько случаев вспышек сверхновых в нашей Галактике. Самой интересной из них является Сверхновая 1054 г., вспыхнувшая в созвездии Тельца и наблюдавшаяся китайскими и японскими астрономами в виде внезапно появившейся "звезды-гостьи", которая казалась ярче Венеры и была видна даже днем. Хотя это явление похоже на вспышку обычной новой, оно отличается от нее своим масштабом, плавной и медленно меняющейся кривой блеска и спектром. По характеру спектра вблизи эпохи максимума различаются два типа сверхновых звезд. Большой интерес представляют быстро расширяющиеся , которые в нескольких случаях удалось обнаружить на месте вспыхнувших сверхновых звезд I типа. Самой замечательной из них является знаменитая Крабовидная туманность в созвездии Тельца. Форма эмиссионных линий этой туманности говорит о ее расширении со скоростью около 1000 км/сек. Современные размеры туманности таковы, что расширение с этой скоростью могло начаться не более 900 лет назад, т.е. как раз в эпоху вспышки Сверхновой 1054 г.


Пульсары

В августе 1967 г. в английском городе Кембридж было зафиксировано космическое радиоизлучение, которое исходило от точечных источников в виде следующих друг за другом четких импульсов. Продолжительность отдельного импульса у таких источников может составлять от нескольких миллисекунд до нескольких десятых долей секунды. Резкость импульсов и правильность их повторений позволяют с большой точностью определить периоды пульсаций этих объектов, которые названы пульсарами . Период одного из пульсаров равен примерно 1,34 сек, в то время как у других периоды заключены в пределах от 0,03 до 4 сек. В настоящее время известно около 200 пульсаров. Все они дают сильно поляризованное радиоизлучение в широком диапазоне длин волн, интенсивность которого круто возрастает с ростом длины волны. Это означает, что излучение имеет нетепловую природу. Удалось определить расстояния до многих пульсаров, оказавшиеся в пределах от сотен до тысяч парсеков, что говорит о сравнительной близости объектов, заведомо принадлежащих нашей Галактике.

Самый известный пульсар , который принято обозначать номером NP 0531, в точности совпадает с одной из звезд в центре Крабовидной туманности. Наблюдения показали, что оптическое излучение этой звезды также меняется с тем же периодом. В импульсе звезда достигает 13m, а между импульсами она не видна. Такие же пульсации у этого источника испытывает и рентгеновское излучение, мощность которого в 100 раз превышает мощность оптического излучения. Совпадение одного из пульсаров с центром такого необычного образования, как Крабовидная туманность, наводит на мысль о том, что они являются как раз теми объектами, в которые после вспышек превращаются сверхновые звезды. Если вспышки сверхновых звезд действительно завершаются образованием таких объектов, то весьма возможно, что пульсары – это нейтронные звезды, В этом случае при массе порядка 2 масс Солнца они должны иметь радиусы около 10 км. При сжатии до таких размеров плотность вещества становится выше ядерной, а вращение звезды ускоряется до нескольких десятков оборотов в секунду. По-видимому, промежуток времени между последовательными импульсами равен периоду вращения нейтронной звезды. Тогда пульсация объясняется наличием неоднородностей, своеобразных горячих пятен, на поверхности этих звезд. Здесь уместно говорить о "поверхности", так как при столь высоких плотностях вещество по своим свойствам ближе к твердому телу. Нейтронные звезды могут служить источниками энергичных частиц, все время поступающих в связанные с ними туманности, подобные Крабовидной.


фото: Радиоизлучение крабовидной туманности


Похожие публикации